用户名: 密码: 验证码:
从韶冶ISP炉渣中富集和提取镓的新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
韶冶每年产鼓风(烟化)炉水淬渣150kt,其中含Ga30—40t,铁40kt左右,且历年堆放水淬渣近2×10~3kt万吨,含Ga达400—500t,以现价计,高达十数亿元人民币。韶冶开发部及其它科研院所的科研工作者对韶冶镓回收做了大量的工作。主要以以下四种方法为主:高温氯化挥发法、全湿法流程回收镓、碱熔-浸出法、还原熔炼-电解法等。高温氯化挥发法回收鼓风炉渣中的镓,可使镓富集到烟尘中,镓的收尘率达98%,同时,其工艺简单,能耗低,但由于其采用的氯化剂和氯化过程的产物都具有强腐蚀性质,所以对设备的防腐性能要求高。同时,生产过程中的氯化剂有20%是HCl、Cl_2进入废气中,若不处理就排入大气中会造成污染。全流程湿法回收镓,虽然流程比较简单,镓浸出率也较高,达70%~80%,但全流程镓的总回收率低,仅为45%~51%,同时酸耗大,且浸出液中铁的含量高,镓铁的分离处理成本高,难度大且产出的大量的硫酸亚铁难于处理,故硫酸浸出法无论在经济上还是技术上均不甚合理碱熔—浸出法回收镓,虽然镓的浸出率可90%,但由于渣中含镓太低而使浸出液含镓太低,只有60mg/L,给下一步萃取带来较大的困难。还原熔炼—电解法回收镓,采用粒铁法—还原炼铁的方法,使镓富集在铁中,过程中产生的非磁性物可作水泥熟原料直接出售,铁镓合金则熔铸成阳极板进行电解,电解产铁含Fe大于99.5%。可作为磁性材料的原料直接出售。而阳极泥则进行碱浸电积,电
150,000 tonnes of granulated slag is produced annually from the slag fuming furnace at Shaoguan Smelter , which contains about 30—40 tonnes of Ga and 40,000 tonnes of Fe . The total amount of granulated slag stored until now is approximately up to 2,000,000 tonnes , which contains about 400—500 tonnes of Ga . The value of Ga content is about more than a billion RMB Yuan based on present price . The researchers of the Scientific and Technical Development Department of Shaoguan Smelter and other scientific research institutes have done a lot of work on the recovery of Ga from the granulated slag produced at Shaoguan Smelter. The four main processes for recovering Ga are as following :Chlorination volatilization process at high temperature;Only hydro metallurgical process for recovering Ga ;Melting with alkali- leaching process;Reduction smelting - electrolysis process .If chlorination volatilization process at high temperature is used to recover Ga from granulated slag , Ga may be collected in the dust , gallium of 98 % will be collected in the dust. The process is easier , and its energy consumption is lower . But the chlorinates and the products produced during chlorinating are corrosive , requiring equipments with better
    corrosion-resistance . 20% of chlorinate reports to the waste gas in the form of HC1 and CI2 during operation , causing pollution if no extra treatment is added.If only hydro-metallurgic process is used to recover Ga , the process flow-sheet is easier , the leaching rate is up to 70—80% . But the total recovery of gallium for the whole flow-sheet is low , only 45—51% . The acid consumption is high , and the iron content of leachate is high . The separation of gallium and iron is difficult , requiring high treatment cost .It is difficult to treat a large quantity of ferro-sulfate produced from the separation of gallium and iron . Therefore the leaching process with sulfuric acid is not reasonable technically and economically .If melting with alkali - leaching process is used to recover Ga , the leaching rate of gallium is up to 90% . But the gallium content of the sludge is too low , leading to too low gallium content of the leachate— only 60 mg/1 . The extraction flow-sheet becomes more difficult .If reduction smelting - electrolysis process is used to recover Ga , gallium will be collected in iron produced by using the grain iron method ( a reduction smelting method for iron ) The non-magnetic material produced during operation may be sold directly as cement-making material , the gallium
    and iron alloy will be melted and cast into anode plate for electrolyzing . The purity of pure iron produced during electrolyzing is more than 99.5% . Pure iron may be sold directly as magnetic material. The anode slime will be leached with alkali and be treated by electrowinning . Electrolytic gallium will be washed by acid and metallic gallium of 99.9% will be obtained .The technical and economic indices of reduction smelting -electrolysis process are better .The project has been proved to be feasible by industrial experiment . The small-scale experiment and pilot experiment of the reduction smelting-electrolysis process and the results obtained are mainly introduced in the paper .
