用户名: 密码: 验证码:
高结合率混合铜矿选冶新工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
楚雄混合铜矿含铜1.42%,氧化率69.10%,结合率26.09%,氧化钙含量10.73%,氧化镁含量2.99%,是一种高氧化率、高结合率、高钙镁含量的难处理混合铜矿,矿石中铜矿物嵌布粒度细、组成复杂,选矿和冶金回收都是一个世界性难题。自上世纪80年代以来,国内外许多大专院校及科研院所对其进行了深入的研究,但都未能有所突破。目前,采用人工拣选预分离该矿石,将氧化率相对低的部分进行浮选,氧化率相对高的部分进行酸浸,基本可以获得60%-70%的回收率。由于矿石性质复杂、氧化率变化大、钙镁含量高、人工拣选劳动强度大等特点,使得工业生产上处理能力小、酸浸耗酸高,难以满足规模化的大工业生产,致使该铜矿资源至今没有得到有效利用。
     对矿石进行工艺矿物学性质研究,发现矿石中大部分铜矿物与脉石矿物致密共生,部分粒度极细,呈浸染状分布在钙硅泥质中,形成结合铜,导致这部分铜矿物的浮游活性降低或难以浮选。针对该矿石的特点,通过大量的试验研究与理论分析,提出了“硫化浮选—强化捕收—反浮选钙镁—中矿酸浸”的全新选冶联合工艺流程,优化组合,优势互补。采用硫化浮选法回收矿石中的硫化铜和易浮氧化铜矿物;使用捕收能力强的药剂或药剂组合对尾矿中的难浮铜矿物进行强化捕收得中矿;针对钙镁脉石含量高且铜结合率高的浮选二次尾矿,采用反浮选钙镁工艺得到低钙镁含量的铜中矿;混合中矿进入酸浸工艺流程中回收其中的铜矿物。该全新工艺流程顺应矿石性质,适应性强,为规模化开发利用该混合铜矿提供依据。
     针对矿石中的硫化铜和易浮氧化铜矿物,进行硫化浮选工艺试验研究,考查磨矿细度以及药剂浓度等因素对铜矿浮选的影响,确定最佳硫化浮选工艺流程,即通过三次粗选,粗精矿集中再磨,再磨粗精矿三次精选,精选中矿顺序返回的闭路浮选流程,最终得到品位为21.53%,回收率为51.13%的铜精矿。通过对闭路各产品的铜物相分析及钙镁含量的测定,发现铜精矿中硫化铜矿的回收率只有86.55%,游离氧化铜矿的回收率为53.41%,结合氧化铜矿的回收率仅为6.03%。
     直接对硫化浮选的尾矿进行反浮选钙镁,可能会使得部分铜矿物随钙镁脉石矿物同时上浮而损失于钙镁尾矿中,因此在进行反浮选钙镁之前,采用捕收能力强的药剂和药剂组合对其中的难浮铜矿物进行强化捕收,是十分必要的。试验研究结果表明,采用异戊基黄药与羟肟酸混合药剂对难浮铜矿物进行强化捕收,得到铜品位1.02%,回收率6.57%的中矿。对该中矿进行钙镁含量分析,其中CaO与MgO回收率均在8%左右,效果较为理想。
     对于混合药剂强化捕收的二次尾矿,其中含有大量难以在浮选中回收的结合铜,为了进一步提高铜的综合回收率,对二次尾矿中的钙镁脉石矿物进行反浮选,降低其中的耗酸物质,为酸浸回收结合铜创造条件。油酸对铜矿物有着较好的捕收性能,国内外从未见发表过使用油酸对铜矿进行反浮选的相关报道。针对楚雄混合铜矿的矿石性质特点,选择油酸作为反浮选钙镁的捕收剂,取得了较好的效果.反浮选槽内产物为中矿,泡沫产品为尾矿,中矿的铜品位为0.71%,明显高于尾矿0.53%的铜品位,仅有12.28%的铜损失在尾矿中。含钙矿物得到较好的分选,反浮选阶段油酸对氧化钙的脱除率高达81.82%,另有33.99%的氧化镁脱除在尾矿中。
     通过大量试验研究,确定了最终的浮选工艺全流程,即集中磨矿,三次粗选,粗精矿集中再磨,三次精选获得铜精矿,尾矿强化捕收,二次尾矿钙镁反浮选,强化捕收中矿与反浮选槽中产物合并为铜中矿,反浮选泡沫产品为尾矿。浮选闭路试验所得铜精矿的品位为21.69%,回收率为52.52%。中矿铜品位为0.85%,铜回收率为27.18%;CaO品位为5.39%, CaO回收率为22.71%;MgO品位为2.89%, MgO回收率为44.09%。尾矿铜品位为0.56%,铜损失率为20.30%。
     通过浸出热力学计算与动力学分析,研究了矿石中铜矿物及含钙镁矿物硫酸浸出过程的机理,结合中矿的性质,提出“浓浆闪浸”工艺。试验考查了硫酸用量、浸出时间、液固比和搅拌强度等参数对铜浸出率的影响。试验结果表明,常温下搅拌强度为30m/min,液固比2:1,浸出时间30min,硫酸用量150Kg/t矿中矿的铜浸出率达到84.70%,每吨电解铜消耗17.31t硫酸,“浓浆闪浸”技术取得了良好的效果。
     针对楚雄高结合率难处理混合铜矿,采用全新的“硫化浮选—强化捕收—反浮选钙镁—中矿酸浸”选冶联合工艺流程进行处理,获得了铜精矿品位21.69%,铜综合回收率75.54%,电解铜吨铜耗酸17.31t的技术经济指标,为规模化开发利用该铜矿资源奠定了重要的理论与试验基础。
The mixed copper ore in Chuxiong of Yunnan province, China, contains 1.42% copper, with an oxidation rate of 69.10% and a combination rate of 26.09%, the contents of calcium oxide and magnesium oxide in the ore are 10.73% and 2.99% respectively. The ore is very difficult to be treated either by beneficiation or metallurgy due to its high oxidation rate, high combination rate, and high content of acid-consuming gangue minerals. Moreover, the copper minerals are embedded in fine grain size with complex composition in the ore. Many researchers in domestic and foreign universities and research institutes have conducted a lot of research on it since 1980's, no breakthrough, however, was made. At present, the copper ore is mainly separated and processed by hand sorting, followed by flotation for the ore with low oxidation rate, and acid leaching for the ore with high oxidation rate, which results in a copper recovery of 60% to 70%. The ore is so difficult to treat resulting from the above complex natures, small processing capacity and high cost for acid leaching that insufficient utilization of the ore was made until now.
