用户名: 密码: 验证码:
基于透明质酸粘多糖的功能性材料及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖胺聚糖(又称粘多糖)是动物体内广泛存在的一种多糖,与生物体内许多生理过程有密切联系。对该类多糖的结构、性质、功能化作用研究具有重要的科学意义和应用价值。作为糖胺聚糖家族重要的一员,透明质酸(hyaluronan,hyaluronic acid,HA)具有良好的生物相容性,独特的物化性质以及多样的生理功能。透明质酸以及相关材料已被广泛应用于医药、食品、化妆品等领域。对该多糖基本性质以及基于该多糖的功能材料的构建和应用研究,可以深化对透明质酸本身生理活性和功能化作用的认识,亦能进一步推动相关功能性材料的开发和应用的拓展。
     透明质酸凝胶化是拓展其作为功能性材料的一个重要的方面。目前对于透明质酸凝胶材料的研究,还主要围绕利用透明质酸本身或者化学改性透明质酸分子上具有的官能团进行化学交联而实现。但是化学交联或衍生化的过程中可能会产生有毒化学物质的残留而使产物具有潜在细胞毒性。这将极大削弱透明质酸天然具有的良好生物相容性。从这一角度,透明质酸物理凝胶的研究就显得尤为重要。此外,将透明质酸应用于纳米材料领域,借助其天然生物大分子特有的一些性质,通过调控、诱导、修饰或者组装制备多样化的纳米结构,并探究所构建功能性纳米材料的应用也是目前备受关注的研究内容。
     本文基于透明质酸成功制备了一系列(包括物理水凝胶、复合凝胶、复合膜、低维纳米材料和杂化纳米材料等)具有不同结构特性的功能性材料。同时,结合生物活性粘多糖透明质酸和其他组分的各自优势,研究了这些功能新材料在不同领域的潜在应用。主要内容如下:
     首先采用冷冻解冻法制备了透明质酸物理凝胶,采用流变学、光学显微镜、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)等一系列表征方法对影响凝胶形成和最终性质的影响因素进行了比较研究,在既有基础上进一步阐明了透明质酸物理凝胶网络分子间作用力模式及其凝胶机理。研究表明,透明质酸冷冻解冻凝胶的形成为典型的物理凝胶化过程。凝胶的形成以及凝胶的性质受诸如凝冷冻解冻过程(冷冻时间,冷冻解冻循环次数等)、透明质酸分子量,以及小分子添加物等诸多因素的影响。长时间的冷冻、多次冷冻解冻循环以及提高透明质酸分子量可以促进凝胶的形成,凝胶的力学性质、产率、热稳定性和抗降解性能均得以提高。对于添加含羧基和羟基的小分子,丁二酸和戊二酸能够参与凝胶网络结构的构筑;而添加草酸、苹果酸、酒石酸以及一些多元醇则会破坏和抑制凝胶网络的形成。低pH值以及低温冷冻条件下所导致的分子链构象变化,以及-COOH参与的有效分子间氢键作用是导致凝胶三维网络结构形成的主要因素。研究还发现,所得酸性和中性凝胶网络结构中分子间氢键作用的形式不同。由酸性凝胶到中性凝胶的中和过程中,由于质子化羧基之间氢键的破坏,使得-COO-和-NHCOCH3参与的氢键在中性凝胶中成为主导的作用力。研究结果也表明所制备的凝胶网络未表现出含有结晶结构的特点,不存在如聚乙烯醇冷冻解冻凝胶中的有序微晶区,而是由多重无规氢键所形成的离散物理交联点将透明质酸分子结合起来而形成的。与透明质溶液相比,所形成的物理交联的透明质酸凝胶具有较好的力学性能、良好的热稳定性和抗酸、抗酶降解性能。
     采用冷冻解冻方法还制备了一系列透明质酸/聚乙烯醇复合凝胶材料,同时将紫外光照还原法制备的透明酸-纳米银包裹到复合凝胶中得到了纳米复合凝胶。这种纳米复合凝胶是由透明质酸和聚乙烯醇两种聚合物形成的互穿网络结构构成,而纳米银则均匀地分散于基体网络结构中。透明质酸和聚乙烯醇两种组分的配比不同,所得凝胶显示出不同的溶胀特性,且具有一定的pH响应性。采用Kirby-Bauer和LB Broth法对纳米复合凝胶抗菌性研究表明,凝胶对大肠杆菌具有良好的抗菌性。由于透明质酸良好生物相容性、水合性以及对伤口愈合的促进作用,加之纳米银具有的抗菌性,该物理凝胶在临床创伤包缚材料领域有潜在的应用价值。
     将透明质酸-纳米银(HAS)与血红蛋白(Hb)采用自组装的方法构筑了功能性超薄膜,并对其电化学性质进行了研究。采用透明质酸做为还原剂和稳定,利用紫外光辐射的方法制备了尺度为20~50纳米,表面带负电荷的透明质酸-纳米银颗粒,并通过利用透明质酸纳米银和具有电催化活性的血红蛋白在一定溶液中荷电的不同,采用层层自组装法在玻碳电极表面构筑了透明质酸-纳米银/血红蛋白多层自组装膜([HAS/Hb]n)。对该修饰电极的电化学表征显示:透明质酸-纳米银极大地促进了电极与血红蛋白(Hb)活性中心的电子传递,负载在膜内的Hb在-0.32V有一对对应于亚铁血红素Fe(III)/Fe(II)的准可逆氧化还原峰;负载在自组装膜内的血红蛋白在电极表面具有表面控制的电子传递行为,其非均相电子转移常数为1.0s-1。该自组装膜修饰的电极对氧气和过氧化氢具有较高的电催化活性,由此构筑的传感器对过氧化氢的检测显示出较高的灵敏度和良好的稳定性。
     合成了带有芘官能团的透明质酸衍生物(芘-透明质酸,Py-HA),采用包括傅立叶红外光谱、核磁共振谱、紫外-可见光谱、及荧光发射光谱以及表面张力仪等对所合成的两亲性分子及其溶液性质进行了表征。利用这种带有大量π-π共轭结构的衍生物促进诸如石墨、氮化硼以及二硫化钼等片状材料的剥离和稳定,获得了各种形式的碳纳米材料如碳纳米管,石墨烯以及碳纳米洋葱。所制备的表面修饰透明质酸的纳米材料,具有完整的表面结构,在水溶液中显示出良好的稳定性。
     最后利用两亲性分子芘-透明质酸非共价修饰的氧化还原石墨烯做为多功能性表面平台,采用两种绿色的还原方法(紫外光照和常压下通氢气的方法)构筑了具有不同形貌的不同金属(金,银,钯和铂)的纳米结构。石墨烯表面的芘-透明质酸不仅可以分散和稳定纳米片状碳材料,而且还能够有效地促进金属离子的还原和控制纳米结构的生长。基于不同金属的特性,探究了所制备的杂化纳米材料在传感器方面的应用。金/石墨烯杂化纳米材料修饰的玻碳电极对过氧化氢具有较高的电化学催化活性,以此构筑的传感器具有较宽的线性范围、较低的检测限以及较快的检测响应。钯/石墨烯杂化纳米材料在不同体积分数的氢气存在下显示出不同导电性,以此构筑了氢气传感器。所构建的传感器由于杂化纳米材料所具有的不同结构而具有不同强度的响应性。
Mucopolysaccharide or Glycosaminoglycan is widely distributed inanimals’body and presents multiple physiological functionalities. Hyaluronan (HA) isone of the most representative mucopolysaccharides and supposed to be the onlypolysaccharide that exists in almost all animal species, from bacteria to human beings.The biological functions of HA include maintenance of the elastoviscosity of liquidconnective tissues such as joint synovial and eye vitreous fluid, control of tissuehydration and water transport, supramolecular assembly of proteoglycans in theextracellular matrix, and numerous receptor-me-diated roles in cell detachment,mitosis, migration, tumor development and metastasis, and inflammation. Moreover,as one natural biopolymer, it is inherently biocompatible, biodegradable, bioactive,non-immunogenic and nonthrombogenic. For these merits of HA, this bioactivepolysaccharide has been an attractive building block for the fabrication of functionalmaterials. Nowadays, HA and the materials based on it are widely used in the fields ofpharmaceutical, food and cosmetics, tissue engineering and nanomaterials, etc.
     Among the stuies of HA hydrogels most work focused on the chemicallycrosslinked hyalruoan or HA derivatives. In the process of synthesizing HA hydrogelsby chemical reaction, the use of crosslinking agent or organic solvent, and theexistence of reacting by-products in final hydrogels are inevitable. These will impairthe biological compatibility in both short and long-term applications of HA, especiallyin the biomedical aspects. Therefore, the study on the physically crosslinked HAhydrogels will be very important and promising. Moreover, HA can be used asbioactive component for construction of nanomaterials, which has gained researchers’enormous concern and interest. The main work in this dissertation thus revolves around the construction of hyluroan-based functional materials with various nano-andmicro-structures and different potential applications. HA in these processes acts asimportant building block for creating materials and presents multiple functionalitieswith regulating the nanostructure and promoting the biocompatibility etc. The maincontents and conclusions are summarized as follows:
     Firstly, physically crosslinked hydrogels from HA were prepared by freeze-thawtechnique. The effects of processing steps (freezing time and number of freeze-thawcycles), molecular weight of HA, and some small molecular additives such asdicarboxylic acids and polyols as probes on the formation of the HA cryotropichydrogels were investigated by dynamic rheometry, optical microscopy, X-raydiffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and gelpermeation chromatography (GPC). The experimental results showed that the longperiod of the freezing time and repeated freeze-thaw cycles benefited the alignment ofthe polymer chains in the unfrozen polymer phase and thereby promoted theformation of intermolecular aggregations and densely fibrillar network structures. HAwith a higher molecular weight was favorable to the formation of HA cryogel with astronger mechanical performance. The influences of various small molecular additiveson the gelation of HA had relevance to the intermolecular associations in the gelnetwork. Experimental findings showed that both succinic acid and glutaric acid werecapable of participating in the formation of HA cryogel whereas the addition of oxalicacid, malic acid and tartaric acid as well as some polyols (glycol, butanediol andglycerol) inhabited the gelation of HA. Protonation of the polyanion of HA at properlow pH served as a prerequisite of the association of multiple interchain hydrogenbonding among groups of-COOH and-NHCOCH3and the formation of networkafterwards. HA cryogels showed fibrillar network in which HA chains were associatedinto bundles. It was reavled that the contribution of the crystallization of HA was notobvious and the gel formation was essentially related to the HA conformation changesand the molecular aggregations driven by the hydrogen bonds among–COOH and-NHCOCH3groups. While in HA acidified cryogels hydrogen bonding between-COOH played dominating roles the in stabilizing the network, hydrogen bonding involving–COO-and NHCOCH3became the main driving force stabilizing thenetwork in neutral cryogels. All the experimental results in the present stronglysuggested that in either acidified or neutral cryogels hydroxyl groups of HA made nonoticeable contributions to such hydrogen bonding in the network. In comparison withnative HA in aqueous solution at the same concentration, the neutral HA cryogelsobtained by in situ neutralizing the acidified HA cryogel, showed higherviscoelasticity, better resistances to the acidic decomposing and enzymaticdegradation.
