用户名: 密码: 验证码:
铋酸盐和铁基氧化物超导体电子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1986年发现了第一种高温超导材料——镧钡铜氧化物,铜基超导材料成为全世界物理学家的研究热点。然而直至今日,对于铜基超导材料的高温超导机制,物理学界仍未形成一致看法,这也使得高温超导成为当今凝聚态物理学中最大的谜团之一,因此很多科学家都希望在铜基超导材料以外再找到新的高温超导材料,从而能够使高温超导机制更加明朗。虽然目前发现的铜氧化合物超导体T_c远低于铜氧化合物,但是对该体系的研究有助于理解高温超导机制,为探究高温超导机制提供一个更清晰的体系,找寻其他支持超导电性的结构规律,为最终揭开超导电性的深层机制提供了新的条件和机遇。因此,充分了解某些典型铜氧化合物超导体的结构规律,将大大拓宽该类材料的探索和研究范围,这对于发现新的超导体具有重要意义。
     本论文主要分三部分,第一部分为BaBi_(1-x)Pb_xO_3的掺杂行为对超导性能及电子结构的影响;第二部分为新型铁基超导材料的超导性能及电子结构研究;第三部分为NaCoO_x的掺杂行为对电磁性质的影响。主要内容安排如下:
     第一章概述了超导体的基本物理性质;然后介绍了铜氧化物的结构特征、超导相图及超导机制;最后是本论文的选题意义和论文主要研究内容。
     第二章对非铜基氧化物超导体进行了综述,介绍了高温超导体BaBiO_3体系的结构特征、元素替代效应和制备方法;介绍了层状钴类氧化物超导体的晶体结构、电子结构、超导相图和磁性质;重点介绍了新型铁基超导材料的研究现状、结构特征、元素替代效应和超导机制。
     第三章采用X光电子能谱(XPS)研究了BaPb_(0.75-x)Hg_xBi_(0.25)O_3(BPHBO)系列超导体的电子结构,发现Pb4f和O1s芯能级随Hg掺入向低能级方向移动,同时Bi4f芯能级随Hg掺入向高能级方向移动,结果及分析显示Hg掺杂引起的电子结构系统改变最终影响系统的超导电性。在低掺杂量范围(x<0.2)超导电性被抑制是由于载流子浓度减小所致,在掺杂范围0.3     第四章采用电阻测量和XPS方法对新型铁基超导材料SmFeAsO_(1-X)F_X的超导性能和电子结构进行了研究,结果表明随F掺杂量增大,系统从金属性自旋密度波状态转变为超导态,同时价带谱位于费米能级下0.2eV处的小峰逐渐消失并在费米能级附近形成一个较宽平台。从F掺杂导致的O1s和Sm 3d芯能级谱峰位移值推导出费米能级位移速度为dE_F/dx≌0.03 eV/at%F原子。结果显示自旋密度波状态来源于低自旋态的Fe3d电子,随F掺杂量增大,自旋密度波状态逐渐被抑制并且能级展宽。
     第五章通过磁性测量和XPS研究考察了Ir掺杂对SmFeAsO超导电性及能带结构的影响,实验结果表明Ir掺杂在Fe位,直接向Fe-As导电层注入电子,与氟掺杂相比较,显示其对超导电性的影响更为直接,少量掺杂即对超导性能产生强烈影响,故产生超导电性可调掺杂范围很小。揭示了SmFeAsO的磁有序与Fe3d电子的低自旋态相关联,且掺Ir抑制其低自旋态。当Ir掺入系统时,Fe3d电子的低自旋态被抑制,形成的超导样品SmFe_(1-x)Ir_xAsO中Fe3d电子从低自旋态转变为高自旋态。所有结果显示,该系统存在电子的强关联效应。
     第六章对铜基及铜基氧化物超导材料的电子结构进行比较。
     第七章主要研究NaCoO_x的磁性能随掺杂元素种类的变化关系。采用快速加热法成功制备出多晶Na_(0.7)Co_(1-x)Al_xO_2,名义掺杂量最高达到0.3。在5-300K测量不同掺杂量多晶样品的直流磁化率,比较掺杂量对直流磁化率的影响关系。发现低掺杂量样品总体为顺磁态,高掺杂量样品出现冻结温度约为13K的自旋玻璃态转变。
     第八章对全文的工作进行了总结。
Since the discovery of the La-Ba-Cu-0 high-T_c superconductor in 1986, extensive research activities have been devoted to this system due to the high T_c. However, the underlying physical mechanism for the high-T_c superconductivity (SC) of copper oxides is still under debate. It has been one of the most challenging problems in condensed material physics to clarify the mechanism, and many scientists hope to find new high-T_c superconductor other than the copper oxides to explain the high-T_c superconductivity. Although the T_c of the copper-free oxide superconductors is much lower than that of copper oxides, they provides a more clear system to uncover the mechanism of the high-T_c superconductivity and to explore other structural characteristics supporting the superconductivity. Therefore, it is very important to fully understand the structural characteristics of the copper-free oxide superconductors, which will broaden the research scope of superconductive materials.
     This dissertation mainly focuses on three parts. The first part is to investigate the effects of the doping behaviors of BaBi_(1-x)Pb_xO_3 and Ba_(1-x)K_xBiO_3 superconductors on the electronic structures and superconductivity. The second part is to examine the effects of doping behaviors of NaCoO_x on the electro-magnetic properties. The last parts is to discuss the superconductivity and the electronic structures of the novel iron pnictides superconductor. The main contents are presented as follows:
     In chapter 1, a brief introduction was made to the fundamental properties of superconductors such as the superconductivity, crystal structure, mechanism models, significance of the current research and main contents of this dissertation.
     In chapter 2, the copper-free high-T_c superconductors were summarized. The structural characteristics, element substitute effect and preparation methods of the BaBiO_3 superconductors were introduced. The crystal structures, electronic structures, superconductivity phase maps and magnetism of the cobalt oxide superconductor system were briefly reviewed. Emphases were placed to introduce the research status, structural characteristics, element substitute effect, and mechanism of the novel iron based superconductive materials.