     Process mineralogy research of the ore, indicated that most of the copper ore embedded in the gangue mineral, and some copper mineral particle size are tiny in a disseminated distribution in the calcium and silicon mud, forming so-called combined copper oxide mineral, which leads to poor floatability and performance of the copper ore.
     A novel combined process with beneficiation and metallurgy was proposed as "Sulfidization flotation-Intensifying collection-Reverse flotation of acid-consuming gangue minerals-Acid leaching for middlings" based on the characteristics of the ore and lots of tests and theoretical analysis, i.e. recovering copper sulfide minerals and part of easy-to-float oxidized copper minerals by sulfidization flotation; using strong collective reagents or combined reagents to intensify the collecting of difficult-to-float copper minerals in the tailings after sulfidization flotation; transferring the secondary tailings with high content of acid-consuming gangue minerals and high combination rate into reverse flotation to remove the calcium oxide and magnesium oxide; mixed middlings into the acid leaching process to recover the copper minerals. The new process conforms to the nature of the ore, is adaptable for large-scale industrial production.
     The flotation tests were conducted for the flotation of copper sulfide minerals and part of easy-to-float oxidized copper minerals, and the best flotation flowsheet and conditions are determined as three-stage roughing-rough concentrate regrinding-three-stage cleaning (closed-circuit of middlings returned by turns) through the investigations of grinding fineness, various reagents dosages, stages of rougher and cleaner, as well as regrinding time of rough concentrate. The final copper concentrate is obtained with a grade of 21.53% and a recovery of 51.13%, in which the phase recoveries of copper sulfide ore, free copper oxide ore, and combined copper oxide ore are 86.55%,53.41% and 6.03% respectively.
     The main purpose of reverse flotation is to remove the acid-consuming gangue minerals. It is, however, very necessary to recover the difficult-to-float copper minerals in the tailings with strong collector before carrying out reverse flotation because part of the copper minerals may lose in the tailings in process of reverse flotation. The reverse flotation was performed using blending collectors with isoamyl xanthate and hydroxamic acid, the middlings with copper grade of 1.02% and recovery of 6.55% was obtained, in which CaO and MgO recovery is about 8%, respectively.