     Secondly, novel nanocomposite hydrogels composed of HA, poly(vinyl alcohol)(PVA), and silver nanoparticles were prepared by several cycles of freezing andthawing. The nanocomposite was then characterised using FTIR, differential scanningcalorimetry (DSC), XRD, and scanning electron microscopy (SEM). The complexhydrogels consisted of semi-interpenetrating network structures, with PVAmicrocrystallines as junction zones. By increasing the HA content, the crystallinityand melting temperature of the complex hydrogels decreased, whereas the glasstransition temperatures of these materials increased because of the steric hindrance ofHA and the occurrence of intermolecular interactions through hydrogen bondingbetween HA and PVA in the complex hydrogels. Swelling studies showed that thoseof the complex hydrogels can be significantly improved in comparison with theswelling properties of the cryogels from PVA alone and presented a pH-sensitivemanner. In addition, silver nanoparticles were synthesised through UV-initiatedphotoreduction with HA functioning as a reducing agent and stabiliser. The silvernanoparticles were then incorporated into the HA/PVA complex hydrogel matrix. Thesize and morphology of the as-prepared Ag nanoparticles were investigated throughUltraviolet-visible light spectroscopy, transmission electron microscopy, XRD, andthermogravimetric analysis (TGA). The experimental results indicated that silvernanoparticles20nm to50nm in size were uniformly dispersed in the hydrogel matrix.The antibacterial effects of the HA/PVA/Ag nanocomposite hydrogel againstEscherichia coli were evaluated by Kirby-Bauer and LB Broth method. The resultsshowed that this nanocomposite hydrogel possessed high antibacterial property and has a potential application as a wound dressing material.
     In the third section, HA-silver nanoparticles (HSNPs) were prepared byUV-initiated photoreduction and protein hemoglobin (Hb) was then alternatelyassembled with the prepared negatively charged HSNPs into layer-by-layer (LBL)films on solid surface. The electrochemical behavior and electrocatalytic activitiestoward oxygen and hydrogen peroxide of the resulting films were studied. It wasfound that the HSNPs greatly enhanced the electron transfer reactivity of Hb as abridge between protein and electrode and that the assembled films showed a pair ofnearly reversible redox peaks with a formal potential of0.32V (vs. Ag/AgCl) for theheme Fe(III)/Fe(II) redox couple. The immobilized Hb in the films maintained itsbiological activity, showing a surface controlled process with a heterogeneouselectron transfer rate constant (ks) of1.0s-1and displaying the same features of aperoxidase in the electrocatalytic reduction of oxygen and hydrogen peroxide. Thiswork provides a novel model to fabricate LBL films with protein, polysaccharide andnanoparticles and may establish a foundation for fabricating new type of biosensorsbased on the direct electron transfer of redox proteins immobilized in nanocompositemultilayer films with underlying electrodes.
     Fourthly, pyrene-conjugated HA (Py HA) was synthesized and characterized byATR-FTIR, NMR, UV-vis, flurorecent spectroscopy and surface tension. Py HAfacilitated the exfoliation of low-dimensional nanomaterials including graphene,hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2), carbon nanotubes(CNTs) and carbon nano-onions (CNOs) in water (and PBS solutions), with theassistance of sonication. The materials were stabilised by the Py HA as uniformlydispersed suspensions in water, with excellent crystallinity. Moreover, thefunctionalized hybrid nanomaterials had biocompatibility factored in, and offeredscope for applications in biomedical fields, and beyond.
     And finally, we have developed a versatile platform involving reduced grapheneoxide and amphiphilic Py HA for fabricating composite nanomaterials involvingnoble metals (Au, Ag, Pd and Pt) using facile and green methods, with UV irradiationor introduction of hydrogen gas as the benign reducing process/agent. Py HA not only acted as a stabilizing agent for RGO, but also facilitated and controlled thedecoration of the metal on the Py-HA-RGO substrate. The hybrid nanocomposites canserve as sensing material for different analytes, depending on the specific propertiesof metals. The Au-graphene hybrid material was employed as the electrochemicalenhanced material for H2O2sensing, with wide linear ranges and low detection limits,and presented different sensing behaviours depending on the different nanostructures.The Pd-graphene hybrid material gave a change in conductivity in the presence ofhydrogen gas when assembled in an interdigitated electrode, which was the basis of ahydrogen gas sensing.
引文
1. Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S, In-situ immobilization of quantumdots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, anddrug delivery [J]. Biomaterials,2010,31(11):3023-3031.
    2. Francis Suh J K, Matthew H W T, Application of chitosan-based polysaccharide biomaterials incartilage tissue engineering: a review [J]. Biomaterials,2000,21(24):2589-2598.
    3. Samad Y A, Asghar A, Lalia B S, Hashaikeh R, Networked cellulose entrapped and reinforcedPEO-based solid polymer electrolyte for moderate temperature applications [J]. Journal of AppliedPolymer Science,2013,129(5):2998-3006.
    4. Xiong R, Lu C H, Zhang W, Zhou Z H, Zhang X X, Facile synthesis of tunable silvernanostructures for antibacterial application using cellulose nanocrystals [J]. Carbohydrate Polymers,2013,95(1):214-219.
    5. Gennadios A, Hanna M A, Kurth L B, Application of edible coatings on meats, poultry andseafoods: A Review [J]. LWT-Food Science and Technology,1997,30(4):337-350.
    6. Noble P W, Hyaluronan and its catabolic products in tissue injury and repair [J]. Matrix Biology,2002,21(1):25-29.
    7. Meyer K, Palmer J W. The polysaccharide of the vitreous humor [J]. Journal of BiologicalChemistry,1934,107:629-634.
    8. Balazs E A, Laurent T C, Jeanloz R W, Nomenclature of hyaluronic acid [J], Biochem J.,1986,235(3):903-928.
    9. Lapc ík L, De Smedt S, Demeester J, Chabrec ek P, Hyaluronan: preparation, structure,properties, and applications [J]. Chemical Reviews,1998,98(8):2663-2684.
    10. Kuo J W, Practical aspects of hyaluronan based medical products.2006, CRC Press, Taylor&Francis Group: New York.
    11. Gatej I, Popa M, Rinaudo M, Role of the pH on hyaluronan behavior in aqueous solution [J].Biomacromolecules,2004,6(1):61-67.
    12. Cowman M K, Matsuoka S, Experimental approaches to hyaluronan structure [J]. CarbohydrateResearch,2005,340(5):791-809.
    13. Villetti M, Borsali R, Diat O, Soldi V, Fukada K, SAXS from Polyelectrolyte solutions undershear: Xanthan and Na Hyaluronate examples [J]. Macromolecules,2000,33(25):9418-9422.
    14. Ghosh S, Li, X, Reed C E, Reed W F, Apparent persistence lengths and diffusion behavior of highmolecular weight hyaluronate [J]. Biopolymers,1990,30(11-12):1101-1112.
    15. J H Fessler and L I Fessler, Electron micrscopic visualization of the polysaccharide hyaluronicacid [J], Proc Natl Acad Sci U S A.1966,56(1):141–147.
    16. J. Necas1, L. Bartosikova, P. Brauner, J. Kolar, Veterinarni Medicina,53,2008(8):397–411.
    17. Balazs E, The role of hyaluronan in the structure and function of the biomatrix of connectivetissues [J]. Structural Chemistry,2009,20(2):233-243.
    18. Toole B P, Hyaluronan in morphogenesis [J]. Seminars in Cell&Developmental Biology,2001,12(2):79-87.
    19. Karjalainen J M, Tammi R H, Tammi M I, Eskelinen M J, gren U M, Parkkinen J J, Alhava EM, Kosma V M, Reduced level of CD44and hyaluronan associated with unfavorable prognosis inclinical stage I cutaneous melanoma [J]. The American Journal of Pathology,2000,157(3):957-965.
    20. Toole B P, Hyaluronan: from extracellular glue to pericellular cue [J]. Nat Rev Cancer,2004,4(7):528-539.
    21. Itano N, Simple Primary structure, complex turnover regulation and multiple roles of Hyaluronan[J]. Journal of Biochemistry,2008,144(2):131-137.
    22. Sheehan J K, Atkins E D T, Nieduszynski I A, X-ray diffraction studies on the connective tissuepolysaccharides: Two-dimensiodnal packing schemes for threefold hyaluronate chains [J]. Journal ofMolecular Biology,1975,91(2):153-163.
    23. Guss J M, Hukins D W L, Smith P J C, Winter W T, Arnott S, Moorhouse R, Rees D A,Hyaluronic acid: molecular conformations and interactions in two sodium salts [J]. Journal ofMolecular Biology,1975,95(3):359-384.
    24. Winter W T, Smith P J C, Arnott S, Hyaluronic acid: Structure of a fully extended3-fold helicalsodium salt and comparison with the less extended4-fold helical forms [J]. Journal of MolecularBiology,1975,99(2):219-235.
