用户名: 密码: 验证码:
新疆磁海铁矿床地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在北京矿产地质研究院承担的国家重点基础研究发展规划项目(973项目)“中亚造山带大陆动力学过程与成矿作用”项目之“后碰撞过程壳幔物质交换与成矿”课题(2007CB411304)资助下完成。
     本文主要以新疆磁海铁矿床为研究对象,在综合分析前人研究成果基础上,通过野外实地考察和室内显微镜观察,系统开展岩石、矿石、矿物的地球化学研究,探讨磁海铁矿的矿床地球化学特征,并结合矿床对比研究,进一步揭示磁海矿床的成因特征和形成机制。主要取得以下认识:
     (1)磁海矿区与成矿有关的镁铁-超镁铁岩,由橄榄辉长岩、橄长岩、辉长岩、辉绿岩、玄武岩等组成,为富铁质钙碱玄武岩系列,形成于后碰撞拉张阶段。辉绿岩具多期侵入特点,属原始岩浆经分离结晶后残余熔体结晶的产物,其全铁含量高于橄长岩和橄榄辉长岩,说明铁在岩浆分离结晶晚期有富集作用。
     (2)磁铁矿矿石中P2O5、SiO2和指示深部物质来源的Co、Ni、Cu含量较高;磁铁矿稀土元素特征与辉绿岩相近,表明磁海铁矿的形成与矿区辉绿岩关系密切,磁铁矿主要来源于辉绿岩体;矿石中V、Ti、Cr含量甚微,与岩浆分异磁铁矿有区别。
     (3)矿石的稀土元素特征与矿区蚀变岩石相似;黄铁矿以相对亏损S、富集Fe和含Co为特点,Co/Ni比值大于1,表明矿床的形成与岩浆期后热液活动有关。
     (4)在磁海矿区首次发现黑柱石,其成分特征显示与富铁质岩浆活动有关,为基性岩浆与地层接触交代的产物,为次火山热液成矿提供了佐证;黑柱石形成于成矿作用晚期,对早期形成的磁铁矿起贫化作用。
     (5)磁铁矿矿石中普遍含钴较高,个别富硫化物矿石中钴可达0.16%,具有综合利用价值;Co主要产于黄铁矿、磁黄铁矿等硫化物中,并有钴的独立矿物辉砷钴矿和斜方砷钴矿,一方面反映成矿物质来源较深,另一方面说明铁和钴在岩浆-热液演化过程中属于不同阶段的产物,钴的形成趋于在热液晚期阶段富集。
     (6)磁海矿床与长江中下游典型夕卡岩型铁矿和玢岩型铁矿在成矿机制等方面,存在一定的相似性,但与磁海矿床有关的成矿岩体更偏基性,代表该类型铁矿床中偏基性的端元。
This thesis is supported by the Major State Basic Research Program of People's Republic of China:Mantle-Crust Interaction and Mineralization in Post-collisional Stage (No.2007CB411304) of'Geodynamic Process and Metallogeny of the Central Asian Orogenic Belt'project, undertaked by Beijing Institute of Geology for Mineral Resources.
     Based on field investigation and microscope observation, this work focuses on the geochemistry of the Cihai iron deposit in Xinjiang, including geochemistry of mafic-ultramafic rocks, magnetite and sulfide ores, magnetite and sulfide minerals; ilvaite and cobalt. By comparative study with related iron deposits, the author discussed the metallogensis type and ore-forming mechanism of Cihai deposit. The main achieved advancements from this thesis are as follows:
     (1) Mafic-ultramafic rocks are composed by olivine gabbro, troctolite, gabbro, gabbro-diabase, and diabase in the Cihai ore district, which belongs to iron-rich and calc-alkaline rock series formed in post-collisional extension phase. The diabase in Cihai area characterized by multi-phase intrusion is the crystallizing product of residual melt derived from magmatic crystallization differentiation. The FeO content in diabase is higher than in troctolite and olivine gabbro, which may suggest that there exist Fe enrichment in the late stage of magmatic differentiation crystallization.
     (2) Magnetite ore contains high P2O5 and SiO2 component, and the deep-source elements like Co, Ni and Cu are high in ore as well. The magnetite composition shows that it has typomorphic charactersitics of magmatic magnetite. Accordant REE geochemistry between the magnetite and diabase may imply that the ore mineral is mainly derived from diabase. Noticeably, the lower V, Ti and Cr contents in magnetite ore suggest that the Cihai deposit is distinctly different from the magmatic differentiation deposit.
     (3) The REE pattern of magnetite ore is in accord with that of alterated rocks of the ore deposit area. Pyrite composition of Cihai is characterized by lower S content, higher Fe and Co content with higher Co/Ni ratio (>1). These characteristics indicate that the mineralization of Cihai deposit may attribute to postmagmatic hydrothermalism.
