用户名: 密码: 验证码:
微细铜粉的空气氧化及表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细铜粉导电、导热性能优异,低价易得,在现代工业及国防诸多领域有广泛的应用。目前已在导电涂料、防静电填料、微电子材料、电磁屏蔽材料、高级润滑剂等方面有具体应用。但由于尺寸小活性高,微细铜粉在空气中容易氧化,而一经氧化,铜粉就失去了许多优异的性能。
     本文通过观测分析铜粉在150~600℃的空气中氧化所得产物的形貌和结构,提出了不同温度段微细铜粉空气氧化历程的模型,在此基础上进一步推导了各温度段铜粉氧化增重的表达式;铜粉在150~600℃间空气氧化增重的实验数据回归模拟表明,所得公式能够较好地反映铜粉在该温度段的空气氧化规律。
     研究结果显示微细铜粉在较低温度下(150~300℃)氧化时生成的氧化膜较致密,反应阻力主要源于氧化物晶格和氧化物中的“小孔”对铜离子迁移的阻碍,其氧化增重由抛物线和对数两部分组成,随着温度的提高,对数部分所占比重不断增加;中温阶段(250~400℃)时氧化物中的“小孔”较多,氧化增重主要服从对数规律;在高温阶段(500~600℃)由于应力作用氧化层产生大量裂缝,加速了氧化的进行,产物先线性快速增重,基本氧化完全后增重速度减慢。
     为了提高铜粉的抗氧化性,本文首先开发了多种聚苯胺包覆铜粉的方法,制备得到了不同包覆形貌的复合物,结果表明聚苯胺包覆可有效地提高铜粉的抗氧化性能。
     在非催化包覆法中将过硫酸铵(APS)的水溶液直接滴加到铜粉/苯胺的悬浊液中进行反应,结果显示反应中过硫酸铵将与铜反应,使其转化为Cu~(2+)。实验进一步采用表面活性剂预处理、预氧化、苯骈三氮唑(BTA)预处理三种方法对铜粉进行预保护,然后再进行聚合反应。结果显示,表面活性剂预处理不能有效地保护铜粉,制备产物包覆效果较差;预氧化及BTA预处理保护效果较好,预氧化处理法最终得到产物的包覆层致密完整、表面光滑,BTA处理法得到产物的包覆层完整、呈纤维状。
     在催化氧化包覆法中,实验将APS与H_2O_2的混合液不断滴加到铜粉/苯胺悬浊液中,快速高效地制备了聚苯胺包覆层。本文认为包覆过程主要反应为:其中铜离子由反应Cu+S_2O_8~(2-)=Cu~(2+)+2SO_4~(2-)生成,在铜离子的催化作用下苯胺被H_2O_2氧化生成聚苯胺,并在铜粉表面沉积形成了包覆层。
     实验制备的聚苯胺/铜复合物在程序升温的空气中均经历了先失重后增重的过程,失重段对应包覆层在空气中的挥发、分解,随着聚苯胺包覆层的破坏铜粉的氧化不断加剧。实验制备得到的半氧化状态聚苯胺包覆层可以使铜粉的起始抗氧化温度由200℃提高到335℃,进一步的保护作用可持续到400℃。
     实验尝试了用氧化铁包覆铜粉以对其改性的方法,结果表明改性后铜粉的抗氧化性能有一定的提高,但在处理过程中部分铜粉被氧化生成了氧化亚铜。
     实验最后用KSCN水溶液处理铜粉,使其表面部分铜转化为了β-CuSCN并包覆于铜颗粒表面。结果表明β-CuSCN包覆层为双层结构,外层为块状附着的β-CuSCN,内层为与铜粉紧密相连、致密的β-CuSCN三维结构薄膜包覆层;内层β-CuSCN对铜粉起着最直接的保护作用,块状附着层对致密层有修复作用,可以延长对内核的保护。热重显示,β-CuSCN的包覆可明显提高铜粉的抗氧化性能,处理后铜粉的起始氧化温度可由200℃提高到390℃左右。
     本文认为该法包覆层的生成反应为:4Cu+O_2+4SCN~-+2H_2O=4CuSCN+4OH~-。滴加酸可以消耗生成的碱从而促使上述反应向生成CuSCN的方向移动,形成完整的β-CuSCN保护膜,但H~+用量过多会使部分铜将被氧化为Cu~(2+),实验发现酸用量与KSCN等摩尔时效果最好。
Copper powder has excellent electric and thermal conduction and low price. Nowadays it is widely used in modern industry and defense-related technology such as conducting paint, electrostatic dissipation stuff, microelectronics material, electromagnetic interference (EMI) shielding, advanced lubricant, etc. However micron or nano size copper powder is very active and can be oxidized by air easily. After being oxidized, copper powder will lose lots of its fine properties.
     In this paper, the morphology and structure changes of fine copper powder during its oxidization between 150-600℃were observed. Then the processes of the oxidation of fine copper powder were proposed. Based on these models, new kinetic equations were deduced to simulate the oxidation process. The analog results agree well with the data gained from the oxidation of copper.
     Results show the oxidation patterns are not the same in different temperature ranges. In low temperature range (150-300℃) the oxide film is compact, the reacting resistances mainly come from the penetration of copper ion through the crystal lattice and "minipore" of oxide; the weight-gain was composed of two parts: parabolic part and logarithmic part, and the logarithmic part increases with increasing the temperature. In middle temperature range (250-400℃), there are a lot of "minipores" in the oxide, the oxidation follows the logarithmic rate law. In high temperature range (500-600℃), the huge inner stresses in the oxide will induce many cracks which are benefit for the oxidation, the oxidation follows the linear rate law in the beginning and then its speed slows down when most of the copper is oxidized.
     To improve copper powder's oxidation resistance, several methods were tried to coat copper powder with polyaniline, and the products made were of different morphologies. Results show that polyaniline coating is benefit to improve the oxidation resistance of copper powder.
     Firstly, non-catalytic coating method was tried, Ammonium persulfate (APS) was added into aniline/copper particles suspension. Results show that copper will be corroded by APS during the process. To avoid this shortage, before the polymerization, copper powder was pretreated by surfactant, oxidation, inhibitor Benzotriazole (BTA). Results show that the surfactants cann't protect copper powder thoroughly and promote the formation of coating layer, but pre-oxidation and BTA pretreatment are effective. In the pre-oxidation method, the final coating layer is compact and smooth. And BTA pretreatment method could form fiber liked polyaniline coating layer.
     In catalytic oxidation method, APS and H_2O_2 solution was added into aniline/copper particles suspension to produce polyaniline coating on copper powder. In the method, it isassumed that the main reaction is Cu~(2+) ionis produced by the reaction Cu+S_2O_8~(2-)=Cu~(2+)+2SO_4~(2-), and with the catalysis of Cu~(2+), aniline was oxidized by hydrogen peroxide to form the polyaniline coating layer on copper particles.
     The polyaniline/copper composites undergo weight loss stage and then weight-gain stage in air. The weight loss stage may correspond to the loss of bound water, oligomer and the decomposition of polyaniline. The weight increases rapidly with decomposition of polyaniline. The half oxidize polyaniline could improve the starting oxidation temperature from 200℃to 335℃, and the protection can continue to 400℃.
     In another experiment, copper particles were coated by ferric oxide. Result shows that the oxidation resistance can only be improved a little by this modification, and some copper was oxidized into cuprous oxide
     At last, fine copper powder was treated by potassium rhodanate solution andβ-CuSCN coating layer was produced. It is found that theβ-CuSCN coating film has two layers: the outer is block coating layer, the inner is a thin three dimensional polymer layer composed of close-packedβ-CuSCN units. It is the inner layer that directly protects the copper; the outer one could repair the inner layer as it is damaged. The thermal analysis shows that theβ-CuSCN layer can apparently improve the oxidation resistance of copper powder. After the treatment the oxidation starting temperature of copper powder could be improved from 200℃to around 390℃.
     The coating layer forming reaction is 4Cu+O_2+4SCN~-+2H_2O=4CuSCN+4OH~-. Adding acid could remove the alkaline generated and benefit the generation of CuSCN, but if it is too much, copper will be corroded into Cu~(2+). The optimal H~+: SCN~- ratio is 1:1.
引文
[1]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保.北京:化学工业出版社,2003.
    
