用户名: 密码: 验证码:
纳米及生物放大技术构建信号增强型电化学适体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学适体传感器通过测定适体与目标物作用前后电化学信号的变化来实现对目标分析物的定量检测,具有操作简单、响应快速、灵敏度高、选择性好等优点。将材料、生物及化学等多种放大技术结合,是实现高灵敏检测的有效方法。本文主要从功能化纳米复合物的制备,电极敏感界面的构建,新型信号放大手段的运用以及检测通量的提高等方面来构建电化学适体传感器,并对其原理及性能等进行了探索和研究。研究工作分为以下几个部分:
     1.双酶功能化的空心铂钴纳米链为信号探针构建凝血酶电化学适体传感器
     采用模板法原位还原合成空心铂钴纳米链,用于修饰电活性物质二茂铁标记的凝血酶适体,再与葡萄糖氧化酶和辣根过氧化物模拟酶结合,制得适体和双酶功能化的空心铂钴纳米链复合物。本研究基于该纳米复合材料作为信号探针成功制得了一种夹心型的凝血酶电化学适体传感器。利用该空心纳米链大的比表面积,可有效提高电活性物质和双酶的固载量,增强电化学响应信号。当检测底液中存在葡萄糖时,葡萄糖氧化酶首先催化葡萄糖产生H202,生成的H202再通过辣根过氧化物模拟酶和纳米铂的催化,从而进一步增强二茂铁的电化学响应信号,提高检测的灵敏度。实验结果表明,利用空心铂钴纳米链作为固载基质可有效放大分析信号,提高适体传感器的灵敏度。
     2.葡萄糖氧化酶功能化复合物的直接电化学及电催化放大构建凝血酶适体传感器
     在玻碳电极表面修饰一层树枝状聚氨基胺-碳纳米管复合物膜作为传感器的敏感界面,利用聚氨基胺表面大量的官能团以及碳纳米管空心管状结构具有大的比表面积,在增加修饰电极有效面积的同时提高凝血酶适体的捕获量。此外,本研究制备了纳米铂功能化的还原石墨烯复合物(PtNPs@rGO),利用该复合物良好的生物相容性及大的活性表面在提高葡萄糖氧化酶(GOD)和适体固载量的同时保持其良好的生物活性,并以此构建了夹心型凝血酶适体传感器。利用葡萄糖氧化酶的直接电子传递及催化作用,并结合纳米铂的协调催化来实现检测信号的放大,提高检测的灵敏度。本实验对制备的复合纳米材料进行了表征,并对传感器的响应性能进行了研究。结果表明该方法切实可行,具有检测限低、选择性好等特点。
     3.酶的直接电化学和生物放大技术构建凝血酶适体传感器
     本研究利用辣根过氧化物酶的直接电化学,并结合两种新型生物放大技术,即目标物循环和杂交链式反应,实现了对于凝血酶的高灵敏检测。首先将巯基标记的捕获探针与凝血酶适体链互补形成双链并通过Au-S键固载到纳米金修饰的玻碳电极表面;当目标物凝血酶存在时,适体-凝血酶复合物的形成使得双链被破坏,同时在外切酶作用下将与凝血酶结合的适体进行剪切,使得目标物凝血酶重新被释放和循环。随后,将电极表面得到的单链捕获探针作为引发剂,与另外两条两端标记生物素的发夹型DNA进行杂交链式反应,使得电极表面含有大量生物素标记的双链聚合物结构,从而可以引入大量亲和素标记的辣根过氧化物酶,利用辣根过氧化物酶的直接电子传递以及其自身的催化提高检测的电化学信号,进一步提高传感器的灵敏度。
     4.石墨烯复合纳米材料与生物放大技术构建信号增强型电化学适体传感器用于内毒素的超灵敏检测
     目前,利用内毒素适体作为分子识别元件构建适体传感器来检测内毒素的方法少有报告,且灵敏度并不理想。因此,本研究利用三条DNA通过部分杂交形成的Y型连接体标记和剪切酶诱导的目标物循环放大,并结合纳米材料的信号放大构建了一种新型的信号增强型电化学适体传感器用于内毒素的超灵敏检测。石墨烯与电活性物质甲苯胺蓝通过π-π堆积作用形成的复合物能有效提高甲苯胺蓝的固载量,放大电化学信号,从而提高传感器的灵敏度。同时,Y型连接体标记的应用使得剪切酶的识别位点不局限于特点序列的目标DNA,只要将其中两条DNA(捕获探针和辅助探针)的碱基序列进行相应的改变,该方法对于其他目标生物分子的检测具有通用性。5.碳纳米管和石墨烯双重放大的电化学适体传感器用于多组分的同时检测
     为了提高适体传感器的检测通量,本研究以功能化的石墨烯纳米复合物作为信号标记,构建了一种新型的夹心型电化学适体传感器,实现了在同一敏感界面对于血小板源性生长因子和凝血酶的同时检测。采用还原石墨烯作为载体通过化学键合作用修饰不同的电活性物质,随后在其表面原位还原产生纳米铂,用于固载对应的不同适体及葡萄糖氧化酶和辣根过氧化物酶,形成了多重标记的石墨烯纳米复合物。同时,采用纳米金包覆的单壁碳纳米管增加电极的有效表面积来增加适体的捕获量,进一步增加石墨烯纳米复合物的固载量。实验结果表明该复合物具有良好的电化学氧化还原活性,结合纳米铂与双酶良好的协同电催化活性,进一步放大电化学信号,从而实现了对于两种目标蛋白同时检测的高特异性和高灵敏度。
Electrochemical aptasensors are valuable analytical tools for monitoring target analytes through the changes of electrochemical signals before and after the binding between aptamers and target analytes, which hold the advantages of high sensitivity, good selectivity, rapid response and simple operation. Using a variety of amplification technology such as chemical, material and biological combination, could effectively enhance the detection sensitivity. Therefore, this research focuses on the preparation of functionalized nanocomposite, the construction of sensitive interface, the application of novel signal amplification strategies and the enhancement of detection efficiency to construct the electrochemical aptasensors. The research contents are mainly as follows:
     1. Bi-enzyme functionalized hollow PtCo nanochains as labels for an electrochemical aptasensor