     In chapter 3, the electronic structures of BaPb_(0.75-x)Hg_xBi_(0.25)O_3 (BPHBO) system were studied with x-ray photoelectron spectroscopy (XPS). It was indicated that the core levels of Pb4f and O1s states shifted towards lower region with the mercury doping, and that of Bi4f state shifted towards higher region. The results revealed that the mercury doping induced systematic changes of the electronic structures, consequently affecting the superconductivity. The suppression of superconductivity at low doping levels (x<0.2) was attributed to the suppressed charge-disproportionate state, whereas the recovery in the doping level of 0.3     In chapter 4, the electronic structures of Fe-based superconductor SmFeAsO_(1-x)F_x were examined with the resistivity measurement and XPS. With the increase in the fluorine doing levels, the system changed from a metallic spin-density-wave state to a superconductive state. The small peak centered at 0.2 eV below the Fermi level in the valence band gradually disappeared and a broad plateau near the Fermi level formed. The shift of the Fermi level with a rate of dE_F/dx≌0.03 eV/at% after fluorine doping was obtained from the shift of the binding energy of O1s and Sm 3d core-levels. The results revealed that the spin-density-wave state originated from the low-spin state of the Fe3d electrons, which was gradually suppressed with the band width expansion after fluorine doping.
     In chapter 5, the electronic structures of Fe-based superconductor SmFe_(1-x)Ir_xAsO were studied with the magnetism measurement and XPS. It indicated that element Ir was doped on the Fe site, which directly introduced electrons to the conductive Fe-As layer. Therefore, compare to F doping, Ir doping inicated more significant effects on the superconductivity. The magnetism order of SmFeAsO was closely related with the Fe3d low spin state, which was suppressed by Ir doping through the suppressing magnetism of the 3d itinerant electrons as mentioned previously. In superconductivity samples the 3d itinerant electrons were mainly in the high spin state. All the results suggested the strong correlation occurred between the electrons in this system.
     In chapter 6, the electronic structures of copper oxide superconductor were compared with those of copper-free oxide superconductor.
     In chapter 7, single phase polycrystalline samples Na_(0.7)Co_(1-x)Al_xO_2 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) were prepared by solid state reaction. The magnetic properties were characterized by dc and ac magnetic susceptibility measurements from 5 to 300 K. Samples with lower doping amounts (x = 0, 0.05, and 0.10) showed paramagnetic behaviors, but those with higher doping amounts (x = 0.20, 0.25, and 0.30) showed spin-glass behaviors with a freezing temperature (T_f) of about 13 K.
     In chapter 8, the whole dissertation was sum-up.
引文
1.J.GBednorz, and K.A.Muller, Possible high T_c superconductivity in the Ba-La-Cu-O system. Phys. B, 1986. 64: p. 198.
    2.M.K.Wu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 1987. 58: p. 908.
    3.赵忠贤等,Ba-Y-Cu氧化物液氮温区的超导电性.科学通报,1987.32:p.412.
    4.A. Schilling, M. Cantoni, J. D. Guo, et al., Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature, 1993. 363: p. 56.
    5.A. Schilling, M. Cantoni, J. D. Guo, et al., Superconductivity up to 164 K in HgBa_2Ca_(m-1)Cu_mO_(2m+2+δ)(m=1,2,and 3) under quasihydrostatic presures. Phys.Rev. B, 1994. 50: p. 4260.
    6.P.W. Anderson, The resonating valence bond state in La_2CuO_4 and superconductivity. Science, 1987. 235: p. 1196.
    7.N.-C.Yeh, Bulletin of the Association of Asia Pacific Physical Societies 2002. 12:p.2-20.
    8.A. Aharony, R. J. Birgeneau, A. Coniglio, et al., Magnetic phase diagram and magnetic pairing in doped La_2CuO_4. Phys. Rev. Lett., 1988. 60: p. 1330.
    9.W.E. Pickett, Electronic structure of the high-temperature oxide superconductors.Rev. Mod. Phys., 1989. 61: p. 433.
    10.J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Theory of superconductivity.Phys. Rev. B, 1957. 108: p. 1175.
    11.C. Gerber, D. Anselmetti, G. Bednoz, et al., Screw dislocations in high-T_c films. Nature, 1991. 350: p. 279.
    12.M. Hawley, I.D. Raisstrick, J.B. Beery, et al., Growth mechanism of sputtered films of YBa_2Cu_3O_7 studied by scanning tunneling microscopy.Science, 1991. 251:p.1578.
    13.Y. Kamihara, H. Hiramatsu, M. Hirano, et al., Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc, 2006. 128: p. 10012.
    14.Y. Kamihara, T. Watanabe, M. Hirano, et al., Iron-Based Layered Superconductor La [OFx] FeAs (x= 0.05-0.12) with T_c= 26 K. J. Am. Chem Soc,2008. 130:p. 3296.
    15.H. Takahashi, K. Igawa, K. Arii, et al., Superconductivity at 43 K in an iron-based layered compound LaO_(1-x)F_xFeAs. Nature, 2008. 453: p. 376.
    16.Z.A. Ren, W. Lu, J. Yang, et al., Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O_(1-x)F_x] FeAs. Chin. Phys. Lett.,2008. 25:p. 2215.
    17.A.Cho., The hot question: how neware the new superconductors? Science,2008. 320:p. 870.
    18.K.Takada, H.Sakurai, E.Takayama-Muromac, et al., Superconductivity in two-dimensional CoO_2 layers. Nature, 2003. 422: p. 6.
    19.J.Georg, J. Bednorz, and K. Alex, Perovskit-type-the new approach to high T_c superconductivity. Rev. Modern Phys., 1998. 60: p. 585.
    20.A.W.Sleight, J.L. Gillson, and RE. Bierstedt, High-temperature superconductivity in the BaPb_(1-x)Bi_xO_3 systems. Solid State Commun, 1975. 17: p.27.
    21.M.Jin, Superconductivity in Ba_(1-x)K_xBiO_3. Phys. Rev. B, 1992. 45: p. 5535.
    22.W.Weber, Electron-phonon interaction in the new superconductors La_(2-x)(Ba,Sr)_xCuO_4. Phys. Rev. Lett., 1987. 58: p. 1371.
    23.R.L. Fink, C. Hilbert and H. Kroger, Ba_(1-x)K_xBiO_3 thin film Josephson tunnel junctions. Appl. Phys. Lett., 1993. 62: p. 3360.
    24.G.F. Chen, Z. Li, D. Wu, et al., Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO_(1-x)F_xFeAs.Condmat: arXiv, 2008. 0803: p. 3790.
    25.H.H. Wen, G. Mu, L. Fang, et al., Superconductivity at 25 K in hole doped La_(1-x)Sr_xOFeAs. EuroPhys. Lett., 2008. 82: p. 17009:1.
    26.X.H. Chen, T. Wu, G. Wu, et al., Superconductivity at 43 K in SmFeAsO_(1-x)F_x. Condmat: arXiv, 2008. 0803: p. 3603.