    25. Atkins E, D, T, Sheehan J K, Hyaluronates: relation between molecular conformations [J].Science,1973,179(4073):562-564.
    26. Darke A, Finer E G, Moorhouse R, Rees D A, Studies of hyaluronate solutions by nuclearmagnetic relaxation measurements. Detection of covalently-defmed, stiff segments within the flexiblechains [J]. Journal of Molecular Biology,1975,99(3):477-486.
    27. Martens A A, Besseling N A M, Sudholter E J R, de Smet L C P M, Structure of hyaluronanduring acid-catalyzed hydrolysis, a kinetic study of both chain scission and disaggregation [J]. SoftMatter,2012,8(4):1017-1024.
    28. Dea I C M, Moorhouse R, Rees D A, Arnott S, Guss J M, Balazs E A, Hyaluronic acid: a novel,double helical molecule [J]. Science,1973,179(4073):560-562.
    29. Staskus P W, Johnson W C, Conformational transition of hyaluronic acid in aqueous-organicsolvent monitored by vacuum ultraviolet circular dichroism [J]. Biochemistry,1988,27(5):1522-1527.
    30. Staskus P W, Johnson W C, Double-stranded structure for hyaluronic acid in ethanol-aqueoussolution as revealed by circular dichroism of oligomers [J]. Biochemistry,1988,27(5):1528-1534.
    31. Scott J E, Tigwell M J, Periodate oxidation and the shapes of glycosaminoglycuronans in solution[J]. Biochem. J.,1978,173(1),103-114.
    32. Heatley F, Scott J E, A water molecule participates in the secondary structure of hyaluronan [J].Biochem. J.,1988,254(2):489-493.
    33. Atkins E D T, Meader D, Scott J E, Model for hyaluronic acid incorporating four intramolecularhydrogen bonds [J]. International Journal of Biological Macromolecules,1980,2(5):318-319.
    34. Scott J E, Heatley F, Hyaluronan forms specific stable tertiary structures in aqueous solution: A13C NMR study [J]. Proceedings of the National Academy of Sciences,1999,96(9):4850-4855.
    35. Scott J E, Cummings C, Greiling H, Stuhlsatz H W, Gregory J D, Damle S P, Examination ofcorneal proteoglycans and glycosaminoglycans by rotary shadowing and electron microscopy [J].International Journal of Biological Macromolecules,1990,12(3):180-184.
    36. Almond A, Sheehan J K, Brass A, Molecular dynamics simulations of the two disaccharides ofhyaluronan in aqueous solution [J]. Glycobiology,1997,7(5):597-604.
    37. Scott J E, Secondary Structures in Hyaluronan Solutions: Chemical and Biological Implications[J]. In Ciba Foundation Symposium143-The Biology of Hyaluronan, John Wiley&Sons, Ltd.,2007:6-20.
    38. Scott J E, Cummings C, Brass A, Chen Y, Secondary and tertiary structures of hyaluronan inaqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation.Hyaluronan is a very efficient network-forming polymer [J]. Biochem. J.,1991,274(3):699-705.
    39. Blundell C D, Deangelis P L, Almond A, Hyaluronan: the absence of amide–carboxylatehydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondaryand tertiary structure models [J]. Biochem J,2006,396(3):487-498.
    40. Adams M, Lussier A, Peyron J, A Risk-Benefit assessment of injections of Hyaluronan and itsderivatives in the treatment of osteoarthritis of the knee [J]. Drug Safety,2000,23(2):115-130.
    41. Arrich J, Piribauer F, Mad P, Schmid D, Klaushofer K, Müllner M, Intra-articular hyaluronic acidfor the treatment of osteoarthritis of the knee: systematic review and meta-analysis [J]. CanadianMedical Association Journal,2005,172(8):1039-1043.
    42. Balazs E A, Viscoelastic properties of hyaluronic acid and biological lubrication [J]. University ofMichigan Medical Center journal,1968:255-259.
    43. King R G, A rheological measurement of three synovial fluids [J]. Rheologica Acta,1966,5(1):41-44.
    44. Palfrey A J, Davies D V, Immediate viscosity of synovial fluid [J]. Journal of Applied Physiology,1968,25(6):672-678.
    45. Al-Assaf S, Meadows J, Phillips G O, Williams P A, The application of shear and extensionalviscosity measurements to assess the potential of hylan in viscosupplementation [J]. Biorheology,1996,33(4–5):319-332.
    46. Ambrosio L, Borzacchiello A, Netti P A, Nicolais L, Rheological study on hyaluronic acid and itsderivative solutions[J]. Journal of Macromolecular Science, Part A,1999,36(7-8):991-1000.
    47. Kobayashi Y, Okamoto A, Nishinari K. Viscoelasticity of hyaluronic acid withdifferent molecular weights[J]. Biorheology,1994,31(3):235-244.
    48. Rwei S P, Chen S W, Mao C F, Fang H W, Viscoelasticity and wearability of hyaluronate solutions[J]. Biochemical Engineering Journal,2008,40(2):211-217.
    49. Gibbs D A, Merrill E W, Smith K A, Balazs E A, Rheology of hyaluronic acid [J]. Biopolymers,1968,6(6):777-791.
    50. Welsh E J, Rees D A, Morris E R, Madden J K, Competitive inhibition evidence for specificintermolecular interactions in hyaluronate solutions [J]. Journal of Molecular Biology,1980,138(2):375-382.
    51. Fujii K, Kawata M, Kobayashi Y, Okamoto A, Nishinari, K., Effects of the addition of hyaluronatesegments with different chain lengths on the viscoelasticity of hyaluronic acid solutions [J].Biopolymers,1996,38(5):583-591.
    52. Berriaud N, Milas M, Rinaudo M, Rheological study on mixtures of different molecular weighthyaluronates [J]. International Journal of Biological Macromolecules,1994,16(3):137-142.
    53. Fujiwara J, Takahashi M, Hatakeyama T, Hatakeyama H, Gelation of hyaluronic acid throughannealing [J]. Polymer International,2000,49(12):1604-1608.
    54. Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R, Structural behavior of highly concentratedhyaluronan [J]. Biomacromolecules,2009,10(6):1516-1522.
    55. Lebreton PF, Soft tissue filler composition useful as dermal filler comprises hyaluronic acidcomponent crosslinked with crosslinking agent e.g.1,4-butanediol diglycidyl ether; and anestheticagent combined with crosslinked hyaluronic acid component[P]. US2010028437-A1,2010.
    56. Sakurai K, Ueno Y, Okuyama T. New crosslinked hyaluronic acid prods.for medical and cosmeticuse, prepd. by reaction with polyfunctional epoxy cpd [P]. EP161887-A2
    57. Ramires P A, Milella E, Biocompatibility of poly(vinyl alcohol)-hyaluronic acid and poly(vinylalcohol)-gellan membranes crosslinked by glutaraldehyde vapors [J]. Journal of Materials Science:Materials in Medicine,2002,13(1):119-123.
    58. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti P A, Ambrosio L, NicolaisL, Cellulose derivative hyaluronic acid-based microporous hydrogels cross-linked through divinylsulfone (DVS) to modulate equilibrium sorption capacity and network stability [J]. Biomacromolecules,2003,5(1):92-96.
    59. Ramamurthi A, Vesely I, Ultraviolet light-induced modification of crosslinked hyaluronan gels [J].Journal of Biomedical Materials Research Part A,2003,66A (2):317-329.
    60. Tomihata K, Ikada Y, Crosslinking of hyaluronic acid with water-soluble carbodiimide [J]. Journalof Biomedical Materials Research,1997,37(2):243-251.
    61. Young J J, Cheng K M, Tsou T L, Liu H W, Wang H J, Preparation of cross-linked hyaluronic acidfilm using2-chloro-1-methylpyridinium iodide or water-soluble1-ethyl-(3,3-dimethylaminopropyl)carbodiimide [J]. Journal of Biomaterials Science, Polymer Edition,2004,15(6):767-780.
    62. Lu P L, Lai J Y, Ma D, H K, Hsiue G H, Carbodiimide cross-linked hyaluronic acid hydrogels ascell sheet delivery vehicles: characterization and interaction with corneal endothelial cells [J]. Journalof Biomaterials Science, Polymer Edition,2008,19(1):1-18.
    63. Lai J Y, Ma D H K, Cheng H Y, Sun C C, Huang S J, Li Y T, Hsiue G H, Ocular biocompatibilityof carbodiimide cross-linked Hyaluronic acid hydrogels for cell sheet delivery carriers [J]. Journal ofBiomaterials Science, Polymer Edition,2010,21(3):359-376.
    64. Prestwich G D, Marecak D M, Marecek J F, Vercruysse K P, Ziebell M R, Controlled chemicalmodification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives[J]. Journal of Controlled Release,1998,53(1–3):93-103.
    65. Motokawa K, Hahn S K, Nakamura T, Miyamoto H, Shimoboji T, Selectively crosslinkedhyaluronic acid hydrogels for sustained release formulation of erythropoietin [J]. Journal of BiomedicalMaterials Research Part A,2006,78A(3):459-465.
    66. Luo Y, Kirker K R, Prestwich G D, Cross-linked hyaluronic acid hydrogel films: new biomaterialsfor drug delivery [J]. Journal of Controlled Release,2000,69(1):169-184.
    67. Shu X Z, Liu Y, Luo Y, Roberts M C, Prestwich G D, Disulfide cross-linked hyaluronan hydrogels[J]. Biomacromolecules,2002,3(6):1304-1311.
    68. Vanderhooft J L, Mann B K, Prestwich G D, Synthesis and characterization of novelthiol-Reactive poly(ethylene glycol) cross-Linkers for extracellular-matrix-mimetic Biomaterials [J].Biomacromolecules,2007,8(9):2883-2889.
    69. Crescenzi V, Francescangeli A, Renier D, Bellini D, New cross-linked and sulfated derivatives ofpartially deacetylated hyaluronan: Synthesis and preliminary characterization [J]. Biopolymers,2002,64(2):86-94.