     There is large quantity of combined copper minerals in the secondary tailings by intensifying collection, the tailings produced in the aforementioned process was treated by reverse flotation to remove the acid-consuming gangue minerals in order to supply good conditions for acid leaching. Oleic acid has proved to be a better flotation collector to recover this copper ore, and there is, so far, no report of utilization of oleic acid in the reverse flotation of copper ore. Oleic acid was employed as collector in reverse flotation to remove the acid-consuming gangue minerals based on the characteristics of the ore, and good results was achieved. The product in the flotation cell is middlings with a copper grade of 0.71%, which is higher than that of tailings grade of 0.53%, and the foam product forms the tailings with the loss of copper recovery of 12.28%. Moreover, good separation of calcium minerals was obtained in the reverse flotation stage with a removal rate of CaO 81.82%, as well as 33.99 percent of the magnesium oxide was removed in the stage.
     The final flotation flowsheet and conditions were obtained after series of tests, the grinding fineness is 85%-0.074mm, and the flowsheet is three-stage rougher, roughing concentrate regrinding and three-stage cleaner, the final concentrate with copper grade of 21.69% and recovery of 52.52%. The tailings, subsequently, was put into the process of intensifying flotation, and a secondary concentrate was produced in the process. The tertiary concentrate was also produced after the secondary tailings putting into reverse flotation to remove the calcium oxide and magnesium oxide, the blending of secondary concentrate and tertiary concentrate forms the middlings product with a copper grade of 0.85%, and a recovery of 27.18%, the content of calcium oxide in the middlings is decreased by 5.39%. The copper grade in final tailings, is 0.56% and with a lost copper recovery of 20.30%.
     Such a novel hydrometallurgy process as flash leaching of thick slurry was proposed based on thermodynamic calculation and kinetic analysis of copper leaching in the middlings. The leaching conditions such as dosage of sulfuric acid, leaching time, ratio of liquid to solid and agitation intensity were investigated. A good leaching performance was achieved with a leaching rate of 84.70% under such appropriate conditions as agitation intensity 30m/min, ratio of liquid to solid 2:1, leaching time 30 min, dosage of sulfuric acid 150 Kg per ton of ore, hence one ton electrolytic copper need 17.31 ton sulfuric acid.
     In a word, a novel combined process with "Sulfidization flotation-Intensifying collection-Reverse flotation of acid-consuming gangue minerals-Acid leaching for middlings" was proposed for Chuxiong copper ore. Satisfied performance was achieved as follows, the copper in final concentrate is 21.69% and the total copper recovery of the whole process is 75.35%. The progress made in this dissertation will supply a good base for high-efficient utilization of the mixed copper ore.
引文
[1]曹异生.国际铜矿业进展[J].世界有色金属,2007(5):35~41.
    [2]刘殿文,张文彬,文书明等.氧化铜矿浮选技术[M].北京:冶金工业出版社,2009(5):4-5.
    [3]孙传尧.当代世界的矿物加工技术与设备:第十届选矿年评.北京:科学出版社,2004(11):28~33.
    [4]胡熙庚.有色金属硫化矿选矿[M].冶金工业出版社,1987(4):6-13.
    [5]Min.Eng.1981(115):527-531.
    [6]《E/MJ》,1982, No.6,:69.
    [7]Paper No.1,1 and 2, Preprints-XIV Inter, Min, Proc, Cong, Oct 1982:10-11.
    [8]丰裕军,靳秀云.浅议如何提高氧化铜矿硫化浮选效果的几个问题[J].山西冶金,2004(2):12~13.
    [9]赵涌泉编.氧化铜矿的处理[M].冶金工业出版社.北京,1982.
    [10]钱鑫,张文彬,邓彤等著.铜的选矿[M].北京:冶金工业出版社.1982:250.
    [11]Cuyper J D.氧化铜矿的浮选[J].国外金属矿选矿,1978(8):1-8.
    [12]傅文章,谷晋川.氧化铜矿浮选研究[J].矿产综合利用,1997(3):37~42.
    [13]Maurice Rey M. B. E. et al. Memories of milling and process metallurgy 1-flotation of oxidized ores.1979(11):245-246.
    [14]文丰.螯合剂在浮选中的应用[J].有色金属(选矿部分),1980(4):53~55.