    [2]兰兴华.铜的生产和应用.世界有色金属,2005,3:60-62.
    
    [3]邓舜扬.金属防腐蚀对话.北京:冶金工业出版社,1987,153.
    
    [4]何益艳,杜仕国.铜系复合涂料的制备及导电性能.化工新型材料,2004,32(6):49-51.
    
    [5]李在元,刘海英,宫泮伟,翟玉春,田彦文.纳米铜粉研究进展,2004,20(3):40-43.
    
    [6]夏延秋,孙维明,孙维明.纳米金属粉对润滑油摩擦磨损性能的影响.润滑与密封,1999,(3)33-35
    
    [7]刘荣杰,卫志贤,蔡力.铜粉导电胶的制备研究.中国胶粘剂,1999,9(2):12-14.
    
    [8]陈治中,许佩新,谢文明.铜导电胶老化性能的研究.材料科学与工程,1998,16(2):59-61.
    
    [9]许佩新,陈治中,谢文明.铜导电胶电性能的研究.材料科学与工程,1998,16(1):75-77.
    
    [10]赵勇,戚军生.铜粉导电胶的导电性与自然老化性能.中国胶粘剂,1998,8(5):30-32.
    
    [11]路庆华,和田弘.新型导电胶的研究(Ⅰ).功能材料,1997,28(5):546-549.
    
    [12]朱屯,王福明,王习东.国外纳米材料技术进展与应用.北京:化学工业出版社,2002.
    
    [13]张志琨,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    
    [14]王一建,黄本元,王余高,张康夫.金属大气腐蚀与暂时性保护.化学工业出版社.2007,67-69.
    
    [15]杨耀东.铜及铜合金线的氧化及防止.电线电缆,2000,1:29-32.
    
    [16] D. DeNardis, D. Rosales-Yeomans, etc.. Characterization of copper-hydrogen peroxide film growth kinetics. Thin Solid Films, 2006,513:311-318.
    
    [17]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术.北京:化学工业出版社,2006,583.
    
    [18]赵国权,贺家齐,王碧文,张希忠.铜回收、再生与加工技术.北京:化学工业出版社,2007,156.
    
    [19]朱日彰,何业东,齐慧滨.高温腐蚀及高温耐腐蚀材料.上海:上海科学技术出版社,1995:99-103, 116-126.
    
    [20] K. Fueki, J.B. Wagner. Studies of the Oxidation of Nickel in the Temperature Range of 900癈 to1400℃. Journal of the Electrochemical Society, 1965,112(4):384-388.
    
    [21] J.E. Stroud, W.C. Tripp, J.M. Wimmer. Defect Structure of Ta_2O_5. Journal of the American CeramicSociety, 1974, 57(4):172-175.
    
    [22] W. Jost. Difffusion in Solids, Liquids and Gases, New York: Academic Press, 1952.
    
    [23] T.P. Hoar, L. E. Price. Trans. Faraday Soc, 1938, 34:867.
    
    [24] Z. Han, L. Lu, H.W. Zhang, Z.Q. Yang, F.H. Wang, K. Lu. Comparison of the oxidation behavior ofnanocrystalline and coarse-grain copper. Oxidation of Metals, 2005, 63(516):261-275.
    
    [25]倪星云,沈军,张志华.纳米材料的理化特性与应用.北京:化学工业出版社,2006,43.
    
    [26]沈海军.纳米科技概论.北京:国防科技出版社,2007,45-49.
    
    [27]李凤生,崔平,杨毅,姜炜.微纳米粉体后处理技术及应用.北京:国防工业出版社,2005,17, 224.
    
    [28]蒋红梅.铜-银金属粉抗氧化性分析.沈阳农业大学学报,2002,33(3):234-235.
    
    [29]战凤昌,李悦良.专用涂料,北京:化学工业出版,1988,270.
    
    [30]林栋梁.晶体缺陷.上海:上海交通大学出版社,1996,52.
    
    [31]孟庆芳.铜粉抗氧化处理的研究.重庆科技学院学报(自然科学版),2006,8(1):30-32.
    
    [32]敖自立.铜粉等有色金属粉末的发展与技术进步.粉末冶金工业,1997,7(增刊):55.
    
    [33]夏志华,汪礼敏.铜及铜基粉末市场与生产现状.中国铜镍信息,1998,1(6):18.
    
    [34]钱苗根,姚寿山,张少宗.现代表面技术.北京:机械工业出版社,1994.
    
    [35]陈锦宏,李玮.电磁屏蔽导电涂料.广州化学,2002,27(1):44-47.
    
    [36]夏宗锐,张蕾,磷化工艺研究.电镀与精饰,1995,17(1):17-20.
    