    27.Z.A. Ren, J. Yang, W. Lu, et al., Superconductivity in the iron-based F-doped layered quaternary compound Nd[O_(1-x)F_x]FeAs. Condmat: arXiv, 2008.0803: p.4283.
    28.W. Lu, J. Yang, X.L. Dong, et al., Pressure effect on the superconducting properties of LaO_(1-x)F_xFeAs(x=0.11) superconductor. Condmat: arXiv, 2008.0803: p. 4266.
    29.A.R. Sokamani, and R.M. Anjula, Correlation between electronegativity and superconductivity. . Phys.Rev. B, 1989. 39: p. 4217.
    30.Y. Maeno, H. Hashimoto, K. Yoshida, et al., Superconductivity in a layered perovskite without copper. Nature, 1994. 372: p. 532.
    31.H.W. Zandbergen, M. Foo, Q. Xu, et al., Low temperature phase transitions and crystal structure ofNa_(0.5)CoO_2. Phys. Rev. B, 2004. 70: p. 024101.
    32.D. Allender, J. Bray, and J. Bardeen, Giant Electron-Electron Scattering in the Fermi-Liquid State of Na_(0.7)CoO_2. Phys. Rev. Lett., 2004. 93: p. 056401.
    33.Y. Zhang, Z.H. Wu, C.H. Cheng, Y. Zhao, Magnetic properties in Al-doped Na_(0.7)Co_(1-x)Al_xO_2. Journal of Electronic Science and Technology of China, 2008. 6:p. 162.
    34.L.F. Mattheiss, E.M. Gyorgy, D.W. Johanson Jr., Superconductivity above 20 Kin the Ba-K-Bi-O system. Phys.Rev.B 1988. 37: p. 3745.
    35.R.J. Cava, B. Batlogg, J.J. Krajewski ,et al.,, Superconductivity near 30 K without copper: the Ba_(0.6)K_(0.4)BiO_3 perovskite. Nature(London), 1988. 332: p.814.
    36.E.S. Hellman, A. Kussmaul, E.H. Hartford, et al., Ba_(1-x)K_xBiO_3 sandwich-type tunnel junctions grown by molecular beam epitaxy. Physica C,1992. 201:p. 166.
    37.H.H. Wen, G. Mu, L. Fang, et al., Superconductivity at 25 K in hole-doped (La_(1-x)Sr_x)OFeAs. Condmat: arXiv, 2008. 0803: p. 3790.
    38.张其瑞,高温超导电性.1992,杭州:浙江大学出版社.
    39.Y. Koyama and M. Ishimaru, Structural transitions in the superconducting oxides Ba-Pb-Bi-O. Phys. Rev. B, 1992. 45: p. 9966.
    40.T. Hashimoto, R. Hirasawa, et al., Coexistence of electrons and holes in BaBi_(0.25)Pb_(0.75)O_(3-δ) detected by thermoelectric-power measurements. Phys. Rev. B,1995. 51:p. 576.
    41.M. Oda, Y Hidaka, A. Katsui, et al., Structural phase transition in superconducting BaPb_(0.75)Bi_(0.25)O_3. Solid State Commun, 1985. 55: p. 423.
    42.M. Oda, Y. Hidaka, A. Katsui, et al., The crystallographic symmetries of single BaPb_(1-x)Bi_xO_3 crystals grown from BaCO_3-PbO_2-Bi_2O_3 solutions. Solid State Commun., 1986. 60: p. 897.
    43.D.E.Cox, and A.W. Sleight, Proc. Conf. Neutron Scattering, Gatlinburg R.M. Moon (Nat. Techn. Info Service, Springfield, VA) 1976. 45.
    44.D.E.Cox, and A.W. Sleight, Crystal structure of Ba_2Bi~(3+)Bi~(5+)O_6. Solid State Commun., 1976. 19:p. 469.
    45.A.W. Sleight, and D.E. Cox, Symmetry of superconducting compositions in the BaPb_(1-x)Bi_xO_3 system. Solid State Common, 1986. 58: p. 347.
    46.邓庆增,自旋玻璃和复杂系统.物理化学学报,1992.21:p.404.
    47.W.T.Fu, and D.J.W. Ijdo., A comparative study on the structure of APbO_3 (A=Ba,Sr). Solid State Commun, 1995. 95: p. 582.
    48.P.S.Ricardo, M. Lobo, and F. Gervais, Bismuth disproportionation in BaBiO3 studied by infrared and visible reflectance spectra. Phys. Rev. B, 1995.52:p. 13294.
    49.H. Namatame, A. Fujimori, H. Takagi, et al., Electronic structure and the metal-semiconductor transition in BaPb_(1-x)Bi_xO_3 studied by photoemission and x-ray-absorption spectroscopy. Phys. Rev. B, 1993. 48: p. 16917.
    50.L.F. Mattheiss and D.R. Hamann, Electronic- and crystal-structure effects on superconductivity in the BaPb_(1-x)Bi_xO_3 system. Phys. Rev. B, 1982. 26: p.2686.
    51.L.F. Mattheiss and D.R. Hamann, Electronic structure of BaPb_(1-x)Bi_xO_3.Phys. Rev. B, 1983. 28:p. 4227.
    52.R.J. Cava, B. Batlogg, G.P. Espinosa, et al., Nature (London), 1989. 339: p.291.
    53.S.M. Kazakov, C. Chaillout et al., Discovery of a Second Family of Bismuth-based Superconductors. Nature, 1997. 390: p. 148.
    54.N.R. Khasanova, A. Yamamoto et al., Superconductivity at 10.2 K in the K-Bi-O system. Physica C, 1998. 305: p. 275.
    55.N.R. Khasanova, F. Izumi et al., Crystal structure of the (K_(0.87)Bi_(0.13))BiO_3 superconductor. J.Solid State Chem., 1999. 144: p. 205.
    56.N.R. Khasanova, K. Yoshida, A. Yamamoto, et al., Extended range of superconducting bismuthates K_(1-x)A_xBiO_3 (A=La, Bi, and Ca). Physica C, 2001.356:p. 12.
    57.B. Prijamboedi, and H. Uwe, Two-step Tc suppression in Pr-doped Ba_(1-x)K_xBiO_3. Physica C, 2001. 357-360: p. 252.
    58.D.T. Marx, P.G. Radelli, et al., Metastable behavior of the superconducting phase in the BaBi_(1-x)Pb_xO_3 system. Phys. Rev. B, 1992. 46: p. 1144.
    59.Y.J. Cui, Y.L. Chen, Y. Zhang, C.H. Cheng, C Sorrell, Y. Zhao, La and Pr substitution effects on the characterization of Ba_(0.6)K_(0.4)BiO. Physica C,(submitted).