引文
[1] Braos-Garcia P., Maireles-Torres P., Rodriguez-Castellon E., et al. Gas-phase hydrogeuation of acetonitrile over nickel supported on alumina-and mixed alumina/gallium oxide-pillared tin phosphate catalysts[J]. Journal of Molecular Catalysis A: Chemical Volume. 2001, 168(1-2):279-287
    [2] 赵毅.赵英.陈颖敏.从粉煤灰中分离镓的实验研究[J].华北电力技术,1998(1):35~37
    [3] 蔡序珩.杨刚宾.李尉卿.粉煤灰中镓的赋存状况研究[J].粉煤灰综合利用,2003,6:15~16
    [4] 黄文辉.赵继尧.中国煤中的锗和镓[J].中国煤田地质,2002,14(S1):64~69
    [5] 韦世强.刘文汉.胡天斗等.熔态金属镓无序体系的结构研究[J].科学通报,1997,42(23):2500~2502
    [6] Carvalho Marcelo S., Medeiros, Joao Alfredo, et al. Direct determination of gallium on polyurethane foam by x-ray fluorescence. Talanta Volume, 1995, 42(1):45-47
    [7] 王艳.周春山.铅锌冶炼渣浸出液提取镓的研究[J].稀有金属与硬质合金,200l,04:7~9
    [8] Kinoshita, T., Akita, S., Nii, S. et al. Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues. Separation and Purification Technology Volume, 2004, 37 (2): 127-133
    [9] 朴海镇.陈辰嘉.郭长志.镓铟砷/铝铟砷QW LD中俄歇复合及其对T_O的影响[J].半导体光电,1998,19(6):356~361
    [10] 王金超.镓生产工艺及用途[J].四川有色金属,2003,4:14~19
    [11] Schlecht S., Schafer R., Woenckhaus J., et al. Electric dipole polarizabilities of isolated gallium arsenide clusters. Chemical Physics Letters Volume, 1995, 246(3):315-320
    [12] 胡刚.康慧.赵鹏飞等.锡、镓对铝钛异种合金真空钎焊的影响[J].航空精密制造技术,2001,37(4):15~19
    [13] 张国寅.蒋嘉.POULAINMarcel.用于氟化镓铟高数值孔径光纤的氟磷酸盐和氟锆酸盐包层玻璃[J].材料研究学报,1998,12(5):465~470
    [14] 卢秉嵩.崔执凤.镓原子激光共振电离研究[J].原子与分子物理学报,1998,15(4):553~558
    [15] 赵北君.朱世富.李正辉等.硒镓银晶体的结构与光学特性研究[J].功能材料,2001,32(1):100~104
    [16] 杨志民.李晓萍.邬晓梅.镓生产现状及其化合物的应用前景[J].世界有色金属,2001(8):9~11
    [17] Walton, Richard I., O'Hare, Dermot. An X-ray absorption fine structure study of amorphous precursors of a gallium silicate zeolite. Journal of Physics and Chemistry of Solids Volume, 2001, 62(8): 1469-1479
    [18] 元之.镓市场回升有待时日[J].有色金属工业,2003(3):70
    [19] 张国伟.韩韬.吉小军等.钽酸镓镧与石英声表面波传播特性对比研究[J].声学学报(中文版),2004,29(1):12~17
    [20] 范丹.今后八年金属镓需求将成倍增长[J].稀有金属快报.2000,9:6~7
    [21] 刘盛祥.银山铜铅锌多金属矿田镉、镓、铟、铋工艺矿物学研究[J].湖南有色金属,2000,16(6):13~14
    [22] 黄松.周卫宁.张锦章.江西银山铅锌矿床中镉镓铟的赋存状态及综合评价[J].桂林工学院学报,1998,18(1):22~27
    [23] 黄柱成.杨永斌.蔡江松等.浸锌渣综合利用新工艺及镓的富集行为[J].中南工业大学学报(自然科学版),2002,33(2):133~136
    [24] 张大维.杨绍文.杨卉等.刚玉渣回收镓、铁和铝的试验研究[J].矿产综合利用,1997(3):14~17
    [25] 何良惠.HwaYoungLee.从锌渣中回收镓的方法[J].四川有色金属,1994,(4):14~18
    [26] 石太宏.汤兵.张秀娟.液膜法从湿法炼锌系统中提取镓的研究[J].稀有金属,1998,22(1):1~4