    [37]刘志杰,赵斌,张宗涛,胡黎明.超细铜粉表面磷化及抗氧化性能研究.无机化学学报,1996, 12(2):193-196.
    
    [38]李金桂.防腐蚀表面工程技术.北京:化学工业出版社,2003,55-59.
    
    [39]高保娇,蒋红梅,张忠兴.用银氨溶液对微米级铜粉镀银反应机理的研究.无机化学学报,2000, 16(4):669-674.
    
    [40]程原,高保娇,梁浩.微米级镀银铜粉复合导电涂层的导电性研究.应用基础与工程科学学报, 2001,9(223):184-190.
    
    [41]高保娇,高建峰,蒋红梅,等.微米级铜-银双金属粉镀层结构及其抗氧化性.物理化学学报,2000, 16(4):366-369.
    
    [42]吴秀华,赵斌,邵佳敏.不同形貌Cu-Ag双金属粉的制备及性能.华东理工大学学报,2002,28 (4):402-405.
    
    [43]解芳,梁浩,高保娇.微米级镀银铜粉常温抗氧化性能的表征方法.太原理工大学学报,2002,33 (1):109-111.
    
    [44]刘志杰,赵斌,张宗涛,等.超细核壳铜.银双金属粉的制备.无机化学学报,1996,12(1):30-34.
    
    [45]廖辉伟,李翔,彭汝芳,等.包覆型纳米铜-银双金属粉研究.无机化学学报,2003,19 (12):1327-1330.[46]Li C M,Lei H,Tang YJ,etc.Production of copper nanoparticles by the flow levitation method.N anotechnology,2004,15(12):1866-1869.
    
    [47]竹岛锐树,佐藤正树,家口佳久,等.微细粒状合金粉末の制造方法,日,特开平12139710,1989 6.1[48]Xinrui Xu,Xiaojun Luo,Hanrui Zhuang,Wenlan Li,Baolin Zhang.Electroless silver coating on fine copper powder and its effects On oxidation resistance.Materials Letters,2003,57:3987-3991.
    
    [49]钟莲云,吴伯麟,贺立勇.导电涂料用片状镀银铜粉的研制.涂料工业,2003,33(9):12-15.
    
    [50]李哲男,董星龙,王威娜.铜系导电涂料中纳米铜粉抗氧化问题的研究.四川大学学报(自然科 学版),2005,42(2):220-224.
    
    [51]罗江山,刘伟,黎军,雷海乐,唐永建,吴卫东.直接置换法制备包覆型纳米铜-银双金属粉末. 强激光与粒子束,2006,18(4):591-594.
    
    [52]李步春.防止铜粉在高温下氧化的研究.有机硅材料及应用,1998,4:16-18.
    
    [53]何益艳,范修涛,陆瑞卿,杜仕国.铜粉表面包覆硅烷偶联剂改性研究.腐蚀与防护,2006, 27(2):69-71.[54]F.Zucchi,V.Grassi,A.Frignani,G.Trabanelli.Inhibition of copper corrosion by silane coatings. Corrosion Science,2004,46:2853-2865.[55]A.M.Beccafia,C.Bertolotto.Inhibitory action of 3-trimethoxysilylpropanethiol·l 0n copper corrosion in NaCl solutions.Electrochimica Acta,1997,42:1361—1371.[56] R.Tremont, H.De Jesus-Cardona, J. Garcia-Orozco, R.J. Castro, C.R. Cabrera. 3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution.Journal 0f Applied Electrochemistry,2000,30:737-743.【57】R.Haneda,H.Nishihara,K.Aramaki.Chemical modification of an alkanethiol self-assembled layer tO prevent corrosion ofcopper.Joumal ofthe Electrochemical Society,1997,144:1215—1221.
    
    [58]普文.硅烷偶联剂在无机填料表面处理上的应用.化工物资,1992,5:21-23,30.
    
    [59]周全法,蒋萍萍,朱雯,赵德建.抗氧化纳米铜粉的制备及表征.稀有金属材料与工程,2004, 33(2):179-182.
    
    [60]郑水林.粉体表面改性.北京:中国建材工业出版社,2003,72.
    
    [61] Houyi Ma, Shenhao Chen, Bingsheng Yin,Shiyong Zhao, Xiangqian Liu. Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions. Corrosion Science, 2003,45:867-882.
    
    [62]庄丽宏,吕振波,田彦文,赵杉林.铜腐蚀及其缓蚀技术应用研究现状.腐蚀科学与防护技术, 2005,17(6):418-421.
    
    [63]张天胜.缓蚀剂.北京:化学工业出版社,2002,277,290-294.
    
    [64]吴三毛.凝汽器铜管硫酸亚铁造膜防腐处理介绍.江西电力,2001,25(3):13-16.
    
    [65]范工业.防止铜合金热交换器腐蚀的技术改进.全面腐蚀控制,2006,20:(5)43-45.
    
    [66]史昌明.凝汽器铜管强化造膜新工艺的应用.材料保护,2007,40(5):64-66.
    
    [67]喻亚非,朱兴宝,鲁进,周钦堂.凝汽器铜管腐蚀原因分析及处理.湖北电力,2001,25(2):21-23.
    
    [68]刘艳泉.凝汽器铜管的腐蚀与防护.工业水处理,2000,20(6):41-42.
    
    [69] L.Tommesani, GBrunoro, A.Frignani, C.Monticelli, M.Dalcolle. On the protective action of1,2,3-benzotriazole derivative films against copper corrosion.Corrosion Science, 1997,39(7):1221-1237.
    
    [70] Brusic V, Frisch M A, Eldridge B N et al. Copper corrosion with and without inhibitiors. Journal ofthe Electrochemical Society, 1991,138(8):2253-2258.
    
    [71] R. Walker. Triazole, benzotriazole and naphthotriazole as corrosion inhibitors for copper. Corrosion,1975,31:97-100.
    
    [72] GW. Poling, T. Notoya. Corrosion pretreatments for copper-zinc allous. Corrosion, 1979, 35:33-38
    
    [73] I.C.G Ogle, GW. Poling. Corrosion inhibition of copper with benzotriazole.Canadian MetallurgicalQuarterly, 1975,14:3746.
    
    [74] D. Jope, J. Sell, H.W. Pickering and K.G Weil. Application of a quartz crystal microbalance to thestudy of copper corrosion in acid solution inhibited by triazole-iodide protective films. Journal of theElectrochemical Society, 1995,142:2170-2173.
    