    60.Y.L. Chen, Y.J. Cui, Y. Zhang, C.H. Cheng, Y. Zhao, Superconductivity in Hg-substituted BaPb_(0.75)Bi_(0.25)O_3. Journal of Electronic Science and Technology of China, 2008. 6: p. 171.
    61.张勇,陈永亮,崔雅静,C.H.Cheng,赵勇,Hg掺杂对BaPb_(1-x)Bi_xO_3超导体中Pb和O的化学环境的影响.低温物理学报,2008.30:p.18.
    62.A. Yamamoto, T. Furumochi, and S. Tajima, Metal-insulator transition and superconductivity in Sr- and La-substituted BaPb_(1-x)Bi_xO_3. Physica C, 1999. 328:p. 118.
    63.R.J. Drost, and W.T. Fu, The superconductor insulator transition in Ce substituted BaPb_(1-x)Bi_xO_3. Mater.Res.Bull., 1995. 30: p. 471.
    64.H.C.F. Martens, W.T. Fu, J.A. Reedijk, et al., The superconductor insulator transition in Ce substituted BaPb_(1-x)Bi_xO_3 Physica C, 1998. 297: p. 149.
    65.N.F.Mott, and E.A. Davis, Electronic processes in non-crystalline Material.1971.Clareendon, Oxford.
    66.Fu, W.T., H.C.F. Martens, and W.J.A. Maaskant, Transport properties of the Ce-doped Ba(Pb,Bi)O_3 system. Solid State Commun, 1997. 101: p. 129.
    67.周军,吉争鸣,杨森祖等,熔融法制备Ba_(1-x)K_xBiO_3(BKBO)氧化物超导体.低温物理学报,1995.17:p.295.
    68.B.Rapp, Molten salts. Materials Today, 2005. 8: p. 6.
    69.陈永亮,崔雅静,王法社,张勇,洪时明,赵勇,BaPb_(0.75)Bi_(0.25)O_3超导体的制备及其性能研究.稀有金属材料与工程(已接受).
    70.陈永亮,崔雅静,王法社,李璟,张勇,赵勇,熔盐法制备Ba_(1-x)K_xBiO_3超导体及Ba_(0.6)K_(0.4)BiO_3的稳定性.稀有金属材料与工程.
    71.Y.L. Chen , Y.J. Cui , F.S. Wang , Y. Zhang , C.H. Cheng , Y Zhao,Synthesis and superconductivity properties of Ba_(1-x)K_xBiO_3. Material Letter ,(Sumitted)
    72.L.Z. Zhao, B. Yin, J.B. Zhang, et al., Electrochemical syntheses of BaKBiO crystals in hot alkaline solution and water rich melts. Physica C, 1997. 282-287:p. 723.
    73.J.L. Rehspringer, and D. Niznansky, Preparation of Ba_(0.6)K_(0.4)BiO_3 pure superconducting powder. J.Alloys and Compounds, 1993. 195: p. 73.
    74.D.C. Kim, A.N. Baranov, J.S. Kim, et al., High pressure synthesis and superconductivity of Ba_(1-x)K_xBiO_3 (0.35    75.S.Y. Pei, J.D. Jorgensen, B. Dabrowski , et al., Structural phase diagram of the Ba_(1-x)K_xBiO_3 system. Phys. Rev. B 1990. 41: p. 4126.
    76.H. Yamamoto, K. Aoki, A. Tsukada, et al., Growth of Ba_(1-x)K_xBiO_3 thin films by molecular beam epitaxy. Physica C, 2004. 412-414: p. 192.
    77.周军,吉争鸣,杨森祖等,脉冲激光淀积Ba_(1-x)K_xBiO_3薄膜.低温物理学报,1996.18:p.120.
    78.D.Mijatovic, G. Rijnders, and H. Hilgenkamp, Growth studies of Ba_(1-x)K_xBiO_(3-δ) thin films by pulsed-laser deposition. Physica C, 2002. 372-376:p. 596.
    79.E.S. Hellman, and E.H. Hartford, Adsorption controlled molecular beam epitaxy of rubidium barium bismuth oxide. J.Vac.Sci.Technol.B, 1990. 8: p. 332.
    80.Y.Enomoto, T. Murakami, and K. Mriwaki, Ba_(1-x)K_xBiO_3 thin film preparation by ECR ion-beam oxidation and film properties. Jpn. J. Appl. Phys.,1989. 28:p. L1355.
    81.E.S. Hellman, and E.H. Hartford, Synthesis of new oxide materials by molecular beam epitaxy: the Dy-Ba-Cu-O and Ba-K-Bi-O systems. Physica C,1991. 190:p. 31.
    82.E.S.Hellman, E.H. Hartford, and E.M. Gyorgy, Epitaxial Ba_(1-x)K_xBiO_3 films on MgO: nucleation, cracking, and critical currents. Appl. Phys. Lett., 1991. 58:p. 1335.
    83.A.N. Pargellis et al., All-high T_c Josephson tunnel junction:Ba_(1-x)K_xBiO_3/Ba_(1-x)K_xBiO_3 junctions. Appl.Phys.Lett., 1991. 58: p. 95.
    84.A. Kussmaul et al., Superconductor-insulator-superconductor tunneling in Ba_(1-x)K_xBiO_3grain boundaries. Appl.Phys.Lett., 1993. 63: p. 2824.
    85.H. Sato, S. Tajima, H. Takagi, et al., Optical study on the metal-insulator transition on Ba_(1-x)K_xBiO_3 thin films. Nature, 1989. 338: p. 241.
    86.T. Nishida, I. Kawakami, M. Norimoto, et al., Preparation of Ba(Pb_(1-x)Bi_x)O_3 electrode thin films by rf magnetron sputtering. Ceramics International, 2004. 30: p. 1089.
    87.M.L.Norton, Electrodeposition of Ba._(6)K._4BiO_3. Mat. Res. Bull., 1989. 24:p. 1391.
    88.M.L.Norton, and H.Y. Tang, Superconductivity at 32 K in electrocrystallized barium potassium bismuth oxide. Chem. Mater., 1991. 3: p.431.
    89.M.S.M. Gonzalez, J. Garca-Jaca, and E. Moran, et al., Synthesis of BaBiO_3 and Ba_(1-x)K_xBiO_3 films via an electrodeposition process. Physica C, 1998.297: p. 185.
    90.L.Z. Zhao, B. Yin, J.B. Zhang, et al., Preparation and magnetic measurements of BaKPbO and BaKMPbO (M=Tl, Sb) crystals. Physica C 1997.282-287: p. 1311.