     Hollow PtCo nanochains (HPtCoNCs) were synthesized by employing Co nanoparticles produced in situ as templates, which were used for the immobilization of ferrocene-labeled secondary thrombin aptamer (Fc-TBA2) and further functionalized by bi-enzyme—glucose oxidase (GOD) and horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme). This work successfully constructed a sandwich-type electrochemical aptasensor for thrombin detection using the as-prepared multi-functionalized nanomaterials as tracer labels. With the surface area enlarged by HPtCoNCs, the amount of immobilized Fc-TBA2, hemin and GOD can be enhanced. Under the enzyme catalysis of GOD, glucose is rapidly oxidized into gluconic acid accompanying with the generation of H2O2, which is further electrocatalyzed by Pt nanoparticles and HPR-DNAzyme to improve the electrochemical signal of Fc. The present work demonstrates that using HPtCoNCs as labels is a promising way to amplify the analysis signal and improve the sensitivity of aptasensors.
     2. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin
     Poly(amino-amine) dendrimers-encapsulated carbon nanotubes (PAMAM-CNTs) with high surface area was modified on the surface of glassy carbon electrode as the sensor platform to enhance effective area of the modified electrode and increase the immobilization of primary thrombin aptamers (TBA1). In addition, reduced graphene oxide (rGO) was employed to support platinum nanoparticles (PtNPs), forming PtNPs@rGO nanocomposite with good biocompatibility for the decoration of glucose oxidase (GOD) and secondary thrombin aptamers (TBA2) with high loading amount and good biological activity. With the excellent direct electron transfer of GOD and the synergistic electrocatalysis of GOD and PtNPs, a new sandwich-type electrochemical aptasensor was constructed for ultrasensitive detection of thrombin. The preparation and characterization of nanocomposites, as well as the construction and performance of the aptasensor, were also studied. The results showed that this method is feasible with low detection limit and good selectivity.
     3. Amperometric aptasensor for thrombin detection using enzyme-mediated direct electrochemistry and DNA-based signal amplification strategy
     This work developed an electrochemical aptasensor for highly sensitive detection of thrombin based on direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) using two typical biotechnology amplification—exonuclease-catalyzed target recycling and hybridization chain reaction (HCR) for signal amplification. To construct the aptasensor, double-stranded DNA (dsDNA) of the thiolated capture probe and thrombin binding aptamer was immobilized on gold nanoparticles (AuNPs) modified electrode through Au-S bond. In the presence of thrombin, the formation of aptamer-thrombin complex could result in the dissociation of aptamer from the dsDNA. Subsequently, with the employment of exonuclease, aptamer was selectively digested and thrombin could be released for analyte recycling. The resulted single stranded capture probe was used as the initiator to trigger the HCR of two biotin-labeled hairpin helper DNAs and lead to the formation of extended dsDNA polymers on the electrode surface. Then the biotin-labeled dsDNA polymers could introduce numerous avidin-labeled HRP, resulting in significantly amplified electrochemical detection signal through the direct electrochemistry and electrocatalysis of HRP. The proposed strategy combined the amplification of exonuclease-catalyzed analyte recycling and HCR, as well as the inherent electroactivity and electrocatalytic activity of HRP, which exhibited high sensitivity for thrombin determination.