     (4) Ilvaite was first found in the Cihai deposit. The composition characteristics indicate that the ilvaite has relationship with iron magmatic activity. It is considered that the formation of ilvaite is related to mafic subvolcanic rocks and to the hydrothermal metallogeny, which provided a circumstantial evidence for hydrothermal metasomatism. The ilvaite formed in later mineralization stage and played a dilution effect to the early magnetite.
     (5) Cobalt partially enriches in Cihai iron ore and can be comprehensive utilized, in particularly in sulfide-rich ore that cobalt reachs to 0.16%. The cobalt mostly disperses in pyrite and pyrrhotite, but Co minerals like cobaltite and safflorite can be observed in ore. Geochemistry and occurrence of cobalt reveal that the ore-forming metals may come from the deep, and that the iron and cobalt formed in different mineralization stage of the magmatic-hydrothermal evolution process, or cobalt tends to enrich in the late hydrothermal stage.
     (6) Cihai deposit is similar to typical skarn type deposit and porphyrite iron deposit in metallogenic mechanism, but with distinct mafic-ultramafic hosting igneous rocks. It is suggestion that the Cihai iron deposit is the basic end member of these deposit types.
引文
[1]沈承珩,王守伦,陈森煌,等.世界黑色金属矿产资源[M].北京:地质出版社,1995.
    [2]张明书,张建中,邬介人,等.磁海式铁矿地质特征初步研究[J].地质与勘探,1980,8(6):25-32.
    [3]薛春纪,姬金生,杨前进.新疆磁海铁(钴)矿床次火山热液成矿学[J].矿床地质,2000,19(2):156-164.
    [4]赵玉社.新疆磁海铁矿床地质特征及矿床成因[J].西北地质,2000,33(1):31-38.
    [5]左国朝,李绍雄,于守南,等.新疆磁海铁矿床产出特征及成矿构造演化[J].西北地质,2004,37(1):53-60.
    [6]王玉往,沙建明,程春.新疆磁海铁(钴)矿床磁铁矿成分及其成因意义[J].矿床地质,2006,25(增刊):321-324.
    [7]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
    [8]左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社,1990.
    [9]龚全胜,刘明强,李海林,等.甘肃北山造山带类型及基本特征[J].西北地质,2002,35(3):28-34.
    [10]汤中立.华北古陆西南缘(龙首山-祁连山)成矿系统及成矿构造动力学[M].北京:地质出版社,2002.
    [11]张扬,何国琦.甘肃北山早古生代蛇绿岩带的特征及演化[J].上海地质,1988,27(3):10-23.
    [12]王虹,刘拓,王庆明,等.新疆天山-北山成矿带区域地球化学特征[J].地球科学与环境学报,2007,29(2):141-144.
    [13]王福同,董连慧,胡建卫,等.新疆天山-北山成矿规律和找矿方向综合研究报告[R].乌鲁木齐:新疆地质调查院,2004.
    [14]杨合群,李英,杨建国,等.北山造山带的基本成矿特征[J].西北地质,2006,39(2):78-95.
    [15]中国科学院地球化学研究所.铁的地球化学[M].北京:科学出版社,1981:97-123.
    [16]Irvine T N, Baragar W R. A guide to the chemical classification of the common volcanic rocks [J]. Can J Earth Sci,1971,8(5):523-548.
    [17]Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. Am J Sci, 1974,274(5):321-355.
    [18]Boynton W V. Cosmochemistry of the rare earth elements:Meteorite Studies [C]// Henderson P. Rare Earth Element Geochemistry (2nd ed). Amsterdam:Elsevier,1984: 63-114.
    [19]Thompson R N. Magmatism in the British Tertiary Volcanic Province [J]. Scott J Geol,1982, 18(1):49-107.
    [20]夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77-89.
    [21]Saunders A D, Storey M, Kent R W, Norry M J. Consequences of plume-lithosphere interactions [M]// Storey B C, Alabaster T, Pankhurst R J. Magmatism and the Causes of Continental Break-Up. London:Geological Society,1992:41-60.
    [22]王京彬,徐新.新疆北部后碰撞构造演化与成矿[J].地质学报,2006,80(1):23-31.
    [23]王玉往,王京彬,王莉娟,等.岩浆铜镍矿与钒钛磁铁矿的过渡类型——新疆哈密香山西矿床[J].地质学报,2006,80(1):61-73.
    [24]秦克章,方同辉,王书来,等.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质,2002,20(4):302-308.
    [25]潘金花,郭召杰,刘畅,等.新甘交界红柳河地区二叠纪玄武岩年代学、地球化学及构造意义[J].岩石学报,2008,24(4):794-802.