    70. Renier D, Bellato P, Bellini D, Pavesio A, Pressato D, Borrione A, Pharmacokinetic behaviour ofACP gel, an autocrosslinked hyaluronan derivative, after intraperitoneal administration [J].Biomaterials,2005,26(26):5368-5374.
    71. Reichenbach S, Blank S, Rutjes A W S, Shang A, King E A, Dieppe P A, Jüni P, Trelle S, Hylanversus hyaluronic acid for osteoarthritis of the knee: A systematic review and meta-analysis [J].Arthritis Care&Research,2007,57(8):1410-1418.
    72. Kroesen S, Schmid W, Theiler R, Induction of an acute attack of calcium pyrophosphate dihydrateArthritis by Intra-articular Injection of Hylan G-F20(Synvisc)[J]. Clinical Rheumatology,2000,19(2):147-149.
    73. Himeda Y, Kaneko H, Umeda T, et al. Effectiveness of a novelhyaluronic-acid gel film in the rat model [J]. Journal of Gynecologic Surgery,2005,21(2):55-63.
    74. Lozinsky V I, Galaev I Y, Plieva F M, Savina I N, Jungvid H, Mattiasson B, Polymeric cryogelsas promising materials of biotechnological interest [J]. Trends in Biotechnology,2003,21(10):445-451.
    75. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K, Morphology and structure of highlyelastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting [J]. Colloid andPolymer Science,1986,264(7):595-601.
    76. Lozinsky V I, Domotenko L V, Zubov A L, Simenel I A, Study of cryostructuration of polymersystems. XII. Poly(vinyl alcohol) cryogels: Influence of low-molecular electrolytes [J]. Journal ofApplied Polymer Science,1996,61(11):1991-1998.
    77. Giannouli P, Morris E R, Cryogelation of xanthan [J]. Food Hydrocolloids,2003,17(4),495-501.
    78. Lozinsky V I, Damshkaln L G, Brown R, Norton I T, Study of cryostructuring of polymer systems.XIX. On the nature of intermolecular links in the cryogels of locust bean gum [J]. PolymerInternational,2000,49(11):1434-1443.
    79. Lozinsky V I, Damshkaln L G, Bloch K O, Vardi P, Grinberg N V, Burova T V, Grinberg V Y,Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous(spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producingcell aggregates [J]. Journal of Applied Polymer Science,2008,108(5):3046-3062.
    80. Lozinsky V I, Damshkaln L G, Brown R, Norton I T, Study of cryostructuration of polymersystems. XVI. Freeze–thaw-induced effects in the low concentration systems amylopectin–water [J].Journal of Applied Polymer Science,2000,75(14):1740-1748.
    81. Lozinsky V I, Damshkaln L G, Brown R, Norton I T, Study of cryostructuration of polymersystems. XVIII. Freeze–thaw influence on water-solubilized artificial mixtures of amylopectin andamylose [J]. Journal of Applied Polymer Science,2000,78(2):371-381.
    82. Lazaridou A, Biliaderis C G, Cryogelation of cereal β-glucans: structure and molecular size effects[J]. Food Hydrocolloids,2004,18(6):933-947.
    83. Vaikousi H, Biliaderis C G, Processing and formulation effects on rheological behavior of barleyβ-glucan aqueous dispersions [J]. Food Chemistry,2005,91(3):505-516.
    84. Lazaridou A, Vaikousi H, Biliaderis C G, Effects of polyols on cryostructurization of barleyβ-glucans [J]. Food Hydrocolloids,2008,22(2):263-277.
    85. Wu J, Zhang H B, Physically cross-linked hydrogel from carboxymethylated curdlan prepared byfreeze-thaw techniques, in "Gums and Stabilisers for the Food Industry15", P.A. Williams, G.O.Phillips, Editors.2009, Royal Society of Chemistry: Cambridge, UK. p.420-426.
    86. Lozinsky V I, Damshkaln L G, Brown R, Norton I T, Study of cryostructuration of polymersystems. XXI. Cryotropic gel formation of the water–maltodextrin systems [J]. Journal of AppliedPolymer Science,2002,83(8):1658-1667.
    87. Watase M, Nishinari K, Effect of the degree of saponification on the rheological and thermalproperties of poly(vinyl alcohol) gels [J]. Die Makromolekulare Chemie,1989,190(1):155-163.
    88. Zhang H, Zhang F, Wu J, Physically crosslinked hydrogels from polysaccharides prepared byfreeze–thaw technique [J]. Reactive and Functional Polymers,2013,73(7):923-928.
    89. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K, Morphology and structure of highlyelastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting [J]. Colloid&PolymerScience,1986,264(7):595-601.
    90. Lozinsky V I, Cryogels on the basis of natural and synthetic polymers: preparation, properties andapplications, Russian Chemical Reviews,2002,71(6):489-511.
    91. Lozinsky V I, Cryotropic gelation of poly(vinyl alcohol) solutions, Russian Chemical Reviews,1998,67(7):573-586.
    92. Okamoto A, Miyoshi T, A biocompatible gel of hyaluronan., in Hyaluronan2000, J. F.Kennedy, G. O. Phillips, P. A. Williams, et al., Editors.2002, Woodhead Publishing:Cambridge. p.285-292.
    93. Luan T, Wu L, Zhang H, Wang Y, A study on the nature of intermolecular links in the cryotropicweak gels of hyaluronan [J]. Carbohydrate Polymers,2012,87(3):2076-2085.
    94. Miyoshi T, Okamoto A, Biocompatible gel of hyaluronan-medical applications.,in Hyaluronan2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors.2002, Woodhead Publishing: Cambridge. p.21-26.
    95. Lozinsky V I, Plieva F M, Poly(vinyl alcohol) cryogels employed as matrices for cellimmobilization.3. Overview of recent research and developments [J]. Enzyme and MicrobialTechnology,1998,23(3–4):227-242.
    96. Collins M, Birkinshaw C, Physical properties of crosslinked hyaluronic acid hydrogels [J].Journal of Materials Science: Materials in Medicine,2008,19(11):3335-3343.
    97. Tan H, Chu C. R, Payne K A, Marra K G, Injectable in situ forming biodegradablechitosan–hyaluronic acid based hydrogels for cartilage tissue engineering [J]. Biomaterials,2009,30(13):2499-2506.
    98. Jin R, Moreira Teixeira L S, Krouwels A, Dijkstra P J, van Blitterswijk C A, Karperien M,Feijen J, Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels viaMichael addition: An injectable biomaterial for cartilage repair [J]. Acta Biomaterialia,2010,6(6):1968-1977.
    99. Seidlits S K, Drinnan C T, Petersen R R, Shear J B, Suggs L J, Schmidt C E,Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture [J].Acta Biomaterialia,2011,7(6):2401-2409.
    100. Park H, Choi B, Hu J, Lee M, Injectable chitosan hyaluronic acid hydrogels for cartilage tissueengineering [J]. Acta Biomaterialia,2013,9(1):4779-4786.
    101. Coates E E, Riggin C N, Fisher J P, Photocrosslinked alginate with hyaluronic acid hydrogels asvehicles for mesenchymal stem cell encapsulation and chondrogenesis [J]. Journal of BiomedicalMaterials Research Part A,2013,101A(7):1962-1970.
    102. Zhou Z, Yang Z, Kong L, Liu L, Liu Q, Zhao Y, Zeng W, Yi Q, Cao D, Preparation andcharacterization of hyaluronic acid hydrogel blends with gelatin [J]. Journal of MacromolecularScience, Part B,2012,51(12):2392-2400.
    103. Chen Y C, Su W Y, Yang S H, Gefen A, Lin F H, In situ forming hydrogels composed of oxidizedhigh molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration [J]. ActaBiomaterialia,2013,9(2):5181-5193.
    104. Nistor M, Chiriac A, Nita L, Vasile C, Bercea M, Semi-interpenetrated polymer networks ofhyaluronic acid modified with poly(aspartic acid)[J]. Journal of Polymer Research,2013,20(2):1-11.
    105. Rinaudo M, Non-covalent interactions in polysaccharide systems [J]. Macromolecular Bioscience,2006,6(8):590-610.
    106. Gupta D, Tator C H, Shoichet M S, Fast-gelling injectable blend of hyaluronan andmethylcellulose for intrathecal, localized delivery to the injured spinal cord [J]. Biomaterials,2006,27(11):2370-2379.
    107. Oerther S, Le Gall H, Payan E, Lapicque F, Presle N, Hubert P, Dexheimer J, Netter P, Lapicque,F, Hyaluronate-alginate gel as a novel biomaterial: Mechanical properties and formation mechanism [J].Biotechnology and Bioengineering,1999,63(2):206-215.
    108. Guan S, Zhang X L, Lin X M, Liu T Q, Ma X H, Cui Z F, Chitosan/gelatin porous scaffoldscontaining hyaluronic acid and heparan sulfate for neural tissue engineering [J]. Journal ofBiomaterials Science, Polymer Edition,2012,24(8):999-1014.
    109. Coronado R, Pekerar S, Lorenzo A, Sabino M, Characterization of thermo-sensitive hydrogelsbased on poly(N-isopropylacrylamide)/hyaluronic acid [J]. Polymer Bulletin,2011,67(1):101-124.
    110. Radhakumary C, Nandkumar A M, Nair P D, Hyaluronic acid-g-poly(HEMA) copolymer withpotential implications for lung tissue engineering [J]. Carbohydrate Polymers,2011,85(2):439-445.
    111. Mazumder M A J, Fitzpatrick S D, Muirhead B, Sheardown H, Cell-adhesive thermogellingPNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasiveretinal therapeutics [J]. Journal of Biomedical Materials Research Part A,2012,100A(7):1877-1887.
    112. Lam C W, James J T, McCluskey R, Arepalli S, Hunter R L, A review of carbon nanotube toxicityand assessment of potential Occupational and Environmental Health Risks. Critical Reviews inToxicology,2006,36(3):189-217.
    113. Hien N Q, Van Phu D, Duy N N, Quoc L A, Radiation synthesis and characterization ofhyaluronan capped gold nanoparticles [J]. Carbohydrate Polymers,2012,89(2):537-541.