    [75] R. Youda, H. Nishihara and K. Aramaki. Sers study on inhibition mechanisms of benzotriazole and itsderivatives for copper corrosion in sulphate solutions. Corrosion Science, 1988,28:87-96.
    
    [76] A. Frignani, L. Tommesani,G Brunoro, C. Monticelli,M. Fogagnolo. Influence of the alkyl chain onthe protective effects of 1,2,3-benzotriazole towards copper corrosion [Part I] inhibition of the anodicand cathodicReactions. Corrosion Science, 1999,41:1205-1215.
    
    [77] A.M. Fenelon, C.B. Breslin. An electrochemical study of the formation of benzotriazole surface filmson copper, zinc and a copper-zinc alloy. Journal of Applied Electrochemistry, 2001, 31:509-516.
    
    [78]卢小梅,徐艳萍,晏贡全.BTA及其衍生物在3%NaCl溶液中对铜的缓蚀作用.江西电力职业 技术学院学报,2004,17(3):8-10.
    
    [79] T. Notoya, G.W. Poling. Topographies of thick Cu-Benzotriazolate films on copper. Corrosion, 1976,32: 216-223.
    
    [80] D. Tromans, R. Sun. Anodic polarization behavior of copper in aqueous chloride/benzotriazolesolutions. Journal of the Electrochemical Society, 1991,138:3235-3244.
    
    [81] G.W. Poling. Reflection infra-red studies of films formed by benzotriazole on Cu. Corrosion Science,1970,10:359-370.
    
    [82] N. Huynh a, S.E. Bottle a, T. Notoya b, D.P. Schweinsberg. Inhibition of copper corrosion by coatingsof alkyl esters of carboxybenzotriazole. Corrosion Science, 2002,44:2583-2596.
    
    [83]姚思童,吴晓艺,孙雅茹.铜缓蚀剂的研究及发展现状.沈阳工业大学学报,2000,22:173-174.
    
    [84]旷亚非,陈曙,林志成.BTA-MBT协同缓蚀作用机理探讨.材料保护,1994,27(8):11-16.
    
    [85] R.M. Souto, V. Fox, M.M. Laz, M. Péez, S. Gonzàez. Some experiments regarding the corrosion??inhibition of copper by benzotriazole and potassium ethyl xanthate. Journal of Electroanalytical Chemistry, 1996,411:161-165.
    
    [86]张大全,高立新.3%NaCI溶液中咪唑和苯并三唑对Cu缓蚀协同作用的研究.腐蚀科学与防护技 术,2001,13(3):136-138.
    
    [87]张大全,高立新,周国定.苯并三唑和8-羟基喹啉对铜的缓蚀协同作用.物理化学学报,2002, 18(1):74-78.
    
    [88]张大全,高立新.苯并三氮唑和8-羟基喹啉对铜缓蚀作用的研究.材料保护,2002,35(4):10-11
    
    [89]龚洵洁.热力设备的腐蚀与防护.北京:水利电力出版社.1998.
    
    [90] G P. Cicileo, B. M. Rosales, F. E. Varela and J. R. Vilche. Inhibitory action of 8-hydroxyquinoline on the copper corrosin process. Corrosion Science, 1998,40(11):1915-1926.
    
    [91]扬文治.腐蚀与保护全书(缓蚀剂).北京:化学工业出版社,1989.
    
    [92] M. Ohsawa and W. Suetaka. Spectro-electrochemical studies of the corrosion inhibition of copper by mercaptobenzothiazole . Corrosion Science, 1979,19:709-722.
    
    [93]严川伟,何毓番,林海潮,曹楚南,郭黎平.2-巯基苯并恶唑(MBO)在铜表面缓蚀膜研究.中国 腐蚀与防护学报,1999,19(6):367-371.
    
    [94] C.W. Yan, H.C. Lin, C.N. Cao. Investigation of inhibition of 2-mercaptobenzoxazole for coppercorrosion. Electrochimica Acta, 2000,45:2815-2821.
    
    [95] M. Fleischmann, G. Mengoli, M.M. Musiani, C. Pagura. An electrochemical and Raman spectroscopicinvestigation of synergetic effects in the corrosion inhibition of copper. Electrochimica Acta, 1985,30:1591-1602.
    
    [96] M.M. Musiani, G Mengoli, M. Fleischmann, R. Lowry. An electrochemical and SERS investigationof the influence of pH on the effectiveness of some corrosion inhibitors of copper. Journal ofElectroanalytical Chemistry, 1987, 217 (1):187-202.
    
    [97] G Trabanelli, F. Zuccbi, G Brunoro, V. Carassiti, Inhibition of copper corrosion in chloride solutionsby heterocyclic compounds. Werkstoffe und Korrosion, 1973,24:602-606.
    
    [98] Da-quan Zhang, Li-xin Gao, Guo-ding Zhou. Inhibition of copper corrosion in aerated hydrochloricacid solution by heterocyclic compounds containing a mercapto group. Corrosion Science, 2004,46:3031-3040.
    
    [99]张大全,高立新,周国定,龚琼,陆柱.HCI溶液中2-巯基苯并咪唑和1-苯基-5巯基-四氮唑对 铜的缓蚀作用.华东理工大学学报,2002,28(4):429-432.
    
    [100] E. Geler, D.S. Azambuja. Corrosion inhibition of copper in chloride solutions by pyrazole.Corrosion Science, 2000,42:631-643.
    
    [101] S. Ramesh, S. Rajeswari, S. Maruthamuthu. Corrosion inhibition of copper by new triazolephosphonate derivatives. Applied Surface Science, 2004,229:214-225.
    
    [102] L. Valek, S. Martinez. Copper corrosion inhibition by Azadirachta indica leaves extract in 0.5 Msulphuric acid. Materials Letters, 2007, 61(1): 148-151.
    
    [103] A. Bhattacharya, A. De, S. Dast. Electrochemical preparation and study of transport properties ofpolypyrrole doped with unsaturated organic sulfonates. Polymer, 1996, 37(19):4375-4382.
    
    [104] Anna M. Fenelon, Carmel B. Breslin. The electropolymerization of pyrrole at a CuNi electrode:corrosion protection properties. Corrosion Science, 2003,45:2837-2850.
    
    [105]江建明,戚慰先,仲蕾兰,方柏容.化学氧化聚吡咯的结构及导电性的研究.高分子材料科学 与工程,1991,5(5):94-98.
    
    [106]徐友龙,季锐,王飞.影响掺杂聚吡咯(PPy)导电性能的因素.电子原件与材料.2000, 19(5):17-19.
    