    [15]Somasundran P.矿物选择性浮选螯合剂[J].国外金属矿选矿,1994(2):34~42.
    [16]罗良烽,文书明,周兴龙等.氧化铜选矿的研究现状及存在问题探讨[J].矿业快报,2007,8(8):26~28.
    [17]赵援.硅孔雀石浮选捕收剂[J].有色金属(选矿部分),1976(2):38-44.
    [18]G.Barbery, J L. Cecide et al. Wth International Mineral Processing Congress Special Publication, Sao Paulo, VolⅡ:19-34
    [19]Nagaraj D. R and Somasundran P. Recent Developments in Separation Science.1979, Vol V, CRC Press, Boca Raton, Fl Ch7:p81.
    [20]Nagaraj D. Rand Somasundran P. Trans SME,1979,266:1892-1897.
    [21]Nagaraj D. Rand Somasundran P. Mining Eng, September,1981:1351-1357.
    [22]Cecide J. L, Cruz M. I. et al. Infrared Spectral Study of Species Formed on Malachite Surface by Adsorption from Aqueous Salicylaldoxime Solution.J. Coll. Interf. Sci,1981, 80:589-597.
    [23]Aliaga W. and Somasundran P. Molecular orbital modeling and UV-Spectroscopic Investigation of Adsorption of Oxime Surfactants in Langmuir.1987,3:1103.
    [24]韦华祖.孔雀石硫化焙烧—浮选的研究[J].有色金属(选矿部分),1988(4):39~41.
    [25]林强,王淀佐.二烃基次膦酸结构与其浮选细粒孔雀石和赤铁矿的关系研究[J].矿冶工程,1989(3):16~20.
    [26]冷文华,卢毅屏,冯其明.氧化铜矿浮选研究进展[J].江西有色金属,1999(6):15~19.
    [27]小林干男.孔雀石表面辛烷硫醇铜的生成[J].国外金属矿选矿,1988(2):22~27.
    [28]尹才硚,蒋训雄,李新财.用活化浸出工艺从低品位氧化铜矿中回收铜[J].有色金属,1996,48(2):54~60.
    [29]Bekturganov, N. S. Belyaev, S. V. Beneficiation of oxidized copper ores. 《C.A.》,110:61541P.
    [30]何发钰,罗家珂.氧化铜矿的处理[J].国外金属矿选矿,1996(7):1-7.
    [31]张文彬.羟肟酸钠浮选氧化铜矿的研究[J].有色金属,1974(3):41-45.
    [32]胡显智,李士达.羟(氧)肟酸(盐)浮选氧化铜矿研究[J].有色金属(选矿部分),1991(04):22~25.
    [33]胡显智.羟(氧)肟酸(盐)及其与铜矿物吸附体系的量子化学研究[J].有色金属,1997,49(4):24~28.
    [34]赵援等.浮选新药剂D2及其在氧化铜矿石浮选中的应用[J].云南冶金,1987(4):26~28.
    [35]赵援.氧化铜矿石浮选[J].云南冶金(科学技术版),1991(4):20~27.
    [36]喻坚意,余天桂.“D2”药剂浮选氧化铜矿的效果[J].矿产综合利用,1991(001):7-9.
    [37]邱允武.不同螯合捕收剂混用浮选氧化铜矿的研究[J].有色金属(选矿部分),1993,(002):13~15,28.
    [38]段嗣灿.新药剂D2浮选氧化铜矿石的研究[J].云南冶金(县乡矿业版),1994,(002):15~17,21.
    [39]徐晓军,刘邦瑞.黄药浮选氧化铜矿物时螯合剂的协同活化作用[J].中国有色金属学报,1995(002):61-64.
    [40]徐晓军,刘邦瑞.浮选孔雀石时8-羟基喹啉对黄药的协同活化作用[J].中国有色金属学报,1993(001):1,41-44.
    [41]包尽忠.异羟肟酸钠浮选氧化铜矿的生产实践[J].有色金属(选矿部分),1986,(4):32~34.
    [42]包尽忠.异羟肟酸钠浮选氧化铜矿的生产实践[J].有色金属,1986(4):32~34.
    [43]范先锋等.氧化铜矿物与氧化铁矿物浮选分离新方法及机理[J].有色金属(选矿部分),1990.
    [44]罗传胜.羟肟酸钠浮选氧化铜矿的研究[J].广东有色金属学报,1997,7(2):85~89.