    114. Kemp M M, Kumar A, Mousa S, Park T J, Ajayan P, Kubotera N, Mousa S A, Linhardt R J,Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctivebiological activities [J]. Biomacromolecules,2009,10(3):589-595.
    115. Lee H, Lee K, Kim I K, Park T G, Fluorescent gold nanoprobe sensitive to intracellular reactiveoxygen species [J]. Advanced Functional Materials,2009,19(12):1884-1890.
    116. Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich G D, Dynamically crosslinked goldnanoparticle–hyaluronan hydrogels [J]. Advanced Materials,2010,22(42):4736-4740.
    117. Cui X, Li C M, Bao H, Zheng X, Zang J, Ooi C P, Guo J, Hyaluronan-assisted photoreductionsynthesis of silver nanostructures: from nanoparticle to nanoplate [J]. The Journal of PhysicalChemistry C,2008,112(29):10730-10734.
    118. Xia N, Cai Y, Jiang T, Yao J, Green synthesis of silver nanoparticles by chemical reduction withhyaluronan [J]. Carbohydrate Polymers,2011,86(2):956-961.
    119. Cui X, Li C M, Bao H, Zheng X, Lu Z, In situ fabrication of silver nanoarrays inhyaluronan/PDDA layer-by-layer assembled structure [J]. Journal of Colloid and Interface Science,2008,327(2):459-465.
    120. Abdel-Mohsen A M, Hrdina R, Burgert L, Krylová G, Abdel-Rahman R M, Krej ová A, SteinhartM, Bene L, Green synthesis of hyaluronan fibers with silver nanoparticles [J]. Carbohydrate Polymers,2012,89(2):411-422.
    121. Lee H, Lee Y, Statz A R, Rho J, Park T G, Messersmith P B, Substrate-independent layer-by-layerAssembly by using mussel-adhesive-inspired polymers [J]. Advanced Materials,2008,20(9):1619-1623.
    122. Kamat M, El-Boubbou K, Zhu D C, Lansdell T, Lu X, Li W, Huang X, Hyaluronic Acidimmobilized magnetic nanoparticles for active targeting and imaging of macrophages [J]. BioconjugateChemistry,2010,21(11):2128-2135.
    123. Lee Y, Lee H, Kim Y B, Kim J, Hyeon T, Park H, Messersmith P B, Park T G, Bioinspired Surfaceimmobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging[J]. Advanced Materials,2008,20(21):4154-4157.
    124. Lim E K, Kim H O, Jang E, Park J, Lee K, Suh J S, Huh Y M, Haam S, Hyaluronan-modifiedmagnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging [J].Biomaterials,2011,32(31):7941-7950.
    125. Goh E J, Kim K S, Kim Y R, Jung H S, Beack S, Kong W H, Scarcelli G, Yun S H, Hahn S K,Bioimaging of hyaluronic acid derivatives using nanosized carbon dots [J]. Biomacromolecules,2012,13(8):2554-2561.
    126. Marega R, Bergamin M, Aroulmoji V, Dinon F, Prato M, Murano E, Hyaluronan–carbon nanotubederivatives: synthesis, conjugation with model drugs, and DOSY NMR characterization [J]. EuropeanJournal of Organic Chemistry,2011,2011(28):5617-5625.
    127. Moulton S E, Maugey M, Poulin P, Wallace G G, Liquid Crystal behavior of single-walled carbonnanotubes dispersed in biological hyaluronic acid solutions [J]. Journal of the American ChemicalSociety,2007,129(30):9452-9457.
    128. Bhattacharyya S, Guillot S, Dabboue H, Tranchant J F, Salvetat J P, Carbon nanotubes asstructural nanofibers for hyaluronic acid hydrogel scaffolds [J]. Biomacromolecules,2008,9(2):505-509.
    129. Thompson B C, Moulton S E, Gilmore K J, Higgins M J, Whitten P G, Wallace G G, Carbonnanotube biogels [J]. Carbon,2009,47(5):1282-1291.
    130. Pelto J, Haimi S, Puukilainen E, Whitten P G, Spinks G M, Bahrami-Samani M, Ritala M,Vuorinen T, Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbonnanotube composite [J]. Journal of Biomedical Materials Research Part A,2010,93A(3):1056-1067.
    131. Li F, Park S J, Ling D, Park W, Han J Y, Na K, Char K, Hyaluronic acid-conjugated grapheneoxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy [J]. Journal of MaterialsChemistry B,2013,1(12):1678-1686.
    132. Chen Z, Wang C, Zhou H, Li X, Biomimetic crystallization of toplike calcite single crystals withan extensive (00.1) face in the presence of sodium hyaluronate [J]. Crystal Growth&Design,2010,10(11):4722-4727.
    133. Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X, Bioresponsive hyaluronic acid-capped mesoporoussilica nanoparticles for targeted drug delivery [J]. Chemistry–A European Journal,2013,19(5):1778-1783.
    134. Balazs E A, Viscoelastic properties of hyaluronan and its therapeutic use, in Chemistry andbiology of hyaluronan, H. G Garg, Charles A. Hales, Editors.2004, Elsevier: Amsterdam. p.415.
    135. SchiavinatoA, Finesso M, CortivoR, Abatangelo G, Comparison of the effects of intra-articularinjections of Hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbitknee joints [J]. Clinical and Experimental Rheumatology: Pisa, ITALIE,2002,20.
    136. Favia P, Palumbo F, dAgostino R, Lamponi S, Magnani A, Barbucci R, Immobilization of heparinand highly-sulphated hyaluronic acid onto plasma-treated polyethylene [J]. Plasmas and Polymers,1998,3(2):77-96.
    137. Xu F, Nacker J C, Crone W C, Masters K S, The haemocompatibility of polyurethane–hyaluronicacid copolymers [J]. Biomaterials,2008,29(2):150-160.
    138. Lim S T, Forbes B, Berry D J, Martin G P, Brown M B, In vivo evaluation of novelhyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits[J]. International Journal of Pharmaceutics,2002,231(1):73-82.
    139. Kumar A, Sahoo B, Montpetit A, Behera S, Lockey R F, Mohapatra S S, Development ofhyaluronic acid–Fe2O3hybrid magnetic nanoparticles for targeted delivery of peptides.[J]Nanomedicine: Nanotechnology, Biology and Medicine,2007,3(2):132-137.
    140. Poulsom R, CD44and hyaluronan help mesenchymal stem cells move to a neighborhood in needof regeneration [J]. Kidney Int,2007,72(4):389-390.
    141. Morimoto K, Yamaguchi H, Iwakura Y, Morisaka K, Ohashi Y, Nakai Y, Effects of ViscousHyaluronate–Sodium solutions on the nasal absorption of vasopressin and an analogue [J].Pharmaceutical Research,1991,8(4):471-474.
    142. Drobnik J, Hyaluronan in drug delivery [J]. Advanced Drug Delivery Reviews,1991,7(2):295-308.
    143. Mathews M B, Decker L, Conformation of hyaluronate in neutral and alkaline solutions [J].Biochimica et Biophysica Acta (BBA)-General Subjects,1977,498(1):259-263.
    144. Ghosh S, Kobal I, Zanette D, Reed W F, Conformational contraction and hydrolysis ofhyaluronate in sodium hydroxide solutions [J]. Macromolecules,1993,26(17):4685-4693.
    145. Bucci L R, Turpin A A. Will the real hyaluronan please stand up?[J]. Journal of Applied Nutrition,2004,54(1):11-33.
    146. Laurent T C, Laurent U B G, Fraser J R E, The structure and function of hyaluronan: An overview[J]. Immunol Cell Biol,1996,74(2): A1-A7.
    147. Lozinsky V I, Solodova E V, Zubov A L, Simenel I A, Study of cryostructuration of polymersystems. XI. The formation of PVA cryogels by freezing–thawing the polymer aqueous solutionscontaining additives of some polyols [J]. Journal of Applied Polymer Science,1995,58(1):171-177.
    148. Yamaura K, Itoh M, Tanigami T, Matsuzawa S, Properties of gels obtained by freezing/thawing ofpoly(vinyl alcohol)/water/dimethyl sulfoxide solutions [J]. Journal of Applied Polymer Science,1989,37(9):2709-2718.
    149. Chabre ek P, oltés L, Kállay Z, Novák I, Gel permeation chromatographic characterization ofsodium hyaluronate and its fractions prepared by ultrasonic degradation [J]. Chromatographia,1990,30(3):201-204.
    150. Damshkaln L G, Simenel I A, Lozinsky V I, Study of cryostructuration of polymer systems. XV.Freeze–Thaw-induced formation of cryoprecipitate matter from low-concentrated aqueous solutions ofpoly(vinyl alcohol)[J]. Journal of Applied Polymer Science,1999,74(8):1978-1986.
    151. La Gatta A, De Rosa M, Marzaioli I, Busico T, Schiraldi C, A complete hyaluronan hydrodynamiccharacterization using a size exclusion chromatography–triple detector array system during in vitroenzymatic degradation [J]. Analytical Biochemistry,2010,404(1):21-29.
    152. Tanaka R, Hatakeyama T, Hatakeyama H, Formation of locust bean gum hydrogel byfreezing–thawing [J]. Polymer International,1998,45(1):118-126.
    153. Mensitieri M, Ambrosio L, Nicolais L, Bellini D, O'Regan M, Viscoelastic properties modulationof a novel autocrosslinked hyaluronic acid polymer [J]. Journal of Materials Science: Materials inMedicine,1996,7(11):695-698.
    154. Podorozhko E A, Kurskaya E A, Kulakova V K, Lozinsky V I, Cryotropic structuring of aqueousdispersions of fibrous collagen: influence of the initial pH values [J]. Food Hydrocolloids,2000,14(2):111-120.
    155. Lazaridou A, Biliaderis C G, Izydorczyk M S, Molecular size effects on rheological properties ofoat β-glucans in solution and gels [J]. Food Hydrocolloids,2003,17(5):693-712.
    156. Kobayashi Y, Okamoto A, Nishinari K, Viscoelasticity of hyaluronic acid with different molecularweights [J]. Biorheology,1994,31(3):235-244.