    [107]陈祥宝.聚吡咯导电复合材料结构和特性研究.高分子材料科学与工程,1995,11(1):132-134.
    
    [108]王长松,黎前跃,周本濂,邱晴.聚吡咯导电复合膜的研制.功能高分子学报,1998, 11(2):167-171.
    
    [109]尹五生.聚吡咯导电材料合成方法的进展.功能材料,1996,27(2):97-102.
    
    [110]祝伟,祝海峰.聚吡咯的化学氧化合成.河南化工,1995,6:10-12.
    
    [111] Tun(?) Tüken, Birgül Yazlcl, Mehmet Erbil. The electrochemical synthesis and corrosion performance of polypyrrole on brass and copper. Progress in Organic Coatings, 2004, 51:152-160
    
    [112]李永舫.导电聚吡咯的研究.高分子通报,2005,4:51-57.
    
    [113] Wang Chang-song, Gu Ya-xin,Liu Gang, Shi Hang. Study and preparation of soluble polypyrrole composit(PPY/PMMA) film. Journal of Shenyang Institute of Chemical Technology, 2001, 15(4):241-244.
    
    [114]张卓,唐洪,吴旭峰,梁晓,石高全.一种耐高温聚噻吩膜的电化学合成.高分子学报,2005, 6:943-947.
    
    [115]胡明,刘彦军.导电高分子聚噻吩及其衍生物的研究进展.材料导报,2006,20(1):64-68.
    
    [116]闻荻江,万影,陈刚.具有共轭结构的导电聚合物及其应用.物理,2000,29(1):28-32.
    
    [117]王利祥,王佛松.导电聚合物-聚苯胺的研究进展.应用化学,1990,7(5):1-10.
    
    [118] Jin-Chih Chiang, Alan G MacDiarmid. Polyaniline: Protonic acid doping of the emeraldine form tothe metallic regime. Synthetic Metals, 1986,13:193-205.
    
    [119] A. G Macdiarmid, J. C. Chiang, A. F. Richter. Polyaniline: a new concept in conducting polymers.Synthetic Metals, 1987,18:285-290.
    
    [120]旷英姿.导电高分子聚苯胺的合成及应用.精细化工中间体,2004,34(4):18-20.
    
    [121]刘丹丹,宁平,夏林.导电聚苯胺的研究进展及应用开发前景.合成材料老化与应用,2004, 33(3):43-48.
    
    [122] Kunal Shah, Jude Iroh. Electrochemical synthesis and corrosion behaviour of poly(N-ethyl aniline)coatings on Al-2024 alloy. Synthetic Metals, 2002,132:35-41.
    
    [123] Ting Wang, Yong-Jun Tan. Understanding electrodeposition of polyaniline coatings for corrosionprevention applications using the wire beam electrode method. Corrosion Science, 2006,48:2274-2290.
    
    [124]王科,张旺玺.导电聚苯胺的研究进展.合成技术及应用,2004,19(1):29-34.
    
    [125]李永舫.导电聚合物.化学进展,2002,14(3):207-212.
    
    [126]蒋永锋等.导电高分子在金属防腐领域的研究进展.功能高分子学报,2002,15(4):473-479.
    
    [127]张清华,金惠芬,景遐斌.一种新型的导电聚合物-聚苯胺.中国纺织大学学报,1998, 24(3):114-117.
    
    [128] Jaroslav Stejskal, Irina Sapurina, Jan Prokes, Josef Zemek. In-situ polymerized polyaniline films.Synthetic Metals, 1999,105:195-202
    
    [129] Maciej Mazur, Magdalena Tagowska, Barbara Palys, Krystyna Jackowska. Template synthesis ofpolyaniline and poly(2-methoxyaniline) nanotubes: comparison of the formation mechanisms.Electrochemistry Communications, 2003, 5:403-407.
    
    [130] Jaroslav Stejskal, Andrea Riede, Drahomira Hlavata, Jan Prokes, Martin Helmstedt and Petr Holler.The effect of polymerization temperature on molecular weight, crystallinity, and electricalconductivity of polyaniline. Synthetic Metals, 1998, 96(1):55-61.
    
    [131] Luiz H.C. Mattoso, Alan G. MacDiarmid, Arthur J. Epstein. Controlled synthesis of high molecularweight polyaniline and poly(o-methoxyaniline). Synthetic Metals, 1994, 68:1-11.
    
    [132] Natalia V. Blinova, Jaroslav Stejskal, Miroslava Trchová, Jan Proke(?). Polyaniline prepared in??solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer, 2006,47:42-48.
    
    [133] Yanghou Geng, Ji Li, Zaicheng Sun, Xiangbin Jing, Fosong Wang. Polymerization of aniline in anaqueous system containing organic solvents. Synthetic Metals, 1998,96:1-6.
    
    [134] P.N. Adams, L.Abell, A. Middleton, A.P. Monkman. Low temperature synthesis of high molecularweight polyaniline using dichromate oxidant. Synthetic Metals, 1997, 84:61-62.
    
    [135] Yong Cao, Alejandro Andreatta, Alan J. Heeger and Paul Smith. Influence of chemicalpolymerization conditions on the properties of polyaniline. Polymer, 1989, 30(12):2305-2311.
    
    [136] Ayumu Yasuda, Takeo Shimidzu. Chemical and electrochemical analyses of polyaniline preparedwith FeCl3. Synthetic Metals, 1993,61:239-245.
    
    [137] P.N. Adams, L. Abell, A. Middileton and A.P. Monkman. Low temperature synthesis of highmolecular weight polyaniline using dichromate oxidant. Synthetic Metals, 1997, 84:61-62.
    
    [138] R. Ma(?) eikiené, A. Malinauskas. Deposition of polyaniline on glass and platinum by autocatalyticoxidation of aniline with dichromate. Synthetic Metals. 2000,108:9-14.
    
    [139] Doo Kyung Moon, Kohtaro Osakada, Tsukasa Maruyama, Takakazu Yamamoto. Preparation ofpolyaniline by oxidation of aniline using H_2O_2 in the presence of an iron(Ⅱ) catalyst. DieMakromolekulare Chemie, 1992,193:1723-1728.
    
    [140] Z. Sun, Y. Geng, J. Li, X. Jing and F. Wang. Chemical polymerization of aniline with hydrogenperoxide as oxidant. Synthetic Metals, 1997, 84:99-100.
    
    [141] S. P. Armes, M. Aldissi. Potassium iodate oxidation route to polyaniline: an optimization study.Polymer, 1991, 32(11):2043-2048.
    