     4. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification
     To date, using lipopolysaccharide (LPS) binding aptamer as molecular recognition element of aptasensors for detection LPS have been rarely reported, and the sensitivity of these aptasensors are dissatisfactory. Thus, this work described a new signal-on electrochemical aptasensor for ultrasensitive detection of LPS by combining the three-way DNA junction acided enzymatic target recycling and nanotechnology for amplification. Toluidine blue (Tb), a kind of aromatic molecules with electrochemical activity, can decorate graphene (Gra) to obtain the Tb-Gra nanocomposite through π-π stacking, which not only improved the solubility and self-assembly properties of Gra, but also increased the immobilization of Tb and enhanced the electrochemical signal. Moreover, the application of three-way DNA junction makes the recognition site of restrictive endonuclease unconstrained on the specified sequence of target DNA. Thus, the high sensitivity and specificity make this method versatile for the detection of other biomolecules by changing the corresponding sequences of capture probe and assistant probe.
     5. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of carbon nanotubes and multi-labeled graphene sheets
     To improve the detection efficiency of aptasensor, this work fabricated a sandwich-type electrochemical aptasensor for one-spot simultaneous sensitive detection of platelet-derived growth factor (PDGF) and thrombin using graphene-nanocomposites as tracer labels. Reduced graphene oxide sheets (rGO) were used as matrices to immobilize the different redox probes, which were subsequently coated with the platinum nanoparticles (PtNPs) to form the PtNPs-redox probes-rGO nanocomposites. With the employment of the as prepared nanocomposites, a signal amplification strategy was described based on bi-enzyme (glucose oxidase and horseradish peroxidase) modified PtNPs-redox probes-rGO nanocomposites as tracer labels for secondary aptamers (Apt II) through sandwiched assay. Gold nanoparticles functionalized carbon nanotubes (AuNPs@CNTs) as the sensor platform could enhance the surface area of electrode to capture a large amount of primary aptamers (Apt I), thus amplifying the detection response. The experiment results showed that multi-labeled PtNPs-redox probes-rGO nanocomposites display satisfactory electrochemical redox activity and highly electrocatalytic activity of PtNPs and bi-enzyme, which exhibited high sensitivity and specificity for detection of proteins.
引文
[1]Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. Nature 1990,346 (6287):818-822.
    [2]Tuerk, C.; Gold, L., Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science 1990,249 (4968):505-510.
    [3]Jian, Y.; Gao, Z.; Sun, J.; Shen, Q.; Feng, F.; Jing, Y.; Yang, C., RNA aptamers interfering with nucleophosmin oligomerization induce apoptosis of cancer cells. Oncogene 2009,28 (47):4201-4211.
    [4]Hamula, C. L.; Guthrie, J. W.; Zhang, H.; Li, X. F.; Le, X. C., Selection and analytical applications of aptamers. TrAC Trends in Analytical Chemistry 2006,25 (7):681-691.
    [5]Tombelli, S.; Minunni, M.; Mascini, M., Analytical applications of aptamers. Biosensors and Bioelectronics 2005,20 (12):2424-2434.
    [6]Bunka, D. H.; Stockley, P. G., Aptamers come of age-at last. Nature Reviews Microbiology 2006,4 (8):588-596.
    [7]Patel, D. J.; Suri, A. K., Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. Reviews in Molecular Biotechnology 2000,74 (1):39-60.
    [8]Kandimalla, V. B.; Ju, H., New horizons with a multi dimensional tool for applications in analytical chemistry—aptamer. Analytical letters 2004,37 (11):2215-2233.
    [9]Huang, Y. F.; Chang, H. T.; Tan, W., Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry 2008,80 (3):567-572.
    [10]Huang, H.; Zhu, J. J., DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosensors and Bioelectronics 2009,25 (4):927-930.