    [26]Pearce T H, Gorman B E, Birkett T CPearce T H. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks [J]. Earth Planet. Sci. Lett.,1977,36(1,):121-132.
    [27]Pearce J A. Trace element characteristics of lavas from destructive plate boundaries [C]//Thorpe R S. Andesites:Orogenic andesites and related rocks. New York:Wiley,1982: 525-548.
    [28]Pearce J A. and Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks [J]. Contrib Mineral Petrol,1979,69(1):33-47.
    [29]Pearce J A. and Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis [J]. Earth Planet Sci Lett,1973,19(2):290-300.
    [30]王玉往.新疆北部与后碰撞镁铁-超镁铁质杂岩有关的成矿作用[D].中国地质大学(北京),博士学位论文,2009:90-97.
    [31]余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征[J].矿床地质,2002,21(1):65-73.
    [32]赵玉琛.宁芜玢岩铁矿中伴生磷灰石矿的地质特征和应用前景[J].地质与勘探,1993,(12):6-12.
    [33]盛继福.新疆磁海铁矿蚀变特征[J].中国地质科学院院报矿床地质研究所所刊,1985,6(3):89-109.
    [34]黄耀平,马义泰.广西龙山金矿国黄铁矿特征及成因[J].南方国土资源,2008,(9):46-48.
    [35]徐国风,邵洁涟.黄铁矿的标型特征及其实际意义[J].地质评论,1980,26(6):541-546.
    [36]胡文瑄,徐克勤,胡受奚,等.宁芜和庐枞地区陆相火山喷气沉积-热液叠加改造型铁、硫 矿床[M].北京:地质出版社,1991:60-63.
    [37]Maynard J B.Geochemistry of sedimentary ore deposits [J].Springer Verlag,1983:305.
    [38]Loftus-Hill G. and Solomon M. Cobalt, niciel and selenium in sulphides as indicators of ore genesis [J]. Mineralium Deposita.,1967,2(2):228-242.
    [39]王亚芬.海相火山岩型铁铜矿床黄铁矿中Co/Ni比值特征及其他地质意义[J].地质与勘探,1981,(8):33-35.
    [40]I.H.埃贝尔.块状Cu-Zn硫化物矿床下伏蚀变岩筒中稀土元素的活动性[J].国外矿床地质,1987,(2).
    [41]吴长年,任启江,阮惠础,等.安徽庐枞盆地何家小岭黄铁矿床特征和成因研究[J].大地构造与成矿学,1993,17(3):229-237.
    [42]王濮,潘兆橹,翁玲宝,等.系统矿物学[M].北京:地质出版社,1987:238.
    [43]郑巧荣.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1983,1:55-62.
    [44]张立飞,姜文波,魏春景,等.新疆阿克苏前寒武纪蓝片岩地体中迪尔闪石的发现及其地质意义[J].中国科学,1998,28(6):539-544.
    [45]赵一鸣,谭惠静,许振南.闽西南地区马坑式钙夕卡岩型铁矿床专辑1[M].中国地质科学院矿床地质研究所所刊,1983:72-75.
    [46]Ivan K B and Rossitsa D V. Manganilvaite, CaFe2+Fe3+(Mn,Fe2+)(Si2O7)O(OH), a new mineral of the ilvaite group from Pb-Zn skarn deposits in the Rhodope Mountains, Bulgaria [J]. The Canadian Mineralogist,2005,43:1027-1042.
    [47]Bonazzi P and Bindi L. Structural properties and heat induced oxidation dehydrogenation of manganoan ilvaite from Perda Niedda mine, Sardinia, Italy [J]. Am. Mineral.2002,87: 845-852.
    [48]Vassileva R D, Bonev I K and Zotov N. High-Mn ilvaites from the skarn Pb-Zn deposits in the Central Rhodopes [C]. In Mineral Deposits at the Beginning of the 21st Century (A.Piestrzynski et al. eds.). Swets & Zeitlinger, Lisse, The Netherlands,2001:925-928.
    [49]Franchini M B, Meinert L D and Valles J M. First occurrence of ilvaite in a gold skarn deposit [J]. Econ. Geo.,2002,97:1119-1126.
    [50]四川省地质矿产局攀西地质大队.四川红格钒钛磁铁矿床成矿条件及地质特征[M].北京:地质出版社,1987:129-130.
    [51]师占义,李金铭.西准噶尔地区超基性岩岩石矿物特征及成矿条件[J].中国地质科学院西安地质矿产研究所所刊,1987,17:102-113.
    [52]杨斌.广西佛子冲铅锌多金属矿田热水沉积-叠生改造成矿与找矿模式[D].成都:成都理工大学,2001:16.