    [27] 许菱.许孙曲.从砷化镓废料中回收镓[J].稀有金属快报.1999,9:1~12
    [28] 石太宏.王松平.张秀娟.乳状液膜法自湿法炼锌系统中分离回收镓的研究进展[J].稀有金属,1998,22(5):385~388
    [29] 周勤俭.铟镓锗镉在铜锌铅混合精矿氧压酸浸工艺中的分布及回收方法探讨[J].稀有金属与硬质合金,1998,2:15~19
    [30] 阳海燕.胡岳华.稀散金属镓锗在选冶回收过程中的富集行为分析[J].湖南有色金属,2003,19(6):16~18
    [31] 王纪.用离子交换法从拜耳工艺溶液中回收金属镓[J].湿法冶金,2000(1):26
    [32] 谢访友.郭朋成.王纪等.用离子交换法从拜耳工艺溶液中提取镓的工业实践[J].湿法冶金,2001,20(2):66~71
    [33] Kaforey M.L., Bly J.M., Matthiesen D.H. Void formation in gallium arsenide crystals grown in microgravity. Journal of Crystal Growth Volume, 1997, 174(1~4): 112-119
    [34] 汤艳杰.刘建.刘建朝等.从铝土矿中提取镓的工艺研究[J].湿法冶金,2000,19(3):45~48
    [35] 许可.镓提取技术的进展[J].现代化工,2002,22(S1):66~69
    [36] 苏毅.李国斌.罗康碧等.高纯金属镓制备技术研究进展[J].稀有金属,2003,27(4):495~499
    [37] 吕理霞.氧化铝厂镓的回收[J].轻金属,2002,5:15~17
    [38] 王学诗.吕鲜翠.联合法提镓工艺研究[J].轻金属,2002,9:29~33
    [39] 邓卫.刘侦德.阳海燕等.凡口铅锌矿锗和镓资源与回收[J].有色金属,2002,54(1):54~57
    [40] 黄文孝.罗泽安.杨飞.从水淬渣中回收镓的试验研究[J].稀有金属与硬质合金,2003,31(1):8~11
    [41] 黄柱成.郭宇峰.杨永斌等.浸锌渣回转窑烟化法及镓的富集 回收[J].中国资源综合利用,2002,6:13~15
    [42] 陈延生.矿石中镓铟镉铋的综合利用前景初探[J].湖南有色金属,1999,15(4):8~10
    [43] 奚长生.龙来寿.罗翠环等.栲胶法提取镓的研究[J].湖南有色金属,
    [44] 张秀英.尹国寅.汤俊明.新型萃取剂CA-12萃取镓(Ⅲ)的研究[J].稀有金属,2002,26(1):65~68
    [45] 张秀英.尹国寅.汤俊明.新型萃取剂CA-12萃取镓(Ⅲ)的研究[J].稀有金属,2002,26(1):65~68
    [46] 刘桂华.李小斌.张传福等。镓的溶剂萃取[J].稀有金属与硬质合金,1998,01:48~51
    [47] Panagakos Fotinos S., Kumar Elise, Venescar Christine, et al. The effect of gallium nitrate on synoviocyte MMP activity. Biochimie Volume, 2000, 82 (2) :147-151
    [48] 刘军深.何争光.蔡伟民.萃淋树脂分步洗脱法分离回收铟和镓[J].有色金属.2003,55(S1):85~88
    [49] 肖华利.从萃铟余液中回收镓的工艺研究[J].稀有金属与硬质合金,2003,31(2):5~7
    [50] 宋金如.龚治湘.丁红芳.P_(350)萃淋树脂分离微量镓的性能研究[J].华东地质学院学报,1997,20(2):135~140
    [51] Shiller, Alan M. Dissolved gallium in the Atlantic Ocean. Marine Chemistry. 1998, 61(1-2): 87~99
    [52] Moskalyk, R.R. Gallium: the backbone of the electronics industry. Minerals Engineering Volume. 2003, 16 (10): 921-929
    [53] 黄振钟.衷明华.偏最小二乘原子吸收光谱法同时测定铁和镓[J].仪器仪表与分析监测,1999,4:62~63
    [54] 段群章.矿冶物料中镓的光度分析[J].有色矿冶,1999,5:58~63
    [55] 王岭.制备高纯镓工艺的改进[J].四川有色金属,2000(3):8~11
    [56] Klauser Ruth, Asoka Kumar P.S., Chuang T.J. A synchrotron radiation photoemission study of gallium and nitrogen adsorption on 6H-SiC, LiGaO_2 and GaN substrates: initial stages of GaNformation. Surface Science Volume, I998, 411(3): 329-343 2004, 20(1): 11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700