    [45]高起鹏等.氧化铜矿硫化浮选几个问题[J].有色矿冶,2003,(4):22~24.
    [46]王海北.国内外硫化铜矿湿法冶金发展现状[J].有色金属,2003(11):101~104.
    [47]何蔼平,郭森魁,彭楚峰.湿法炼铜技术与进展[J].云南冶金,2002,31(3):94.
    [48]Harvey Todd J, Sampson Mark, Hohler Nick, et al. The commercialization of the GEOCOAT process for chalcopyrite [A]ALTA Copper-8 Technical Proceedings. Perth, Australia,2003.
    [49]The Intec Process-Superior and Sustainable Copper Production, May 2001.
    [50]Brierley J A, Brierley C L.Present and future commercial applications of biohydrometallurgy [J]. Hydrometallurgy2001,59(2):233.
    [51]Anon. Global partnership will promote billiton technology [J]. SA Mining. Coal, Gold and Base Minerals,2000(4):14.
    [52]Wood Philip R. The Intec copper process:(Electro) winning against the odds [A] ALTA Copper-8 Technical proceedings [C]. Perth, Australia,2003.
    [53]张小并.铜湿法冶金艺发展概况[J].采矿技术,1996(11):6.
    [54]Hietala Karl, Hyvarinen Olli. A new technology for copper production [A]ALTA Copper-8 Technical proceedings [C]. Perth, Australia,2003.
    [55]兰兴华.湿法炼铜的新进展[J].世界有色金属,2003(2):50.
    [56]Tetsuji Hirato, Makoto, Yasuhiro AWakura, et al. The leaching of ehaleopyrite with ferric chloride[J]. Metallurgical Transactions 1986 (17B):19-28.
    [57]Luz Y, Jeffrey M L, Lawson F. The effect of chloride ions the dissolution of ehaleopyrite in acid solutions[J]. Hydrometallurgy,2000(563):1897-202.
    [58]Dutrize J E. The leaching of sulphide minerals in chloride medium[J]. Hydrometallurgy,1992(29):1-45.
    [59]Mal Jansen, Taylor. Key elements in the selection of sulphide leach processes for copper concentrate leaching[a] Alta Cu 2000[J]. August 2000:1.
    [60]David Dreisinger.铜精矿湿法冶金处理[A]Avecia.北京铜湿法冶金技术研讨会[C].北京,2001:17.
    [61]Owen Tinkler.硫化矿物湿法冶金的发展[A]Avecia.北京铜湿法冶金技术研讨会[C].北京,2001:34.
    [62]王海北,蒋开喜,邱定蕃et al.国内外硫化铜矿湿法冶金发展现状[J].有色金属,2003,55(4):101.
    [63]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002.
    [64]张永德,李呤值,阮仁满.黄铜矿的湿法冶金工艺研究进展[J].稀有金属,2005,29(1):83.
    [65]杨新华.探究氧化铜矿的回收[J].云南冶金,2003(6):13~15.
    [66]张文彬.氧化铜矿浮选研究和实践[M].中南工业大学出版社,1992.
    [67]王双才,李元坤,史光大等.氧化铜矿的处理工艺及其研究进展[J].矿产综合利用,2006,4(2):38~39.
    [68]屈时汉.浅析低品位氧化铜矿的湿法冶金[J].江西有色金属,1996(1):33~37.
    [69]郑若锋等.湿法冶铜现状与发展方向[J].地质实验室,1996(5):287-291.
    [70]谢福标.氧化铜矿搅拌浸出—萃取—电积的生产实践[J].矿冶,2001(2):45.
    [71]许璧芳.采用酸浸—萃取—电积工艺开发利用氧化铜矿资源[J].云南冶金,1997(2):33~34.
    [72]RADOMIRO TOMIC公司的铜湿法冶金工艺,有色冶金设计与研究,2002(4):41-44.
    [73]Mendes F. D, Martins A. H. A statistical approach to the experimental design of the sulfuric acid leaching of a gold-copper ore, Brazilian Journal of Chemical Engineering, v20n3, July/September 2003:305-315.
    [74]杜计划.氧化铜矿石的酸浸试验研究[J].国外金属矿选矿,2006(9):37~39.
    [75]谢福标.氧化铜矿搅拌浸出—萃取—电积的生产实践[J].矿冶,2001(2):47~49.