    [142] M.T. Gill, S.E. Chapman, C.L.DeArmitt, F.L.Baines, C.M.Dadswell, J.G. Stamper, G.A.Lawless,N.C. Billingham, S.P.Armes. A study of the kinetics of polymerization of aniline using proton NMRspectroscopy. Synthetic Metals, 1998,93:227-233.
    
    [143] Chin-lin Huang, Richard. E Partch, Egon Matuevic. Coating of ununiform inorganic particles withpolyanilin Ⅱ. Polyaniline on Copper Oxide. Journal of colloid and interface science, 1995,170:275-283.
    
    [144] Jing Li, Kun Fang, Hong Qiu, Shouping Li, Weimin Mao. Micromorphology and electrical propertyof the HCl-doped and DBSA-doped polyanilines. Synthetic Metals, 2004,142: 107-111.
    
    [145] R.A. Nafdey, D.S. Kelkar. Schottky diode using FeCl_3-doped polyaniline. Thin Solid Films, 2005,477:95-99.
    
    [146] S.J. Davies, T.G. Ryan, C.J. Wilde, GBeyer. Processable forms of conductive polyaniline. SyntheticMetals, 1995,69:209-210.
    
    [147] Yang-Bae Kim, Jae-Kon Choi, Jeong-A Yu, Jin-Who Hong. Synthesis and characterization of anon-aqueous conductive microgel coated with poly(aniline)-DBSA in a colloidal dispersion.Synthetic Metals, 2002,131:79-85.
    
    [148]杨宏秀,时雨荃.导电聚合物的合成和应用前景.化学工业与工程,1996,13(2):54-60.
    
    [149]宋月贤,王红理,郑元锁,韦纬,徐传镶.聚苯胺导电聚合物的介电性能研究.绝缘材料,2001, 2:36-39.
    
    [150]张卫民,韦平.导电有机高分子材料研究进展.广西化工,1997,26(1):40-43.
    
    [151] Maciej Mazur, P. Predeep. Surface selective chemical deposition of polyanilines. Polymer, 2005,46:1724-1730.
    
    [152] Anjali A. Athawale, S.V. Bhagwat, Prachi P. Katre, Asha J. Chandwadkar, P. Karandikar. Aniline as astabilizer for metal nanoparticles. Materials Letters, 2003, 57:3889-3894.
    
    [153] John M. Kinyanjui, Neloni R. Wijeratne, Justin Hanks, David W. Hatchett. Chemical andelectrochemical synthesis of polyaniline/platinum composites. Electrochimica Acta, 2006, 51:2825-2835.
    
    [154] Longzhen Zheng, Jinghong Li. Platinum-polyaniline nanofilms synthesized at a liquidjliquidinterface with enhanced conductivity. Journal of Electroanalytical Chemistry, 2005, 577:137-144.
    
    [155] T. Tiiken, A.T. Ozyllmaz, B. Yazlcl, G Karda(?), M. Erbil. Polypyrrole and polyaniline top coats onnickel coated mild steel. Progress in Organic Coatings, 2004, 51:27-35.
    
    [156] V. Brusic, M. Angelopoulos, T. Graham. Use of polyaniline and its derivatives in corrosion protectionof copper and silver. Journal of the Electrochemical Society, 1997,144(2):436-442.
    
    [157] A.M. Fenelon, C.B. Breslin. The electrochemical synthesis of polypyrrole at a copper electrode:Corrosion protection properties. Electrochimica Acta, 2002,47:4467-4476.
    
    [158] Vandana Shinde, S.R. Sainkar, P.P. Patil. Corrosion protective poly(o-toluidine) coatings on copper.Corrosion Science, 2005,47:1352-1369.
    
    [159] Anna M. Fenelon, Carmel B. Breslin. Polyaniline-coated iron: studies on the dissolution andelectrochemical activity as a function of pH. Surface & Coatings Technology, 2005,190:264-270.
    
    [160] G. Williams, R.J. Holness, D.A. Worsley, H.N. McMurray. Inhibition of corrosion-driven organiccoating delamination on zinc by polyaniline. Electrochemistry Communications, 2004,6: 549-555
    
    [161] S. Aeiyach, B. Zaid, P.C. Lacaze. One-step electrosynthesis of PPy films on zinc substrates by anodicpolymerization of pyrrole in aqueous solution. Electrochimica Acta, 1999,44(17):2889-2898.
    
    [162] D.E. Tallman, G. Spinks, A. Dominis, G. G. Wallace. Electroactive conducting polymers for corrosioncontrol: Part 1. General introduction and a review of non-ferrous metals. Journal of Solid StateElectrochemistry, 2002, 6(2):73-84.
    
    [163] D. Huerta-Vilca, S.R. Moraes, A.J. Motheo. Electrosynthesized polyaniline for the corrosionprotection of aluminum alloy 2024-T3. Journal of the Brazilian Chemical Society, 2003,14(l):52-58
    
    [164] D.E. Tallman, C. Vang, G.G. Wallace, G.P. Bierwagen. Direct electrodeposition of polypyrrole onaluminum and aluminum alloy by electron transfer mediation. Journal of the ElectrochemicalSociety, 2002,149(3):C173-C179.
    
    [165] Ali H. Gemeay, Ikhlas A. Mansour, Rehab G El-Sharkawy, Ahmed B. Zaki. Preparation andcharacterization of polyaniline/manganese dioxide composites via oxidative polymerization: Effectof acids. European Polymer Journal, 2005,41:2575-2583.
    
    [166] Yongjun He. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route.Powder Technology, 2004,147:59-63.
    
    [167] Xingfa Ma, Mang Wang, Guang Li, Hongzheng Chen, Ru Bai. Preparation of polyaniline-TiO_2composite film with in situ polymerization approach and its gas-sensitivity at room temperature.Materials Chemistry and Physics, 2006, 98:241-247.
    
    [168] Jaroslav Stejskal, Miroslava Trchova, Jitka Brodinova, Petr Kalenda, Svetlana V. Fedorova, JanProke(?), Josef Zemek. Coating of zinc ferrite particles with a conducting polymer, polyaniline.Journal of Colloid and Interface Science, 2006, 298:87-93.
    
    [169]金绪刚,黄承亚,龚克成.本征导电聚合物涂层及界面.化学研究与应用,1997,9(4):332-337.
    
    [170] Feng-Yi Chuang, Sze-Ming Yang. Titanium oxide and polyaniline core-shell nanocomposites.Synthetic Metals, 2005,152:361-364.
    