    157. Krause W E, Bellomo E G, Colby R H, Rheology of sodium hyaluronate under physiologicalconditions [J]. Biomacromolecules,2001,2(1):65-69.
    158. Doyle J P, Giannouli P, Martin E J, Brooks M, Morris E R, Effect of sugars, galactose content andchainlength on freeze–thaw gelation of galactomannans [J]. Carbohydrate Polymers,2006,64(3):391-401.
    159. Gilli R, Kacuráková M, Mathlouthi M, Navarini L, Paoletti S, FTIR studies of sodiumhyaluronate and its oligomers in the amorphous solid phase and in aqueous solution [J]. CarbohydrateResearch,1994,263(2):315-326.
    160. Haxaire K, Maréchal Y, Milas M, Rinaudo M, Hydration of polysaccharide hyaluronan observedby IR spectrometry. I. Preliminary experiments and band assignments [J]. Biopolymers,2003,72(1):10-20.
    161. Scott J E, Harbinson R J, Periodate oxidation of acid polysaccharides [J]. Histochemistry and CellBiology,1969,19(2):155-161.
    162. Heatley F, Scott J E, Casu B,1H-N.M.R. spectra of glycosaminoglycan monomers and dimers insolution in methyl sulphoxide and water [J]. Carbohydrate Research,1979,72(0):13-23.
    163. Heatley F, Scott J E, Jeanloz R W, Walker-Nasir E, Secondary structure inglycosaminoglycuronans: NMR spectra in dimethyl sulphoxide of disaccharides related to hyaluronicacid and chondroitin sulphate [J]. Carbohydrate Research,1982,99(1):1-11.
    164. Lee S B, Lee Y M, Song K W, Park M H, Preparation and properties of polyelectrolyte complexsponges composed of hyaluronic acid and chitosan and their biological behaviors [J]. Journal ofApplied Polymer Science,2003,90(4):925-932.
    165. Hargittai I, Hargittai M, Molecular structure of hyaluronan: an introduction [J]. StructuralChemistry,2008,19(5):697-717.
    166. Almond A, Brass A, Sheehan J K, Oligosaccharides as model systems for understandingwater biopolymer interaction: hydrated dynamics of a hyaluronan decamer [J]. The Journal ofPhysical Chemistry B,2000,104(23):5634-5640.
    167. Almond A, Brass A, Sheehan J K, Dynamic exchange between stabilized conformations predictedfor hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMRdata [J]. Glycobiology,1998,8(10):973-980.
    168. Kumar P T S, Abhilash S, Manzoor K, Nair S V, Tamura H, Jayakumar R, Preparation andcharacterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications [J].Carbohydrate Polymers,2010,80(3):761-767.
    169. Lee Y M, Kim S S, Park M H, Song K W, Sung Y K, Kang I K, β-Chitin-based wound dressingcontaining silver sulfurdiazine [J]. Journal of Materials Science: Materials in Medicine,2000,11(12):817-823.
    170. Winter GD. Formation of the scab and the rate of epithelization of superfical wounds in the skinof the young domestic pig. Nature.1962;193:293–294.
    171. Peppas N A, Scott J E, Controlled release from poly (vinyl alcohol) gels prepared byfreezing-thawing processes [J]. Journal of Controlled Release,1992,18(2):95-100.
    172. Xiao C, Gao Y, Preparation and properties of physically crosslinked sodiumcarboxymethylcellulose/poly(vinyl alcohol) complex hydrogels [J]. Journal of Applied PolymerScience,2008,107(3):1568-1572.
    173. El Salmawi K M, Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)hydrogel produced by conventional crosslinking or by freezing and thawing [J]. Journal ofMacromolecular Science, Part A,2007,44(6):619-624.
    174. Yang X, Zhu Z, Liu Q, Chen X, Thermal and rheological properties of poly(vinyl alcohol) andwater-soluble chitosan hydrogels prepared by a combination of γ-ray irradiation and freeze thawing [J].Journal of Applied Polymer Science,2008,109(6):3825-3830.
    175. Hang A T, Tae B, Park J S, Non-woven mats of poly(vinyl alcohol)/chitosan blends containingsilver nanoparticles: Fabrication and characterization [J]. Carbohydrate Polymers,2010,82(2):472-479.
    176. Jovanovi, Stojkovska J, Obradovi B, Mi kovi-Stankovi V, Alginate hydrogel microbeadsincorporated with Ag nanoparticles obtained by electrochemical method [J]. Materials Chemistry andPhysics,2012,133(1):182-189.
    177. Juby K A, Dwivedi C, Kumar M, Kota S, Misra H S, Bajaj P N, Silver nanoparticle-loadedPVA/gum acacia hydrogel: synthesis, characterization and antibacterial study [J]. CarbohydratePolymers,2012,89(3):906-913.
    178. Laurent T C, Biochemistry of hyaluronan [J]. Acta Oto-laryngologica,1987,104(s442):7-24.
    179. Baier Leach J, Bivens K A, Patrick Jr C W, Schmidt C E, photocrosslinked hyaluronic acidhydrogels: natural, biodegradable tissue engineering scaffolds [J]. Biotechnology and Bioengineering,2003,82(5):578-589.
    180. Pienim ki J P, Rilla K, Fül p C, Sironen R K, Karvinen S, Pasonen S, Lammi M J, Tammi R,Hascall V C, Tammi M I, Epidermal growth Factor activates hyaluronan synthase2in epidermalkeratinocytes and increases pericellular and intracellular hyaluronan [J]. Journal of BiologicalChemistry2001,276,(23),20428-20435.
    181. West D, Hampson I, Arnold F, Kumar S, Angiogenesis induced by degradation products ofhyaluronic acid [J]. Science,1985,228(4705):1324-1326.
    182. Chen W Y J, Abatangelo G, Functions of hyaluronan in wound repair [J]. Wound Repair andRegeneration,1999,7(2):79-89.
    183. Kim S H, Hyun K, Moon T S, Mitsumata T, Hong J S, Ahn K H, Lee S J, Morphology–rheologyrelationship in hyaluronate/poly(vinyl alcohol)/borax polymer blends [J]. Polymer,2005,46(18):7156-7163.
    184. Ossipov D A, Piskounova S, Hilborn J n, Poly(vinyl alcohol) cross-linkers for in vivo injectablehydrogels [J]. Macromolecules,2008,41(11):3971-3982.
    185. Lee Y J, Lyoo W S, Preparation and characterization of high-molecular-weight atactic poly(vinylalcohol)/sodium alginate/silver nanocomposite by electrospinning [J]. Journal of Polymer Science PartB: Polymer Physics,2009,47(19):1916-1926.
    186. Nguyen T, Tae B, Park J, Synthesis and characterization of nanofiber webs of chitosan/poly(vinylalcohol) blends incorporated with silver nanoparticles [J]. Journal of Materials Science,2011,46(20):6528-6537.
    187. Cui X, Li C M, Bao H, Zheng X, Zang J, Ooi C P, Guo J, Hyaluronan-assisted photoreductionsynthesis of silver nanostructures: from nanoparticle to nanoplate [J]. Journal of Physical Chemistry C,2008,112(29):10730-10734.
    188. Zhang H, Yoshimura M, Nishinari K, Williams M A K, Foster T J, Norton I T, Gelation behaviourof konjac glucomannan with different molecular weights [J]. Biopolymers,2001,59(1):38-50.
    189. Jin Y, Zhang H, Yin Y, Nishinari K, Comparison of curdlan and its carboxymethylated derivativeby means of Rheology, DSC, and AFM [J]. Carbohydrate Research,2006,341(1):90-99.
    190. Hemantha Kumar G N, Lakshmana Rao J, Gopal N O, Narasimhulu K V, Chakradhar R P S,Varada Rajulu A, Spectroscopic investigations of Mn2+ions doped polyvinylalcohol films [J]. Polymer,2004,45(16):5407-5415.
    191. Bajpai A, Saini R, Designing of macroporous biocompatible cryogels of PVA–haemoglobin andtheir water sorption study [J]. Journal of Materials Science: Materials in Medicine,2009,20(10):2063-2074.
    192. Abd El-Mohdy H, Ghanem S, Biodegradability, antimicrobial activity and properties of PVA/PVPhydrogels prepared by γ-irradiation [J]. Journal of Polymer Research,2009,16(1):1-10.
    193. Hassan C M, Peppas N A, Structure and morphology of freeze/thawed PVA hydrogels [J].Macromolecules,2000,33(7):2472-2479.
    194. Jouon N, Rinaudo M, Milas M, Desbrières J, Hydration of hyaluronic acid as a function of thecounterion type and relative humidity [J]. Carbohydrate Polymers,1995,26(1):69-73.
    195. Ma J, Xu Y, Fan B, Liang B, Preparation and characterization of sodiumcarboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels [J].European Polymer Journal,2007,43(6):2221-2228.
    196. Ho C H, Tobis J, Sprich C, Thomann R, Tiller J C, Nanoseparated polymeric networks withmultiple antimicrobial properties [J]. Advanced Materials,2004,16(12):957-961.
    197. Bullen R A, Arnot T C, Lakeman J B, Walsh F C, Biofuel cells and their development [J].Biosensors and Bioelectronics,2006,21(11):2015-2045.
    198. Yang W, Li Y, Bai Y, Sun C, Hydrogen peroxide biosensor based on myoglobin/colloidal goldnanoparticles immobilized on glassy carbon electrode by a Nafion film [J]. Sensors and Actuators B:Chemical,2006,115(1):42-48.
    199. Gao R, Shangguan X, Qiao G, Zheng J, Direct electrochemistry of hemoglobin and itselectrocatalysis based on hyaluronic acid and room temperature ionic liquid [J]. Electroanalysis,2008,20(23):2537-2542.
    200. Pinto E M, Barsan M M, Brett C M A, Mechanism of formation and construction ofself-assembled myoglobin/hyaluronic acid multilayer films: an electrochemical QCM, impedance, andAFM study [J]. The Journal of Physical Chemistry B,2010,114(46):15354-15361.