    91.T. Nishio, H. Minami, and H. Uwe, Large single crystals of Ba_(1-x)K_xBiO_3 grown by electrochemical technique. Physica C, 2001. 357-360 p. 376.
    92.T.N. Nguyen, D.M. Giaquinta, W.M. Davis, et al., Electrosynthesis of KBiO_3: A potassium ion conductor with the KSbO_3 tunnel structure. Chem.Mater., 1993. 5: p. 1273.
    93.L.Z. Zhao, B. Yin, J.B. Zhang, et al., Electrosynthesis of barium potassium lead oxide single crystals. Synthetic Metals, 1995. 71: p. 1615.
    94.赵良仲,刘世宏,潘承璜.含铊氧化物的熔盐阳极电结晶和XPS表征.第四届全国电子能谱和固体表面化学学术讨论会.1997年5月.合肥.
    95.G.L. Roverts, S.M. Kauzlarich, R.S. Glass, et al., Investigation of the mechanism of electrosynthesis of the superconductor Ba_(1-x)K_x BiO_3. Chem.Mater., 1993. 5: p. 1645.
    96.赵良仲,刘世宏,谢民等,Ba-K-Bi-O超导体熔盐阳极电结晶研究.物理化学学报,1996.12:p.1094.
    97.E. Dagotto , Correlated electrons in high-temperature superconductors. Rev.Mod. Phys., 1994. 66: p. 763.
    98.韩汝珊,高温超导物理.1998,北京:北京大学出版社.
    99.L.D. Landau, The theory of a Fermi liquid. Soviet Physics JETP, 1957. 3: p.920-925.
    100.M.A. Kastner, R.J.B.G. Shiran, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod., 1998. 70: p. 897.
    101.Y.Y. Wang, N.S. Rogado, R.J. Cava, et al., Spin entropy as the likely source of enhanced thermopower in Na_xCo_2O_4. Nature, 2003. 423: p. 425.
    102.G.Mahan, B. Sales, and J. Sharp, Thermoelectric materials: new approaches to an old problem. Phys. Today, 1997. 50: p. 42.
    103.M.Imada, A. Fujimori, and Y Tokura, Metal-insulator transitions. Rev. Mod. Phys., 1998. 70: p. 1039.
    104.GBaskaran, Electronic Model for CoO_2 Layer Based Systems: Chiral Resonating Valence Bond Metal and Superconductivity. Phys. Rev. Lett., 2003.91:p. 097003.
    105.W.E. Pickett, H. Krakaner, R.E. Cohen, et al., Fermi Surfaces, fermi liquids,and high-temperature superconductors. Science, 1992. 46: p. 255.
    106.R.E. Schaak, T. Klimczuk, M.L. Foo, et al., Superconductivity phase diagram ofNa_xCoO_2·1.3 H_2O. Nature, 2003. 424: p. 527.
    107.M.L. Foo, Y.Y. Wang, S. Watauchi, et al., Charge Ordering,Commensurability, and Metallicity in the Phase Diagram of the Layered NaxCoO2. Phys. Rev. Lett., 2004. 92: p. 247001.
    108.A.T. Boothroyd, R. Coldea, D.A. Tennant, et al., Ferromagnetic in-plane spin fluctuations in Na_xCoO_2 observed by neutron inelastic scattering. Phys. Rev.Lett., 2004. 92: p. 197201.
    109.M. Yokoi, T. Moyoshi, Y. Kobayashi, et al., Magnetic correlation of Na_xCoO_2 and successive phase transitions of Na_(0.5)CoO_2-NMR and neutron diffraction studies. J. Phys. Soc. Jpn., 2005. 74: p. 3046.
    110.F.L. Ning, T. Imai, B.W. Statt, et al., Spin Dynamics in the carrier-doped S=1/2 triangular lattice of Na_xCoO_2·yH_2O. Phys. Rev. Lett. , 2004. 93: p.237201.
    111.H. Kontani, K. Kanki, and K. Ueda, Hall effect and resistivity in high-Tc superconductors: the conserving approximation. Phys. Rev. B, 1999. 59: p.14723.
    112.K. Kanki, and H. Kontani, Theory of hall effect and electrical transport in high- T_c cuprates: effects of antiferromagnetic spin fluctuations. J. Phys. Soc.Jpn., 1999. 68: p. 1614.
    113.B.I. Zimmer, W. Jeitschko, J.H. Albering, et al., The rate earth transition metal phosphide oxides LnFePO. J. Alloy Comp., 1995. 229: p. 238.
    114.T. Watanabe, H. Yanagi, T. Kamiya, et al., Nickel-based oxyphosphide superconductor with a layered crystal structure LaNiOPH. Inorg. Chem., 2007.46:p. 7719.
    115.X.Y. Zhu, H. Yang, L. Fang, et al., Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaO_(0.9)F_(0.1)FeAs.Condmat:arXiv, 2008. 0803: p. 1288.
    116.Z.A. Ren, G.C. Che, X.L. Dong, et al., Superconductivity and Phase Diagram in the Iron-based Arsenic-oxides ReFeAsO_(1-(?))(Re = rare earth metal)without F-Doping. Condmat: arXiv, 2008. 0804: p. 2582.
    117.X.H. Chen, T. Wu, G Wu, et al., Superconductivity at 43 K in samarium-arsenide oxides SmFeAsO_(1-x)F_x. Nature, 2008. 07045.
    118.Y.L. Chen, Y.J. Cui, Y. Yang, Y Zhang, L. Wang, C.H. Cheng, C. Sorrell ,Y.Zhao, Peak effect and superconducting properties of SmFeAsO_(0.8)F_(0.2) wires.Supercond. Sci. Technol., 2008. 21: p. 115014.
    119.Z.A. Ren, J. Yang ,W. Lu, et al., Superconductivity in iron-based F-doped layered quaternary compound Nd[O_(1-x)F_x]FeAs. Cond-mat:arXiv, 2008. 0803: p.4234.
    120.G.F. Chen, Z. Li, G. Li, et al., Superconducting properties of Fe-based layered superconductor LaO_(0.9)F_(0.1)FeAs. Condmat:arXiv. 0803: p. 0128.
    121.C. Liu, T. Kondo, M.E. Tillman,et al., Fermi surface and strong coupling superconductivity in single crystal NdFeAsO_(1-x)F_x. arXiv. 0806: p. 2147.