    [11]Du, Y.; Chen, C.; Yin, J.; Li, B.; Zhou, M.; Dong, S.; Wang, E., Solid-state probe based electrochemical aptasensor for cocaine:a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Analytical Chemistry 2010,82 (4):1556-1563.
    [12]Liu, X.; Li, Y.; Zheng, J.; Zhang, J.; Sheng, Q., Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin. Talanta 2010,81 (4):1619-1624.
    [13]Kim, Y. S.; Jung, H. S.; Matsuura, T.; Lee, H. Y.; Kawai, T.; Gu, M. B., Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosensors and Bioelectronics 2007,22 (11):2525-2531.
    [14]Xu, D.; Xu, D.; Yu, X.; Liu, Z.; He, W.; Ma, Z., Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry 2005,77 (16):5107-5113.
    [15]Zhuo, Y.; Yi, W. J.; Lian, W. B.; Yuan, R.; Chai, Y. Q.; Chen, A.; Hu, C. M., Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosensors and Bioelectronics 2011,26 (5):2188-2193.
    [16]Chen, J.; Zhang, J.; Li, J.; Yang, H.-H.; Fu, F.; Chen, G., An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Biosensors and Bioelectronics 2010,25 (5):996-1000.
    [17]Zhang, X.; Qi, B.; Li, Y; Zhang, S., Amplified electrochemical aptasensor for thrombin based on bio-barcode method. Biosensors and Bioelectronics 2009,25 (1):259-262.
    [18]Wang, Y.; Yuan, R.; Chai, Y.; Yuan, Y.; Bai, L., In situ enzymatic silver enhancement based on functionalized graphene oxide and layer-by-layer assembled gold nanoparticles for ultrasensitive detection of thrombin. Biosensors and Bioelectronics 2012,38 (1):50-54.
    [19]Xiang, Y.; Zhang, Y.; Chang, Y.; Chai, Y.; Wang, J.; Yuan, R., Reverse-micelle synthesis of electrochemically encoded quantum dot barcodes:application to electronic coding of a cancer marker. Analytical Chemistry 2010,82 (3):1138-1141.
    [20]Chen, Y.; Jiang, B.; Xiang, Y.; Chai, Y.; Yuan, R., Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites. Chemical Communications 2011,47 (48):12798-12800.
    [21]Cheng, A. K.; Ge, B.; Yu, H.-Z., Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Analytical Chemistry 2007,79 (14):5158-5164.
    [22]Yoshizumi, J.; Kumamoto, S.; Nakamura, M.; Yamana, K., Target-induced strand release (TISR) from aptamer-DNA duplex:A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 2008,133 (3): 323-325.
    [23]Numnuam, A.; Chumbimuni-Torres, K. Y.; Xiang, Y.; Bash, R.; Thavarungkul, P.; Kanatharana, P.; Pretsch, E.; Wang, J.; Bakker, E., Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 2008,80 (3): 707-712.
    [24]Li, X.; Shen, L.; Zhang, D.; Qi, H.; Gao, Q.; Ma, F.; Zhang, C., Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosensors and Bioelectronics 2008,23 (11):1624-1630.
    [25]Zayats, M.; Huang, Y.; Gill, R.; Ma, C.; Willner, I., Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society 2006,128 (42): 13666-13667.
    [26]Wang, J.; Wang, F.; Dong, S., Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. Journal of Electroanalytical Chemistry 2009,626 (1):1-5.
    [27]Yuan, Y.; Yuan, R.; Chai, Y.; Zhuo, Y.; Liu, Z.; Mao, L.; Guan, S.; Qian, X., A novel label-free electrochemical aptasensor for thrombin based on the{nano-Au/thionine}n multilayer films as redox probes. Analytica Chimica Acta 2010,668 (2):171-176.
    [28]Liu, Z.; Yuan, R.; Chai, Y.; Zhuo, Y.; Hong, C.; Yang, X.; Su, H.; Qian, X., Highly sensitive, reusable electrochemical aptasensor for adenosine. Electrochimica Ada 2009,54 (26): 6207-6211.
    [29]Lai, R. Y.; Plaxco, K. W.; Heeger, A. J., Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry 2007, 79 (1):229-233.
    [30]Yang, H.; Ji, J.; Liu, Y.; Kong, J.; Liu, B., An aptamer-based biosensor for sensitive thrombin detection. Electrochemistry Communications 2009,11 (1):38-40.