    201. Mai Z, Zhao X, Dai Z, Zou X, Direct electrochemistry of hemoglobin adsorbed on self-assembledmonolayers with different head groups or chain length [J]. Talanta,2010,81(1-2):167-175.
    202. Yu J J, Zhao F Q, Zeng B Z, Characterization and electrochemical study of hemoglobin–carbonnanoparticles–polyvinyl alcohol nanoporous hybrid film [J]. Journal of Solid State Electrochemistry,2008,12(9):1167-1172.
    203. Heller A, Electrical wiring of redox enzymes [J]. Accounts of Chemical Research,1990,23(5):128-134.
    204. Liu H, Hu N, Interaction between myoglobin and hyaluronic acid in their layer-by-layerassembly: quartz crystal microbalance and cyclic voltammetry studies. Journal of Physical ChemistryB,2006,110(29):14494-14502.
    205. Charradi K, Forano C, Prevot V, Ben Haj Amara A, Mousty C, Direct electron transfer andenhanced electrocatalytic activity of hemoglobin at iron-Rich clay modified electrodes [J]. Langmuir,2009,25(17):10376-10383.
    206. Lu X, Hu J, Yao X, Wang Z, Li J, Composite system based on chitosan and room-temperatureionic liquid: direct electrochemistry and electrocatalysis of hemoglobin [J]. Biomacromolecules,2006,7(3):975-980.
    207. Wen Y, Wu H, Chen S, Lu Y, Shen H, Jia N, Direct electrochemistry and electrocatalysis ofhemoglobin immobilized in poly(ethylene glycol) grafted multi-walled carbon nanotubes [J].Electrochimica Acta,2009,54(27):7078-7084.
    208. Yu C, Zhou X, Gu H, Immobilization, direct electrochemistry and electrocatalysis of hemoglobinon colloidal silver nanoparticles-chitosan film [J]. Electrochimica Acta,2010,55(28):8738-8743.
    209. Zhao S, Zhang K, Sun Y, Sun C, Hemoglobin/colloidal silver nanoparticles immobilized in titaniasol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis [J].Bioelectrochemistry,2006,69(1):10-15.
    210. Day A J, Sheehan J K, Hyaluronan: polysaccharide chaos to protein organisation [J]. CurrentOpinion in Structural Biology,2001,11(5):617-622.
    211. Burke S E, Barrett C J, Swelling Behavior of hyaluronic acid/polyallylamine hydrochloridemultilayer films [J]. Biomacromolecules,2005,6(3):1419-1428.
    212. Picart C, Lavalle P, Hubert P, Cuisinier F J G, Decher G, Schaaf P, Voegel J C, BuildupMechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface [J]. Langmuir,2001,17(23):7414-7424.
    213. Matthew J B, Hanania G I H, Gurd F R N, Coordination complexes and catalytic properties ofproteins and related substances.104. Electrostatic effects in hemoglobin: hydrogen ion equilibriums inhuman deoxy-and oxyhemoglobin A [J]. Biochemistry,1979,18(10):1919-1928.
    214. Yang L, Lee C S, Hofstadler S A, Pasa-Tolic L, Smith R D, Capillary isoelectricfocusing electrospray ionization fourier transform ion cyclotron resonance mass spectrometry forprotein characterization [J]. Analytical Chemistry,1998,70(15):3235-3241.
    215. Liu H H, Zou G L, Electrochemical investigation of immobilized hemoglobin: redox chemistryand enzymatic catalysis [J]. Journal of Biochemical and Biophysical Methods,2006,68(2):87-99.
    216. He P, Hu N, Interactions between heme proteins and dextran sulfate in layer-by-layer assemblyfilms [J]. Journal of Physical Chemistry B,2004,108(35):13144-13152.
    217. Miao X, Liu Y, Gao W, Hu N, Layer-by-layer assembly of collagen and electroactive myoglobin[J]. Bioelectrochemistry,2010,79(2):187-192.
    218. Wang Y H, Gu H Y, Hemoglobin co-immobilized with silver–silver oxide nanoparticles on a baresilver electrode for hydrogen peroxide electroanalysis [J]. Microchimica Acta,2009,164(1-2):41-47.
    219. Murray RW, Chemically modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry,1986,vol13. Marcel Dekker, New York, pp89–421.
    220. Wang S F, Chen T, Zhang Z L, Pang D W, Wong K Y, Effects of hydrophilic room-temperatureionic liquid1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry andbioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. ElectrochemistryCommunications,2007,9(7):1709-1714.
    221. Zhao G, Xu J J, Chen H Y, Fabrication, characterization of Fe3O4multilayer film and itsapplication in promoting direct electron transfer of hemoglobin [J]. Electrochemistry Communications,2006,8(1):148-154.
    222. Wang S F, Chen T, Zhang Z L, Shen X C, Lu Z X, Pang D W, Wong K Y, Direct Electrochemistryand electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionicliquids [J]. Langmuir,2005,21(20):9260-9266.
    223. Laviron E, The use of linear potential sweep voltammetry and of a.c. voltammetry for the study ofthe surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,100(1-2):263-270.
    224. Laviron E, General expression of the linear potential sweep voltammogram in the case ofdiffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and InterfacialElectrochemistry,1979,101(1):19-28.
    225. Chen L, Lu G, Novel amperometric biosensor based on composite film assembled bypolyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin [J]. Sensors and Actuators B:Chemical,2007,121(2):423-429.
    226. Yamazaki I, Araiso T, Hayashi Y, Yamada H, Makino R, Analysis of acid-base properties ofperoxidase and myoglobin [J]. Adv Biophys,1978,11:249-81.
    227. Xu J, Shang F, Luong J H T, Razeeb K M, Glennon J D, Direct electrochemistry of horseradishperoxidase immobilized on a monolayer modified nanowire array electrode [J]. Biosensors andBioelectronics,2010,25(6):1313-1318.
    228. Jamal M, Xu J, Razeeb K M, Disposable biosensor based on immobilisation of glutamate oxidaseon Pt nanoparticles modified Au nanowire array electrode [J]. Biosensors and Bioelectronics,2010,26(4):1420-1424.
    229. Lu Q, Hu S, Studies on direct electron transfer and biocatalytic properties of hemoglobin inpolytetrafluoroethylene film [J]. Chemical Physics Letters,2006,424(1–3):167-171.
    230. Geim A K, Novoselov K S, The rise of graphene [J]. Nat Mater,2007,6(3):183-191.
    231. Dai H, Carbon nanotubes: synthesis, integration, and properties [J]. Accounts of ChemicalResearch,2002,35(12):1035-1044.
    232. Cornejo A, Zhang W, Gao L, Varsani R R, Saunders M, Iyer K S, Raston C L, Chua H T,Generating hydrogen gas from methane with carbon captured as pure spheroidal nanomaterials [J].Chemistry–A European Journal,2011,17(33):9188-9192.
    233. Zhang Y, Nayak T R, Hong H, Cai W, Graphene: a versatile nanoplatform for biomedicalapplications [J]. Nanoscale,2012,4(13):3833-3842.
    234. Wenrong Y, Pall T, Gooding J J, Simon P R, Filip B, Carbon nanotubes for biological andbiomedical applications [J]. Nanotechnology,2007,18(41):412001(1-12).
    235. Choi J H, Nguyen F T, Barone P W, Heller D A, Moll A E, Patel D, Boppart S A, Strano M S,Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/Iron oxidenanoparticle complexes [J]. Nano Letters,2007,7(4):861-867.
    236. Friend R H, Yoffe A D, Electronic properties of intercalation complexes of the transition metaldichalcogenides [J]. Advances in Physics,1987,36(1):1-94.
    237. Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C,Moriarty G, Chen J, Wang J, Minett A I, Nicolosi V, Coleman J N, Large-scale exfoliation of inorganiclayered compounds in aqueous surfactant solutions [J]. Advanced Materials,2011,23(34):3944-3948.
    238. Guardia L, Fernández-Merino M J, Paredes J I, Solís-Fernández P, Villar-Rodil S,Martínez-Alonso A, Tascón J M D, High-throughput production of pristine graphene in an aqueousdispersion assisted by non-ionic surfactants [J]. Carbon,2011,49(5):1653-1662.
    239. Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R,MoS2and WS2analogues of graphene [J]. Angewandte Chemie International Edition,2010,49(24):4059-4062.
    240. Mawhinney D B, Naumenko V, Kuznetsova A, Yates Jr J T, Liu J, Smalley R E, Surface defectsite density on single walled carbon nanotubes by titration [J]. Chemical Physics Letters,2000,324(1–3):213-216.
    241. Yasin F M, Boulos R A, Hong B Y, Cornejo A, Iyer K S, Gao L, Chua H T, Raston C L,Microfluidic size selective growth of palladium nano-particles on carbon nano-onions [J]. ChemicalCommunications,2012,48(81):10102-10104.
    242. Moore V C, Strano M S, Haroz E H, Hauge R H, Smalley R E, Schmidt J, Talmon Y, Individuallysuspended single-walled carbon nanotubes in various surfactants [J]. Nano Letters,2003,3(10):1379-1382.
    243. An X, Simmons T, Shah R, Wolfe C, Lewis K M, Washington M, Nayak S K, Talapatra S, Kar S,Stable aqueous dispersions of noncovalently functionalized graphene from graphite and theirmultifunctional high-performance applications [J]. Nano Letters,2010,10(11):4295-4301.
    244. Bourlinos A B, Georgakilas V, Zboril R, Steriotis T A, Stubos A K, Liquid-phase exfoliation ofgraphite towards solubilized graphenes [J]. Small,2009,5(16):1841-1845.
    245. Coleman J N, Lotya M, O’Neill A, Bergin S D, et al. Two-dimensional nanosheets produced byliquid exfoliation of layered materials [J]. Science,2011,331(6017),:568-571.
    246. Chen X, Boulos R A, Eggers P K, Raston C L, p-Phosphonic acid calix[8]arene assistedexfoliation and stabilization of2D materials in water [J]. Chemical Communications,2012,48(93):11407-11409.