    122.G.F. Chen, Z. Li, D. Wu, et al., Element substitution effect in transition metal oxypnictide Re(O_(1-x)F_x)TAs (Re=rare earth, T=transition metal). Condmat:arXiv,2008. 0803: p. 4384.
    123.Y.L. Chen, Y.J. Cui, C.H. Cheng, Y. Zhang, Y. Yang, Y. Zhao, Ir substitution induced superconductivity in SmFeAsO system. Supercond. Sci. Technol.(submitted) .
    124.Z. Li, G.F. Chen, J. Dong, et al., Strong-coupling superconductivity in layered nickel-based LaO_(1-x)F_xNiAs. Condmat:arXiv, 2008. 0803: p. 2572.
    125.K. Haule, J.H. Shim, and G Kotliar, Correlated electronic structure of LaOFeAs. Condmat:arXiv, 2008. 0803: p. 1279.
    126.Q.Han, Y. Chen, and Z.D. Wang, A generic two-band model for unconventional superconductivity and spin-density-wave order in electron and hole doped iron-based superconductors. Condmat:arXiv, 2008. 0803: p. 4346.
    127.P.A. Lee, and X.G. Wen, Spin-triplet p-wave pairing in a 3-orbital model for iron pnictide superconductors. Condmat:arXiv, 2008. 0804: p. 1739.
    128.Q.M. Si and E. Abrahams, Strong correlations and magnetic frustration in the high T_c iron pnictides. Condmat:arXiv, 2008. 0804: p. 2480v2.
    129.Y Zhang, Y.L. Chen, Y.J .Cui, C.H. Cheng, H. Zhang, Y Zhao, Study on Fe-based superconductor SmFeAsO_(1-x)F_x by x-ray photoelectron spectroscopy.Supercond. Sci. Technol., 2009. 22: p. 015007.
    130.Y. Zhang, C.H. Cheng, Y.L. Chen, Y.J. Cui, H. Zhang, and Y. Zhao,Fluorine doping effects on the electronic properties of SmFeAsO. Journal of Physics C (submitted).
    131.S. Tajima, S. Uchida, A. Masaki, et al., Optical study of the metal-semiconductor transition in BaPb_(1-x)Bi_xO_3. Phys. Rev. B, 1985. 32: p.6302-11.
    132.S. Tajima, S. Uchida, A. Masaki, et al., Electronic states of BaPb_(1-x)Bi_xO_3 in the semiconducting phase investigated by optical measurements. Phys. Rev. B,1987. 35:p. 696-703.
    133.C. Chaillout, A. Santoro, J.P. Remeika, et al., Bismuth valence order-disorder study in BaBiO_3 by powder neutron-diffraction. Solid State Commun., 1988. 65: p. 1363-9.
    134.S. Tanaka, High-Temperature superconductivity. Jpn. J. Appl. Phys., 2006.45:p. 9011.
    135.M. Nagoshi, Y. Fukuda, T.Suzuki, et al., Photoemission-study on Ba_(1-x)K_xBiO_(3-(?))and BaPb_xBi_(1-x)O_(3-(?)) PhysicaC, 1991. 185:p. 1051-1052.
    136.K. Kobayashi, T. Mizokawa, A. Ino, et al., Doping dependence of the electronic structure of Ba_(1-x)K_xBiO_3 studied by x-ray-absorption spectroscopy.Phys. Rev. B, 1999. 59: p. 15100-6.
    137.R. Subramanian, M.A. Subramanian and A.W. Sleight, Mater. Res. Bull.,1989. 24: p. 1413-1417.
    138.K. Siegbahn, Electron Spectroscopy for Chemical Analysis-Atomic,Molecular, and Solid State Studies by Means of Electron Spectroscopy.Stockholm: Almqvist&Wiksells, 1967.
    139.周清,电子能谱学.南开大学出版社,1995.
    140.G.V. Samsonov, The Oxide Handbook. 1973, New York: IFI/Plenum.
    141.L.F. Mattheiss, and D.R. Hamann., Electronic structure of BaPb_(1-x)Bi_xO_3.Phys. Rev. B, 1983. 28: p. 4227.
    142.T.D. Thanh, Synthesis and structure of the perovskite BaPbO_3. Apll Phys.,1980. 22:p. 202-212.
    143.A. Yamamoto, T. Ono, T. Tatsuki, et al., La-substitution effects on transport properties of APbO_3 (A=Ba, Sr and Ca). Mater. Res. Bull.,, 1999. 34: p.1935-1942.
    144.M. Itoh, T. Sawada, I.S. Kim, et al., Composition dependence of carrier concentration and conductivity in (Ba_(1-x)Sr_x)PbO_3 system. Solid State Commun., 1992. 83: p. 33-36.
    145.E.M. Kopnin, D. Xenikos, and J. P., Julien,et al., Synthesis and resistivity properties of Sr_(1-x)La_xPbO_3 and SrPb_(1-x)Bi_xO_(3-(?)). Mater. Res. Bull.,, 1997. 32: p.983-992.
    146.A. Yamamoto, N. Khasanova, F. Izumi, et al., Electronic structure of Sb in BaPb_(1-x)Sb_xO_3 superconducting compounds. Chem. Mater., 1999. 11: p. 747-753.
    147.R.J. Cava, H. Takagi, and J.J. Karajewski, Superconductivity at 3.5K in BaPb_(0.75)Sb_(0.25)O_3: why is T_c so low? Phys. Rev. B, 1993. 47: p. 11525-11528.
    148.Y. Zhang, C.H. Cheng, Y. L. Chen, Y.J. Cui, H.T. Lin, and Y. Zhao, XPS study on Hg-doping effect on electronic structure of BaPb_(0.75)Bi_(0.25)O_3 Superconductor. Open Superconductor Journal (submitted).
    149.陈宁,汪纯,陈志,氧化物高温超导体T_c与内层轨道关联的关系研究.低温物理学报,2003.25:p.229-234.
    150.G. Rietveld, S.J. Collocott, D. van der Marel, et al., Doping dependence of the chemical-potential in cuprate high-Tc superconductors (Bi,Pb)_2Sr_2Ca_2Cu_2O_(10+). Physica C, 1995. 241: p. 273-8.
    151.S. H(?)fner, Photoelectron Spectroscopy. 2003, Berlin: Springer-Verlag.
    152.A. Fujimori, A. Ino, J. Matsuno, et al., Core-level photoemission measurements of the chemical potential shift as a probe of correlated electron systems. J Electron Spectrosc. Relat. Phenom, 2002. 124: p. 127-138.
    153.K. Ebata, H. Wadati, M. Takizawa, et al., Chemical potential shift and spectral-weight transfer in Pr_(1-x)Ca_XMnO_3 revealed by photoemission spectroscopy. Phys. Rev. B 2006. 74: p. 064419-1-6.