    [53]刘志宏.黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].吉林:吉林大学, 2009:36.
    [54]王移生.铁矿床中黑柱石富集特例剖析[J].青海地质,1994,2:19-20.
    [55]陈彪,戚长谋.钻的赋存状态及其在找矿和资源评估中的意义[J].长春科技大学学报,2001,31(3):217-218.
    [56]克鲁托夫.钴矿床[M].张予廉,周镭庭译.北京:中国工业出版社,1965:12-15.
    [57]丰成友,张德全.世界钴矿资源及其研究进展述评[J].地质论评,2002,48(6):627-633.
    [58]Annels A E. The geotectonic environment of Zambian coppercobalt mineralization[R]. Sedimentary and Diagenetic Processes in Precambrian Metallogenesis IGCP 91,160 and 157. May 1982, J.Geol.Soc.London,1984,(141):279-289.
    [59]Cailteux J. Diagenetic sulphide mineralization within the stratiform copper-cobalt deposit of West Kambove (Shaba Zaire); sequence of mineralization in sediment-hosted copper deposits. In:Friedrich G H, Genkin A D, Naldrett A J, et al. Geology and metallogeny of copper deposits, Proceedings of the copper symposium.27th International Geological Congress, 1986:398-411.
    [60]杨言辰,王可勇,冯本智.大横路式钴(铜)矿床地质特征及成因探讨[J].地质与勘探.2004,40(1):7-11.
    [61]丙宗瑶,张洪涛,王龙生.古陆边缘裂陷槽中与海相火山喷发有关的铜钻金矿床模式[M].见:裴荣富主编.中国矿床模式.北京:地质出版社,1995:67-69.
    [62]傅大捷.赣西五宝山钴矿床地质特征及成因探讨[J].矿产与地质.1998,12(2):106-108.
    [63]Naldrett A J, Keats H, Sparkes K, el at. Geology of the Voiseys Bay Ni-Cu-Co deposit, Labrador [J]. Exploration and Mining Geology,1996,5(2):169-179.
    [64]李厚民,沈远超,胡正国.青海东昆仑驼路沟钴(金)矿床地质特征----一种新型的与富钠火山岩有关的钴(金)矿床[J].矿物岩石地球化学通报,2000,19(4):321-322.
    [65]杨经绥,郑新华,王希斌,等.德尔尼Cu-Co-Zn硫化物矿床的成因探讨新进展[J].地学前缘,1999,6(1):179-180.
    [66]孙海田,葛朝华.中条山式热液喷气成因铜矿床[M].北京:北京科学技术出版社,1990.
    [67]薛步高.论易门铜矿区叠加钴矿化地质特征[J].矿产与地质.1996,56(10):388-394.
    [68]伊有昌,焦革军,张芬英.青海东昆仑肯德可克铁钴多金属矿床特征[J].地质与勘探.2006,42(3):30-35.
    [69]王吉珺.长江中下游铜铁矿床中含钴的矿石建造标志[J].矿物岩石,1981,14(1):132-135.
    [70]万宏.安微马鞍山市马山硫铁矿矿床钴分布的意义[J].化工地质,1980,(02):57-64.
    [71]任富根.东疆天山地区某些铁矿床(矿化)的硫同位素组成特征及有关问题的讨论[J]. 中国地质科学院,天津地质矿产研究所所刊,1985(13):49-62.
    [72]翟裕生,石准立,林新多,等.鄂东大冶式铁矿成因的若干问题[J].地球科学,武汉地质学院学报,1982,18(3):239-250.
    [73]熊鹏飞,石准立,张尊光,等.湖北大冶铁矿床控矿地质条件的分析[J].地球科学,武汉地质学院学报,1984,4(27):81-88.
    [74]杨峰华.湖北大冶铁山矿床钠化蚀变与成矿关系的探讨[J].地质与勘探,2001,37(60):20-24.
    [75]陈毓川,盛继福,艾永德.梅山铁矿——一个矿浆热液矿床[J].中国地质科学院矿床地质研究所分刊,1981,2(1):26-48.
    [76]张哲儒,林传仙.梅山铁矿形成物理化学条件的热力学分析[J].地球化学,1984,(2):138-144.
    [77]中国科学院地球化学研究所.宁芜型铁矿床形成机理[M].北京:科学出版社,1987.
    [78]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.
    [79]杨时惠.四川盐源矿山梁子磁铁矿床磁铁矿特征及成因探讨[J].中国地质科学院成都地质矿产研究所所刊,1983,33-45.
    [80]姚祖德,燕永清.四川盐源矿山梁子-牛厂铁矿成因再认识[J].四川地质字报,1991,11(2):117-125.
    [81]张均.四川省凉山州盐源县平川铁矿典型矿床中期成果总结.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700