    [76]曾耀坤.氧化铜矿浸出—电积提铜试验研究[J].有色冶炼,1992(4):58~60,65.
    [77]王成彦.堆浸—萃取—电积铜厂在高寒地区的生产与实践[J].有色金属(冶炼部分),2001(6):6-9.
    [78]项则传.难选氧化铜矿堆浸—萃取—电积提铜的研究和实践[J].有色金属(选矿部分),2004(4):1-3.
    [79]刘小平,刘炳贵.氧化铜矿搅拌酸浸试验研究[J].矿冶工程,2004(6):51~52.
    [80]贾云芝.酸浸—萃取—电积法从氧化铜矿中提取铜的研究[J].云南冶金,1997(12):35~41.
    [81]徐慧,曹连喜.低品位氧化铜矿湿法冶炼回收的前期基础研究[J].有色金属(矿山部分),2002(6):10-12.
    [82]张峰,常晋元低品位氧化铜矿的地下溶浸工艺与生产[J].有色金属(矿山部分),2003(4):5-7.
    [83]王红梅,刘四清.云南某地氧化铜矿的浸出试验研究[J].矿冶,2008(1):50~53.
    [84]Sukla L B, Panda S C, Jena P K, Recoverr of Cobalt. Nickle and copper from converter slag through masting with ammonium sulphate and Sulphufic acid, Hydrometallurgy,1986,116(2):153-165.
    [85]Siewens Richard E, Corrik John D. Process for recovery of nickel Cobalt and Copper from domestic lateftes, Mitring cogress Journal,1977, 163(1):29-34.
    [86]李青山,刘日辉.氧化铜矿的湿法冶金及其进展[J].湿法冶金,1992(3):9-12.
    [87]韦红光.渗滤法在氧化铜矿溶铜工艺的应用[J].广西工学院报,2002(2):50~52.
    [88]王成彦.高碱性脉石低开发利用低品位难处理氧化铜矿的浸出工艺研究[J].矿冶,2001(4):49~54.
    [89]王成彦.高碱性脉石低品位氧化铜矿的溶剂萃取工艺研究[J].有色金属(冶炼部分),2003(3):2-6.
    [90]王卉,吕萍.含泥铜矿制粒堆浸—细菌氧化浸铜试验研究[J].湿法冶金,1997(4):23~27.
    [91]汪青梅,丘木清.微生物浸矿技术在处理低品位铜矿中的应用现状[J].湿法冶金,2005(1):5-8.
    [92]方建军,李艺芬,张文彬.高钙镁难选氧化铜矿处理技术的进展[J].2008,17(4): 57.
    [93]曹占芳,钟宏,刘广义.墨西哥某铜矿浮选—浸出—萃取—电积回收铜工艺研究[J].金属矿山,2008(5):63~65.
    [94]陈焕麟.提高难选氧化铜矿选别指标的探讨[J].有色金属(选矿部分),1980(3):16~18.
    [95]余新文,杨晓军,崔永刚.四川某地难选铜矿石选冶工艺试验研究[J].矿产综合利用,2007(4):19~21.
    [96]杜淑华,戈保梁,潘邦龙.某难选氧化铜矿分步优先浮选和中矿处理工艺研究[J].矿冶,2007,26(1):28~29.
    [97]袁盛朝,戈保梁.难选氧化铜矿浸出—置换—浮选试验研究[J].矿冶,2008(1):53~54.
    [98]肖家文.大姚铜矿从尾矿中回收有价元素的实践[J].金属矿山,2000(9):295~296.
    [99]郑耀东.中国资本市场分析[M].北京:中国财政经济出版社,1999.
    [100]高起鹏等.氧化铜矿硫化浮选几个问题[J].有色矿冶,1992(1):14~18.
    [101]张文彬.氧化铜矿浮选研究与实践[M].中南工业大学出版社,1992.
    [102]张覃,张文彬,刘邦瑞.硫酸铵对黄药在孔雀石表面吸附的促进作用[J].昆明理工大学学报,1997(4):5-8.
    [103]戈保梁,张文彬.硅孔雀石的活化浮选[J].云南冶金,1995(4):15~19.
    [104]BARRY A W. Wills'mineral processing technology[M]. UK:Elsevier,2007: 267-344.
    [105]FUERSTENAU D W, PRADIP. Zeta potentials in the flotation of oxide and silicate minerals[J]. Advances in Colloid and Interface Science,2005,114/115: 9-26.