    [31]Deng, C.; Chen, J.; Nie, Z.; Wang, M.; Chu, X.; Chen, X.; Xiao, X.; Lei, C.; Yao, S., Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Analytical Chemistry 2008,81 (2):739-745.
    [32]Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I., Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry 2006,78 (7):2268-2271.
    [33]Mir, M.; Vreeke, M.; Katakis, I., Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications 2006,8 (3):505-511.
    [34]Degefa, T. H.; Hwang, S.; Kwon, D.; Park, J. H.; Kwak, J., Aptamer-based electrochemical detection of protein using enzymatic silver deposition. Electrochimica Acta 2009,54 (27): 6788-6791.
    [35]Ferapontova, E. E.; Olsen, E. M.; Gothelf, K. V., An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society 2008,130 (13):4256-4258.
    [36]Zhang, Y. L.; Huang, Y.; Jiang, J. H.; Shen, G. L.; Yu, R. Q., Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society 2007,129 (50):15448-15449.
    [37]Wu, Z. S.; Guo, M. M.; Zhang, S. B.; Chen, C. R.; Jiang, J. H.; Shen, G. L.; Yu, R. Q., Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry 2007,79 (7): 2933-2939.
    [38]Du, Y.; Chen, C.; Li, B.; Zhou, M.; Wang, E.; Dong, S., Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosensors and Bioelectronics 2010,25 (8):1902-1907.
    [39]Xie, S.; Yuan, R.; Chai, Y.; Bai, L.; Yuan, Y.; Wang, Y., Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue-graphene composites and gold nanoparticles. Talanta 2012,98 (6):7-13.
    [40]Baker, B. R.; Lai, R. Y.; Wood, M. S.; Doctor, E. H.; Heeger, A. J.; Plaxco, K. W., An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society 2006, 128 (10):3138-3139.
    [41]Han, K.; Chen, L.; Lin, Z.; Li, G., Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor. Electrochemistry Communications 2009,11 (1):157-160.
    [42]Guo, Z.; Dong, S., Electrogenerated Chemiluminescence Determination of Dopamine and Epinephrine in the Presence of Ascorbic Acid at Carbon Nanotube/Nafion-Ru(bpy)32+ Composite Film Modified Glassy Carbon Electrode. Electroanalysis 2005,17 (7):607-612.
    [43]Song, Z.; Yuan, R.; Chai, Y; Wang, J.; Che, X., Dual amplification strategy for the fabrication of highly sensitive amperometric immunosensor based on nanocomposite functionalized interface. Sensors and Actuators B:Chemical 2010,145 (2):817-825.
    [44]Cui, R.; Huang, H.; Yin, Z.; Gao, D.; Zhu, J.-J., Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics 2008,23 (11): 1666-1673.
    [45]Wang, L.; Guo, S.; Hu, X.; Dong, S., Layer-by-layer assembly of carbon nanotubes and Prussian blue nanoparticles:a potential tool for biosensing devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008,317 (1):394-399.
    [46]Hu, F.; Chen, S.; Wang, C; Yuan, R.; Chai, Y.; Xiang, Y.; Wang, C., ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. Journal of Molecular Catalysis B:Enzymatic 2011,72 (3):298-304.
    [47]Tang, J.; Tang, D.; Su, B.; Huang, J.; Qiu, B.; Chen, G., Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. Biosensors and Bioelectronics 2011,26 (7):3219-3226.
    [48]Fu, Y; Li, P.; Wang, T.; Bu, L.; Xie, Q.; Xu, X.; Lei, L.; Zou, C.; Chen, J.; Yao, S., Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosensors and Bioelectronics 2010,25 (7): 1699-1704.
    [49]Bai, Z.; Yang, L.; Li, L.; Lv, J.; Wang, K.; Zhang, J., A facile preparation of hollow palladium nanosphere catalysts for direct formic acid fuel cell. The Journal of Physical Chemistry C 2009,113 (24):10568-10573.
    [50]Dreyer, D. R.; Jia, H. P.; Bielawski, C. W., Graphene oxide:a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie International Edition 2010,122 (38):6965-6968.
    [51]Wang, J.; Meng, W.; Zheng, X.; Liu, S.; Li, G, Combination of aptamer with gold nanoparticles for electrochemical signal amplification:application to sensitive detection of platelet-derived growth factor. Biosensors and Bioelectronics 2009,24 (6):1598-1602.