    [171] D W DeBerry. Modification of the electrochemical and corrosion behavior of stainless steels with anelectro active coating. Journal of the Electrochemical Society, 1985,132:1022-1026.
    
    [172] Roberto M. Torresi, Solange de Souza, Jose E. Pereira da Silva, Susana I. Cordoba de Torresi.??Galvanic coupling between metal substrate and polyaniline acrylic blends:corrosion protectionmechanism. Electrochimica Acta, 2005,50:2213-2218.
    
    [173] Yousuf Mohammad Abu, Koichi Aoki. Corrosion protection by polyaniline-coated latex microspheres.Journal of Electroanalytical Chemistry, 2005, 583:133-139.
    
    [174] C.K. Tan and D.J. Blackwood. Corrosion protection by multilayered conducting polymer coatings.Corrosion Science, 2003,45(3):545-557.
    
    [175] M. Kralji(?), Z. Mandi(?) and Lj. Dui(?). Inhibition of steel corrosion by polyaniline coatings. CorrosionScience, 2003,45(1):181-198.
    
    [176] G. Troch-Nagels, R. Winand, A. Weymeersch, L. Renard. Electron conducting organic coating ofmild steel by electropolymerization. Journal of Applied Electrochemistry, 1992,22(8):756-764.
    
    [177] W.-K. Lu, R.L. Elsenbaumer, B. Wessling. Corrosion protection of mild steel by coatings containingpolyaniline. Synthetic Metals, 1995,71:2163-2166.
    
    [178] J.L. Camalet, J.C. Lacroix, S. Aeiyach, K. Chane-Ching, P.C. Lacaze. Electrodeposition of protectivepolyaniline films on mild steel. Journal of Electroanalytical Chemistry, 1996,416:179-182.
    
    [179] P.A. Kilmartin, L. Trier, G.A. Wright. Corrosion inhibition of polyaniline and poly(o-methoxyaniline)on stainless steels. Synthetic Metals, 2002,131:99-109.
    
    [180] S. Ren, D. Barkey. Electrochemically prepared poly(3-methylthiophene) films for passivation of 430stainless steel. Journal of the Electrochemical Society, 1992,139(4):1021-1026.
    
    [181] J.R. Santos, L.H.C. Mattoso, A.J. Motheo. Investigation of corrosion protection of steel bypolyaniline films. Electrochimica Acta, 1998,43:309-313.
    
    [182] D.E. Tallman, Y. Pae, G.P. Bierwagen. Conducting polymers, corrosion: Polyaniline on steel.Corrosion, 1999,55:779-786.
    
    [183]甘正浩,毛志远,沈复初,郦剑,叶必光.铜的气体表面渗硅新工艺研究.材料科学与工程,1996, 14(4):38-42.
    
    [184] Sonal Patil, S.R. Sainkar, P.P. Patil. Applied Surface Science. Poly(o-anisidine) coatings on copper:synthesis, characterization and evaluation of corrosion protection performance. Applied SurfaceScience, 2004,225: 204-216.
    
    [185] D. W. Bridges, J. P. Baur, G S. Baur, W. M. Fassell. Closure to "Discussion of Oxidation of Copperto Cu_2O and CuO". Journal of the Electrochemical Society, 1957,103: 475-478.
    
    [186] G. R Wallwork, W. W. Smeltzer. The oxide scale on Cu in the temperature range 300-600℃.Corrosion Science, 1969, 9(7):561-563.
    
    [187] S. Mrowec, A. Stoklosa. Oxidation of copper at high temperatures. Oxidation of Metals. 1971,3(3):291-331.
    
    [188] G.Garnaud. Oxidation of Metals, 1977,11(3):127-132.
    
    [189]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:152,52.
    
    [190] U.R. Evans. The corrosion and oxidation of metals. London: Edward Arnold Ltd, 1968, 696,701.
    
    [191] Jeonghwan Kim, Munetake Satoh, Tomohiro Iwasaki. Mechanical-dry coating of wax onto copperpowder by ball milling. Materials Science and Engineering, 2003, A342:258-263.
    
    [192] G.Kane Jennings, Paul E.Laibinis. Self-assembled monolayers of alkanethiols on copper providecorrosion resistance in aqueous environments. Colloids and Surfaces A, 1996,116:105-114.
    
    [193]闰军,崔海萍,杜仕国,何益艳.偶联剂对环氧-铜粉复合导电涂料导电性能的影响.弹性体, 2003,13(4):18-21.
    
    [194]李正莉,刘祥萱,王煊军.导电涂料用铜粉防氧化处理研究.涂料工业,2004,34(1):16-18,62.
    
    [195]林硕,吴年强,李志章.偶联剂对铜系复合涂料导电稳定性的影响.复合材料学报,1999,??16(4):44-49.
    
    [196] Bhattacharya A, De A. Conducting composites of polypyrrole and polyaniline a review. Progress inSolid State Chemistry, 1996,24:141-181.
    
    [197] A. Malinauskas. Chemical deposition of conducting polymers. Polymer, 2001,42: 3957-3972.
    
    [198] M.R. Bateni, J.A. Szpunar, R.A.L. Drew. Improving the tribological behavior of copperthroughnovel Ti-Cu intermetallic coatings. Wear. 2002,253:626-639.
    
    [199]张跃飞,陈飞,苏永安,潘俊德,徐重.纯铜离子渗镀钛层的耐蚀性.中国有色金属学报,2001, 11(2):281-284.
    
    [200] Lorenzo Fedrizzi, Flavio Deflorian, PierLuigi Bonora. Evaluation of the protective properties oforganic coatings on copper pipes for refrigerator cooling circuit. Electrochimica Acta, 1999,44:4251-4258.
    
    [201] K.-M. Yin, H.Z. Wu. Electrochemical impedance study of the degradation of organic-coated copper.Surface and Coatings Technology, 1998,106:167-173.
    
    [202] K.K. Satheesh Kumar, S. Geetha, D.C. Trivedi. Freestanding conducting polyaniline film for thecontrol of electromagnetic radiations. Current Applied Physics, 2005,5:603-608.
    
    [203] T. Schauer; A. Joos, L. Dulog, CD. Eisenbach. Protection of iron against corrosion with polyanilineprimers. Progress in Organic Coatings, 1998,33:20-27.
    
    [204] F.A. Viva, E.M. Andrade, F.V. Molina, M.I. Florit. Electropolymerization of 2-methoxy aniline.Electrochemical and spectroscopical product characterization. Journal of Electroanalytical Chemistry,1999,471:180-189.
    