    154.T.M. Rice, and L. Sneddon, Real-space and k-space electron pairing in BaPb_(1-x)Bi_xO_3. Phys. Rev. Lett., 1981. 47: p. 689-692.
    155.D. Yoshioka, and H. Fukuyama, A simple-model for superconductor-semiconductor transition. J. Phys. Soc. Jpn., 1985. 54: p. 2996-3003.
    156.R.M. Noack, D.J. Scalapino, and R.T.Scalettar., Charge-density-wave and pairing susceptibilities in a 2-dimensional electron-phonon model. Phys. Rev.Lett., 1991. 66:p. 778-781.
    157.W.F. Fu, and R.J. Drost, Superconductivity in the BaPb_(1-x)Bi_(x/2)Sb_(x/2)O_3 system.Physica C, 1998. 304: p. 51-54.
    158.A.A. Sidorenko, R. De Renzi, A. Martinelli, et al., Short note on magnetic impurities in SmFeAsO_(1-x)F_x(x=0, 0.07) compounds revealed by zero-field ~(75)As NMR. arXiv. 0807: p. 0769v2.
    159.M. Tropeano, A. Martinelli, A. Palenzona, et al., Thermal properties of SmFeAsO_(1-x)F_x as a probe of the interplay between electrons and phonons. Phys.Rev. B,2008. 78:p. 094518.
    160.S. Yang, W. You, and S. Gu, et al., Competitions of magnetism and superconductivity in FeAs-based materials. arXiv. 0807: p. 0587v1.
    161.T. Takahashi, Y. Kamihara, M. Hirano, et al., Superconducting qap and pseudogap in iron-based layered superconductor La (O_(1-x)F_x) FeAs. J. Phys. Soc.Jpn., 2008. 77: p. 063708.
    162.H.Y. Liu, X.W. Jia, W.T. Zhang, et al., Pseudogap and superconducting qap in SmFeAs(O_(1-x)F_x) superconductor from photoemission spectroscopy. Chin. Phys.Lett., 2008. 25:p. 3761.
    163.A. Koitzsch, D. Inosov, J. Fink, et al., Valence-band and core-level photoemission spectroscopy of LaFeAsOF_x. Phys. Rev., 2008. 78: p. 180506(R).
    164.G.F. Chen, Z.Li, D. Wu, et al., Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO_(1-x)F_xFeAs. Phys.Rev. Lett., 2008. 100: p. 247002.
    165.Z.A. Ren, G.C. Che, X.L. Dong, et al., Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO_(1-δ) (Re= rare-earth metal) without fluorine doping. Europhys. Lett., 2008. 83: p. 17002.
    166.H.M. Li, J. Li, S. Zhang, et al., Electronic structure of LaFe_(1-x)Co_xAsO from first principle calculations. arXiv. 0807: p. 3153.
    167.E.Z.Kurmaev, R.G. Wilks, and A. Moewes, X-ray spectra and electronic structure of FeAs superconductors. arXiv. 0805: p. 0668v3.
    168.L. Craco, M.S. Laad, S. Leoni, et al., Normal state correlated electronic structure of iron pnictides. arXiv. 0805: p. 3636 v1.
    169.D.J.Lam, B.W. Veal, and D.E. Ellis., Electronic structure of lanthanum perovskites with 3d transition elements. Phys. Rev. B, 1980. 22: p. 5731.
    170.D.J.Singh, and M.H. Du., Density functional study of LaFeAsO_(1-x)F_x: a low carrier density superconductor near itinerant magnetism. Phys.Rev. Lett., 2008.100:p. 237003.
    171.C. Cruz, Q. Huang, J. W. Lynn, et al., Magnetic order close to superconductivity in the iron-based layered LaO_(1-x)F_xFeAs systems. Nature, 2008.453: p. 899.
    172.F. Bondino, E. Magnano, M. Malvestuto, et al., Evidence for strong itinerant spin fluctuations in the normal state of CeFeAsO_(0.89)F_(0.11)iron-oxypnictides. arXiv. 0807: p. 3781.
    173.M. Oku, T. Shishido, H. Matsuta, et al., Comparison of the background corrected valence band XPS spectra of Fe and Co aluminides and silicides with their electronic structures. J. Elect. Spect. Rel. Phenom., 2006. 153: p. 75.
    174.M. Oku, N. Masahashi, S. Hanada, et al., X-ray photoelectron spectroscopic study of ordered stoichiometric FeAl fractured in situ. J. Alloys Comp., 2006.413:p. 239.
    175.R.A. Jones, and H.W. Nesbitt., XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs_2). Am. Mineral., 2002. 87: p. 1692.
    176.H. Wadati, D. Kobayashi, H. Kumigashira, et al., Hole-doping-induced changes in the electronic structure of La_(1-x)Sr_xFeO_3: Soft x-ray photoemission and absorption study of epitaxial thin films. Phys. Rev. B, 2005. 71: p. 035108.
    177.H. Takahashi, K. Igawa, K. Arii, et al., Superconductivity at 43 K in an iron-based layered compound LaOF_x FeAs. Nature, 2008. 453: p. 376-378.
    178.X.H. Chen, T. Wu, G Wu, et al., Superconductivity at 43K in SmFeAsO_(1-x)F_x.Nature, 2008. 453: p. 761-762.
    179.K. Kadowaki, T. Goya, T. Mochiji, et al., Superconductivity and Magnetism in REFeAsO_(1-x)F_x(RE=RareEarth Elements). Condmat: arXiv. 0808: p. 0289.
    180.J. Yang, Z.C. Li, W. Lu, et al., Superconductivity at 53.5 K in GdFeAsO.Supercond. Sci. Technol., 2008. 21: p. 082001.
    181.C. Wang, L.J. Li, S. Chi, et al., Thorium-doping induced superconductivity up to 56 K in Gd_(1-x)Th_xFeAsO. Condmat: arXiv. 0804: p. 4290v1.
    182.A.S. Sefat, M.A. McGuire, R. Jin,et al., High-Temperature Superconductivity in Eu_(0.5)K_(0.5)Fe_2As_2 Cond-mat: arXiv. 0807: p. 0823.
    183.A.S. Sefat, M.A .McGuire, R. Jin, et al., Superconductivity at 22 K in Co-doped BaFe_2As_2 Crystal. Cond-mat: arXiv. 0807: p. 2237.