    247. Fan J, Shi Z, Ge Y, Wang J, Wang Y, Yin J, Gum arabic assisted exfoliation and fabrication ofAg-graphene-based hybrids [J]. Journal of Materials Chemistry,2012,22(27):13764-13772.
    248. Sun Z, Masa J, Liu Z, Schuhmann W, Muhler M, Highly concentrated aqueous dispersions ofgraphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as acatalyst support for the oxygen-reduction reaction [J]. Chemistry–A European Journal,2012,18(22):6972-6978.
    249. Katsukis G, Malig J, Schulz-Drost C, Leubner S, Jux N, Guldi D M, Toward combining grapheneand QDs: Assembling CdTe QDs to exfoliated graphite and nanographene in water [J]. ACS Nano,2012,6(3):1915-1924.
    250. Yang Q, Shuai L, Pan X, Synthesis of fluorescent chitosan and its application in noncovalentfunctionalization of carbon nanotubes [J]. Biomacromolecules,2008,9(12):3422-3426.
    251. Luan T, Fang Y, Al-Assaf S, Phillips G O, Zhang H, Compared molecular characterization ofhyaluronan using multiple-detection techniques [J]. Polymer,2011,52(24):5648-5658.
    252. Yuan W Z, Mao Y, Zhao H, Sun J Z, Xu H P, Jin J K, Zheng Q, Tang B Z, Electronic interactionsand polymer effect in the functionalization and solvation of carbon nanotubes by pyrene-andferrocene-containing poly(1-alkyne)s [J]. Macromolecules,2008,41(3):701-707.
    253. Sahoo D, Narayanaswami V, Kay C M, Ryan R O, Pyrene excimer fluorescence: A spatiallysensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III [J]. Biochemistry,2000,39(22):6594-6601.
    254. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S, Reduction of graphene oxide vial-ascorbicacid [J]. Chemical Communications,2010,46(7):1112-1114.
    255. Watanabe K, Taniguchi T, Kanda H, Direct-bandgap properties and evidence for ultraviolet lasingof hexagonal boron nitride single crystal [J]. Nat Mater,2004,3(6):404-409.
    256. Li, D, Muller M B, Gilje S, Kaner R B, Wallace G G, Processable aqueous dispersions ofgraphene nanosheets [J]. Nat Nano,2008,3(2):101-105.
    257. Chen X, Boulos R A, Dobson J F, Raston C L, Shear induced formation of carbon and boronnitride nano-scrolls [J]. Nanoscale,2013,5(2):498-502.
    258.Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M,Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V,Ferrari A C, Coleman J N, high-yield production of graphene by liquid-phase exfoliation of graphite [J].Nat Nano,2008,3(9):563-568.
    259. Zou J, Martin A D, Zdyrko B, Luzinov I, Raston C L, Iyer K S, Pd-induced ordering of2D Ptnanoarrays on phosphonated calix[4]arenes stabilised graphenes [J]. Chemical Communications,2011,47(18):5193-5195.
    260. Guo S, Dong S, Wang E, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported ongraphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanoloxidation [J]. ACS Nano,2009,4(1):547-555.
    261. Johnson J L, Behnam A, Pearton S J, Ural A, Hydrogen sensing using Pd-functionalizedmulti-layer graphene nanoribbon networks [J]. Advanced Materials,2010,22(43):4877-4880.
    262. Hu Y, Jin J, Wu P, Zhang H, Cai C, Graphene–gold nanostructure composites fabricated byelectrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation[J]. Electrochimica Acta,2010,56(1):491-500.
    263. Ko J W, Kim S W, Hong J, Ryu J, Kang K, Park C B, Synthesis of graphene-wrapped CuO hybridmaterials by CO2mineralization [J]. Green Chemistry,2012,14(9):2391-2394.
    264. Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes M K, et al. Nanoscale Tunable Reduction ofGraphene Oxide for Graphene Electronics [J]. Science,2010,328(5984):1373-1376.
    265. Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K, ElectronicTransport properties of individual chemically reduced graphene oxide sheets [J]. Nano Letters,2007,7(11):3499-3503.
    266. Patil A J, Vickery J L, Scott T B, Mann S, Aqueous stabilization and self-Assembly of graphenesheets into layered bio-nanocomposites using DNA [J]. Advanced Materials,2009,21(31):3159-3164.
    267. Liu J, Fu S, Yuan B, Li Y, Deng Z, Toward a universal “adhesive nanosheet” for the assembly ofmultiple nanoparticles based on a protein-Induced reduction/decoration of graphene oxide [J]. Journalof the American Chemical Society,2010,132(21):7279-7281.
    268. Xu S, Yong L, Wu P, One-Pot, Green, Rapid synthesis of flowerlike gold nanoparticles/reducedgraphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts[J]. ACS Applied Materials&Interfaces,2013,5(3):654-662.
    269. Lightcap I V, Kosel T H, Kamat P V, Anchoring semiconductor and metal nanoparticles on atwo-Dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide [J]. NanoLetters,2010,10(2):577-583.
    270. Yang Q, Pan X, Huang F, Li K, Fabrication of High-concentration and stable aqueous suspensionsof graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives [J]. TheJournal of Physical Chemistry C,2010,114(9):3811-3816.
    271. Cheng C, Li S, Nie S, Zhao W, Yang H, Sun S, Zhao C, General and biomimetic approach tobiopolymer-functionalized graphene oxide nanosheet through adhesive dopamine [J].Biomacromolecules,2012,13(12):4236-4246.
    272. Wang Y, Zhang P, Fang L C, Zhan L, Fang L Y, Huang C Z, Green and easy synthesis ofbiocompatible graphene for use as an anticoagulant [J]. RSC Advances,2012,2(6):2322-2328.
    273. Yang Q, Shuai L, Zhou J, Lu F, Pan X, Functionalization of multiwalled carbon nanotubes bypyrene-labeled hydroxypropyl cellulose [J]. The Journal of Physical Chemistry B,2008,112(41):12934-12939.
    274. Zhang F, Wu J, Zhang H, Construction of hyaluronan-silver nanoparticle–hemoglobin multilayercomposite film and investigations on its electrocatalytic properties [J]. Journal of Solid StateElectrochemistry,2012,16(4):1683-1692.
    275. Hummers W S, Offeman R E, Preparation of graphitic oxide [J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    276. Zou J, Hubble L J, Iyer K S, Raston C L, Bare palladium nano-rosettes for real-timehigh-performance and facile hydrogen sensing [J]. Sensors and Actuators B: Chemical,2010,150(1):291-295.
    277. Zhang F, Chen X, Boulos R A, Md Yasin F, Lu H, Raston C, Zhang H, Pyrene-conjugatedhyaluronan facilitated exfoliation and stabilisation of low dimensional nanomaterials in water [J].Chemical Communications,2013,49(42):4845-4847.
    278. Liu, J, Yang W, Tao L, Li D, Boyer C, Davis T P, Thermosensitive graphene nanocompositesformed using pyrene-terminal polymers made by RAFT polymerization [J]. Journal of Polymer SciencePart A: Polymer Chemistry,2010,48(2):425-433.
    279. Xiong Z, Zhang L L, Ma J, Zhao X S, Photocatalytic degradation of dyes over graphene-goldnanocomposites under visible light irradiation [J]. Chemical Communications,2010,46(33):6099-6101.
    280. Yang S, Wang Y, Wang Q, Zhang R, Ding B, UV irradiation induced formation of Aunanoparticles at room temperature: The case of pH values [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1–3):174-183.
    281. Tang X L, Jiang P, Ge G L, Tsuji M, Xie S S, Guo Y J, Poly(N-vinyl-2-pyrrolidone)(PVP)-cappeddendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect [J]. Langmuir,2008,24(5):1763-1768.
    282. Huang T, Meng F, Qi L, Controlled synthesis of dendritic gold nanostructures assisted bysupramolecular complexes of surfactant with cyclodextrin [J]. Langmuir,2009,26(10):7582-7589.
    283. Zou J, Iyer K S, Raston C L, Pd-sodium carboxymethyl cellulose nanocomposites display amorphology dependent response to hydrogen gas [J]. Green Chemistry,2012,14(4):906-908.
    284. Wolfbeis O S, Dürkop A, Wu M, Lin Z, A europium-ion-based luminescent sensing probe forhydrogen peroxide [J]. Angewandte Chemie International Edition,2002,41(23):4495-4498.
    285. Maduraiveeran G, Ramaraj R, Gold nanoparticles embedded in silica sol–gel matrix as anamperometric sensor for hydrogen peroxide [J]. Journal of Electroanalytical Chemistry,2007,608(1):52-58.
    286. Chen X, Yasin F M, Eggers P K, Boulos R A, Duan X, Lamb R N, Iyer K S, Raston C L,Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gassensing [J]. RSC Advances,2013,3(10):3213-3217.
    287. Fang Y, Guo S, Zhu C, Zhai Y, Wang E, Self-assembly of cationic polyelectrolyte-functionalizedgraphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxidesensing [J]. Langmuir,2010,26(13):11277-11282.
    288. Huang K J, Niu D J, Liu X, Wu Z W, Fan Y, Chang Y F, Wu Y Y, Direct electrochemistry ofcatalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxidesensor [J]. Electrochimica Acta,2011,56(7):2947-2953.
    289. Xu H, Dai H, Chen G, Direct electrochemistry and electrocatalysis of hemoglobin proteinentrapped in graphene and chitosan composite film [J]. Talanta,2010,81(1–2):334-338.
    290. Yabuki S, Mizutani F, Hirata Y, Hydrogen peroxide determination based on a glassy carbonelectrode covered with polyion complex membrane containing peroxidase and mediator [J]. Sensorsand Actuators B: Chemical,2000,65(1–3):49-51.
    291. Yu J, Ju H, Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped intitania sol–gel film [J]. Analytica Chimica Acta,2003,486(2):209-216.
    292. Zou J, Iyer K S, Raston C L, Hydrogen-induced reversible insulator–Metal transition in apalladium nanosphere sensor [J]. Small,2010,6(21):2358-2361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700