    [205] D. Hatchett, M. Josowicz, J. Janta. Comparison of Chemically and Electrochemically SynthesizedPolyaniline Films. Journal of the Electrochemical Society, 1999,146:45354538.
    
    [206] Jian Gong, Jianzhong Yu, Yaguang Chen, Lunyu Qu. Gas-solid phase method to synthesizepolyaniline doped with heteropoly acid. Materia Letter, 2002,57:765-770.
    
    [207] Zhao Ping, G.E. Nauer, H. Neugebauer, J. Theiner. In situ Fourier transform infrared attenuated totalreflection (FTIR-ATR) spectroscopic investigations on the base-acid transitions of different forms ofpolyaniline. Journal of Electroanalytical Chemistry, 1997,420:301-306.
    
    [208] E.Asturias, A.G. Macdiarmid. The oxidation state of "emeraldine" base. Synthetic Metals, 1989,29:157-162.
    
    [209] NIST Chemistry WebBook, Online.
    
    [210] Jinsong Tang, Xiabin Jing, Baochen Wang, Fosong Wang. Infrared spectra of soluble polyaniline.Synthetic Metals, 1988, 24:231-238.
    
    [211] Satish Sharma, Chetan Nirkhe, Sushama Pethkar, Anjali A Athawale. Chloroform vapour sensorbased on copper/polyaniline nanocomposite. Sensors and Actuators, B, 2005, 85:131-136.
    
    [212] Shaoxu Wang, Zhicheng Tan, Yansheng Li, Lixian Sun, Tao Zhang. Synthesis, characterization andthermal analysis of polyaniline/ ZrO2 composites. Thermochimica Acta, 2006,441:191-194.
    
    [213] Chunming Yang, Chunyan Chen. Synthesis, characterisation and properties of polyanilinescontaining transtition metal ions. Synthetic Metals, 2005,153:133-136.
    
    [214] Anna M. Fenelon; Carmel B. Breslin. An investigation into the degradation of polyaniline filmsgrown on iron from oxalic acid. Synthetic Metals, 2004,144:125-131.
    
    [215] Hideko T. Oyama, Ryszard Sprycha, Yuming Xie, Richard E. Partch and Egon Matijevi(?). Coating ofuniform inorganic particles with polymers. Journal of Colloid and Interface Science, 1993, 160(2): 298-303.
    
    [216]杨文治,黄魁元,王清,等.缓蚀剂.北京:化学工业出版社,1989,277.
    [217] B.C.O. Regan, F. Lenzmann. Polyaniline/TiO_2 composite nanotubes. Journal of Physical Chemistry, B, 2004, 108:4342-4350.
    [218] C.A.N. Fernando, W.T.C. Pnyankara, I.M. Dharmadasa. Photocurrent enhancement of interlocked LB film dye layers in a p-CuSCN sensitized photoelectrochemical cell. Renew Energy, 2002,25:69-79.
    [219] V.P.S. Perera, M.K.I. Senevirathna, P.K.D.D.P. Pitigala, K. Tennakone. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells. Solar Energy Materials and Solar Cells, 2005, 86:443-450
    [220] K. Tennakone, A.R. Kumarasinghe, P.M. Sirimanne, G.R.R.A. Kumara. Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization. Thin Solid Films, 1995, 261:307-310.
    [221] Weibing Wu, Zhengguo Jin, Zhen Hua, Yanan Fu, Jijun Qiu. Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution. Electrochimica Acta, 50,2343-2349 (2005).
    [222] G.R.R.A. Kumara, A. Konno, G.K.R. Senadeera, P.V.V. Jayaweera, D.B.R.A. De Silva, K. Tennakone. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Solar Energy Materials and Solar Cells, 2001, 69:195-199.
    [223] B.R. Sankapal, E. Goncalves, A. Ennaoui, M.Ch. Lux-Steiner. Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films, 2004, 451:128-132.
    [224] K. Tennakone, G. S. Shantha Pushpa, S. Punchihewa, G. Epa. Stability of cuprous thiocyanate coated cuprous oxide photocathode in aqueous thiocyanate. Electrochimca Acta, 1986, 31:315-318.
    [225] Kirthi Tennakone, Mahendra Kahanda, Cyril Kasige, Parakrama Abeysooriya. Dye sensitization of cuprous thiocyanate photocathode in aqueous KCNS. Journal of the Electrochemical Society, 1984, 131:1574-1577.
    [226] Renata Bilewicz, Zenon Kublik. Adsorption-nucleation and growth mechanism of CuSCN monolayer formation on a copper amalgam electrode in thiocyanate solutions. Journal of Electroanalytical Chemistry, 1985,195:137-149.
    [227] Yong Son, Nroma R.de Tacconi, Krishnan Rajeshwar. Photoelectrochemistry and Raman spectroelectrochemistry of cuprous thiocyanate films on copper electrodes in acidic media. Journal of Electroanalytical Chemistry, 1993, 345:135-146.
    [228] K. Rajeshwar, N.R. Tacconi, C.R. Chenthamarkshan. Semiconductor-based composite materials preparation, properties, and performance. Chemistry of Materials, 2001,13:2765-2782.
    [229] K. Tennakone, C.A.N. Fernando, A.H. Jayatissa, S. Wickramanayaka, M.W.P. Damayanthi, L.H.K. Silva, W. Wijerathna, O.A. Illeperuma, S. Punchihewa. Semiconducting and photoelectrochemical properlies of n-and P-type β-CuSCN. Physical Status Solidi, 1987,103:491-497.
    [230] C.A.N. Fernando. Kinetics of photocurrent generation and quantum efficiency of a dye sensitized platinized solid state photovoltaic cell made from p-type CuCNS and n-SnO_2 transparent film on glass. Solar Energy Materials and Solar Cells, 1992,28:255-271.
    [231] C.A.N. Fernando, A. Kitagawa, M. Suzuki, K. Takahashi, T. Komura. Photoelectrochemical properties of rhodamine-C 18 sensitized p-CuSCN photoelectrochemical cell (PEC). Solar Energy Materials and Solar Cells, 1994, 33:301-315.
    [232] C.A.N. Fernando, I. Kumarawadu, K. Takahashi, A. Kitagawa, M. Suzuki. Crystal violet dye-sensitized photocurrent by participation of surface states on p-CuSCN photocathode. Solar Energy Materials and Solar Cells, 1999, 58:337-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700