    [106]YOUNG C A, MILLER J D. Effect of temperature on oleate adsorption at a calcite surface:an FT-NIR/IRS study and review[J]. International Journal of Mineral Processing,2000,58(2):331-350.
    [107]SOMASUNDARAN P. Flotation mechanism based on Ion-molecular complexes[J]. Journal of Central South Institute of Mining and Metallurgy, 1983,8(S2):59-68.
    [108]任飞,韩跃新,印万钟等.油酸纳浮选电气石的溶液化学分析[J].有色矿冶,2005,21(7):158~159.
    [109]WU Xi-qing, LIU Chang-miao, HUANG Zhi-hua. A new collector for quartz flotation:N-dodecyl-β-amino-polyamide[J]. Journal of Central South University:Science and Technology, 2005, 36(3):412-416.
    [110]石云良,陈淳,邱冠周.石英的油酸盐浮选化学[J].有色金属,1999,51(1):31~34.
    [111]K.A.马蒂斯等.菱镁矿和白云石的脂肪酸浮选[J].国外金属矿选矿1995(5):26~34.
    [112]Antti B. M, Forssberg E. Pulp chemistry in calcite flotation. Modelling of oleate adsorption using theoretical equilibrium calculations [J]. Miner. Eng,1989,2 (1):93-109.
    [113]Antti B.M, Forssberg E. Pulp chemistry in industrial mineral flotation. Studies of surface complex on calcite and apatite surfaces using FTIR spectroscopy [J]. Miner. Eng,1989,2(2):217-227.
    [114]Hanumantha Rao K, Forssberg K. S. E. Mechanism of fatty acid adsorption in salt-type mineral flotation [J]. Miner. Eng,1991,4(7-11):879-890.
    [115]Chudacek M. W, Fichera M. A. The relationship between the test-tube floatability test and batch cell flotation [J]. Miner. Eng,1991,4(1):25-35.
    [116]Wang Q, Heiskanen K. Selective hydrophobic flocculation in apatite-hematite system by sodium oleate [J].Miner. Eng,1992,5(3-5):493-501.
    [117]Yehia A, Miller J. D, Ateya B. G. Analysis of the adsorption behaviour of oleate on some synthetic apatites [J]. Miner. Eng,1993,6(1):79-86.
    [118]Pavez O, Peres A. E. C. Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamatcs [J]. Miner. Eng,1993,6(1):69-78.
    [119]Rodrigues A. J, Brandao P. R. G. The influence of crystal chemistry propertieson the floatability of apatites with sodium oleate [J]. Minerals Engineering,1993, 6(6):643-653.
    [120]Valdiviezo E, Oliveira J. F. Synergism in aqueous solutions of surfactantmixtures and its effect on the hydrophobicity of mineral surfaces [J]. Miner. Eng,1993,6(6):655-661.
    [121]Pavez 0, Brandao P. R. G, Peres A. E. C. Adsorption of oleate and octyl-hydroxamate on to rare-earths minerals [J]. Miner. Eng,1996,9(3):357-366.
    [122]de Castro F.H.B, de Hoces M. C, Borrego A. G. The effect of pH modifier on the flotation of celestite with sodium oleate and sodium metasilicate[J]. Miner. Eng,1998,11(10):989-992.
    [123]Liu Q, Peng Y. The development of a composite collector for the flotation of rutile [J]. Miner. Eng,1999,12(12):1419-1430.
    [124]Sis H, Chander S. Adsorption and contact angle of single and binary mixtures of surfactants on apatite [J]. Miner. Eng,2003,16(9):839-848.
    [125]Sis H, Chander S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants [J]. Miner. Eng,2003,16(7):587-595.
    [126]Orhan E. C, Bayraktar I. Amine-oleate interactions in feldspar flotation [J]. Miner. Eng, 2005. In Press, Corrected Proof.
    [127]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996.
    [128]方正泰,马长兴.《正交与均匀设计》[M].科学技术出版社,2001:35-40.
    [129]王明华等.普通化学教程[M].高等教育出版社,2002.
    [130]J.A.Dean等.兰氏化学手册[M].科学出版社,1991.
    [131]全宏东.矿物化学处理[M].冶金工业出版社,1987:122~180.
    [132]华一新.冶金过程动力学[M].冶金工业出版社,2004:188~194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700