    184.A. Leithe-Jasper, W. Schnelle, C. Geibel, et al., Superconductivity in SrFe_(2-x)Co_xAs_2: internal doping of the iron arsenide layers. Cond-mat: arXiv, .0807: p. 2223.
    185.Y.P. Qi, Z.S. Gao, L. Wang, et al., Superconductivity in Co-doped SmFeAsO.Cond-mat: arXiv. 0808: p. 0197.
    186.S.R. Ovshinsky, S.J. Hudgens, R.L. Lintveldt ,et al., A structural chemical model for high T_c ceramic superconductors. Modern Phys. Lett., 1987. B1: p.275.
    187.S.R.Ovshinsky, Structural chemistry, spin order, and the mechanisms of high temperature superconductor. Chem. Phys. Lett., 1992. 195: p. 455.
    188.S.R. Ovshinsky, A nickel metal hydride battery for electric vehicles. Appl. Superconductivity, 1993. 1: p. 263.
    189. 方磊,闻海虎,铁基高温超导体的研究进展及展望.科学通报,2008.53:p.2265.
    190. 沈耀文,黄梅纯,用局域密度泛函线性丸盒轨道原子球近似超元胞法计算Ba_(1-x)K_xBiO_3的Hopfield常数与Tc随组分x的变化.物理学报,1992.41:p.1518.
    191.K. Takada, K. Fukuda, N. Osada, et al., Valence and Na content dependences of superconductivity in Na_xCoO_2·yH_2O. J. Mater. Chem., 2004. 14:p. 1448.
    192.C.A. Marianetti, G. Kotliar, and G. Ceder, Role of Hybridization in Na_xCoO_2 and the Effect of Hydration. Phys. Rev. Lett., 2004. 92: p. 196405.
    193.I. Terasaki, Y. Sasiago, and K. Uchinokura, Large thermoelectric power in NaCo_2O_4 single crystals. Phys. Rev. B, 1997. 56: p. R12685.
    194.G. Slack, Handbook of Thermoelectric. 1995, London: CRC Press Inc.
    195.张忻,张久兴,路清梅等,氧化物热电材料研究进展.材料导报,2004.18:p.2629.
    196.阮文彪,郭瑞松,吕振刚,氧化物热电材料的研究与进展.材料导报,2004.18:p.270-272.
    197.B. Pedrini, J. LGavilano, S. Weyeneth, et al., Magnetic phase transition at 88 K in Na_(0.5)CoO_2 revealed by 23Na NMR investigations. Phys. Rev. B, 2005.72: p. 214407
    198.J.L. Gavilano, D. Rau, B. Pedrini, et al., Unconventional charge ordering in Na_(0.7)OCoO_2 below 300 K. Phys. Rev. B, 2004. 69: p. R100404.
    199.M. Mikami, M. Yoshimura, Y. Mori ,et al., Jpn. J. Appl. Phys., 2003. 142: p.7383.
    200.S.P Bayrakci, C. Bernhard, D.P. Chen, et al., Bulk antiferromagnetism in Na_(0.82)CoO_2 single crystals. Phys. Rev. B, 2004. 69: p. 8100410.
    201.I. Terasaki, I. Tsukada, and Y. Iguchi, Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_(2-x)Cu_xO_4. Phys Rev B 2002. 65: p. 95106.
    202.M. Yokoi, H. Watanabe, Y. Mori, et al., J. Phys. Soc. Jpn., 2004. 73: p.1297.
    203.W.Y. Zhang, H.C. Yu,YG. Zhao, et al., J Phys Cond Mater., 2004. 16: p.493524940.
    204.W.Y. Zhang, Y.G. Zhao, Z.P. Guo ,et al., Effect of Ti doping on the electrical transport and magnetic properties of layered compound Na_(0.8)CoO_2. Solid State Comm., 2005. 135: p. 4802484.
    205.T. Motohashi, E. Naujalis, R. Ueda ,et al., Simultaneously enhanced thermoelectric power and reduced resistivity of Na_xCo_2O_4 by controlling Na nonstoichiometry. Appl. Phys. Lett., 2001. 79: p. 1480.
    206.C. Fouassier, G. Matejka, J.M. Reau ,et al., Sur de Nouveaux Bronzes Oxygenes de Formule Na_xCoO_2 (x≤1) Le Systeme Cobalt-Oxygene-Sodium. J.Solid State Chem., 1973. 6: p. 532.
    207.R. Navarro, Magnetic Properties of Layered Transition Metal Compounds,edited by L. J Jongh. (Kluwer Academic, Dordrecht, The Netherland), 1990.
    208.I. Felner, J. Gersten, S. Litvin, et al., Magnetic properties and specific-heat studies of the metal-insulator transition in BaCo_(0.9)Ni_(0.1)S_(2-y). Phys.Rev. B, 1995. 52: p. 10097.
    209.R. Lengsdorf, M. Ait-Tahar, S. S. Saxena, et al., Phys. Rev. B 2004. 69: p.140403.
    210.S. Tsubouchi, T. Kyomen, M. Itoh, et al., Configurational disorder and magnetism in double perovskites: a monte carlo simulation study. Phys. Rev. B,2004. 69: p. 14406.
    211.S. Edwaxds, and P.W. Anderson, Theory of spin glasses. J. Phys. F, 1975. 3:p. 965.
    212.D. Sherrngtcia, and S. Kirkpatrlck, Solvable Model of a Spin-Glass.Phys. Rev.Lett., 1975. 35: p. 1972.
    213.姚凯伦,自旋玻璃的实验和理论综述.物理,1986.15:p.80.
    214.K.H.Fischer, and J.A. Hertz., Spin Glass. Vol. 4. 1991: Cambridge University Press. 221.
    215.K. Moorjani, and J.M.D. Coey, Magnetic Glasses. Methods and Phenomena,1984. 6: p. 181-337.
    216.R.A. Hein, T.L. Francavilla, and D.H. Liebenberg, Magnetic Susceptibility of Superconductors and Other Spin Systems. 1991, London: Plenum Press. 67.
    217.J. Wu, and C. Leighton, Glassy ferromagnetism and magnetic phase separation in La_(1-x)Sr_xCoO_3. Phys. Rev. B, 2003. 67: p. 174408.
    218.I.R. Mukhamedshin, H. Alloul, G Collin, et al., ~(23)Na NMR evidence for charge order and ainomalous magnetism in Na_xCoO_2. Phys. Rev. Lett., 2004. 93: p. 167601.
    219. C. Zobel, M. Kriener, D. Bruns, et al, Evidence for a low-spin to intermediate-spin state transition in LaCoO_3. Phys. Rev. B, 2002. 66: p. 020402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700