    [52]Zhang, J.; Chai, Y.; Yuan, R.; Yuan, Y; Bai, L.; Xie, S., A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst 2013,138 (22): 6938-6945.
    [53]Xiang, Y.; Zhang, Y.; Qian, X.; Chai, Y.; Wang, J.; Yuan, R., Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosensors and Bioelectronics 2010,25 (11):2539-2542.
    [54]Yuan, Y; Yuan, R.; Chai, Y.; Zhuo, Y.; Gan, X.; Bai, L.,3,4,9,10-Perylenetetracarboxylic Acid/Hemin Nanocomposites Act as Redox Probes and Electrocatalysts for Constructing a Pseudobienzyme-Channeling Amplified Electrochemical Aptasensor. Chemistry-A European Journal 2012,18 (44):14186-14191.
    [55]Zhao, J.; Lin, F.; Yi, Y.; Huang, Y.; Li, H.; Zhang, Y.; Yao, S., Dual amplification strategy of highly sensitive thrombin amperometric aptasensor based on chitosan-Au nanocomposites. Analyst 2012,137 (15):3488-3495.
    [56]Travascio, P.; Li, Y.; Sen, D., DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry & biology 1998,5 (9):505-517.
    [57]Shen, B.; Wang, Q.; Zhu, D.; Luo, J.; Cheng, G.; He, P.; Fang, Y., G-Quadruplex-Based DNAzymes Aptasensor for the Amplified Electrochemical Detection of Thrombin. Electroanalysis 2010,22 (24):2985-2990.
    [58]Zhang, H.; Jiang, B.; Xiang, Y.; Chai, Y.; Yuan, R., Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst 2012,137 (4):1020-1023.
    [59]Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M., Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry 2007, 79(4):1466-1473.
    [60]Kim, M.; Rho, Y.; Jin, K. S.; Ahn, B.; Jung, S.; Kim, H.; Ree, M., pH-Dependent structures of ferritin and apoferritin in solution:Disassembly and reassembly. Biomacromolecules 2011, 12(5):1629-1640.
    [61]Liu, G.; Lin, Y., Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. Journal of the American Chemical Society 2007,129 (34): 10394-10401.
    [62]Qu, B.; Guo, L.; Chu, X.; Wu, D. H.; Shen, G. L.; Yu, R. Q., An electrochemical immunosensor based on enzyme-encapsulated liposomes and biocatalytic metal deposition. Analytica Chimica Acta 2010,663 (2):147-152.
    [63]Patolsky, F.; Lichtenstein, A.; Willner, I., Electrochemical transduction of liposome-amplified DNA sensing. Angewandte Chemie International Edition 2000,39 (5):940-943.
    [64]Zhou, L.; Ou, L. J.; Chu, X.; Shen, G. L.; Yu, R. Q., Aptamer-based rolling circle amplification:a platform for electrochemical detection of protein. Analytical Chemistry 2007, 79 (19):7492-7500.
    [65]Wu, Z. S.; Zhou, H.; Zhang, S.; Shen, G.; Yu, R., Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Analytical Chemistry 2010,82 (6):2282-2289.
    [66]Dirks, R. M.; Pierce, N. A., Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (43):15275-15278.
    [67]Choi, H. M.; Chang, J. Y.; Trinh, L. A.; Padilla, J. E.; Fraser, S. E.; Pierce, N. A., Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature Biotechnology 2010,28 (11):1208-1212.
    [68]Zhang, B.; Liu, B.; Tang, D.; Niessner, R.; Chen, G.; Knopp, D., DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Analytical Chemistry 2012,84 (12):5392-5399.
    [69]Chen, Y.; Xu, J.; Su, J.; Xiang, Y; Yuan, R.; Chai, Y., In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Analytical Chemistry 2012,84 (18):7750-7755.
    [70]Zhao, J.; Chen, C.; Zhang, L.; Jiang, J.; Yu, R., An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosensors and Bioelectronics 2012,36 (1):129-134.
    [71]Liu, S.; Wang, C.; Zhang, C.; Wang, Y.; Tang, B., Label-free and ultrasensitive electrochemical detection of nucleic acids based on autocatalytic and exonuclease Ⅲ-assisted target recycling strategy. Analytical Chemistry 2013,85 (4):2282-2288.
    [72]Xu, W.; Xue, X.; Li, T.; Zeng, H.; Liu, X., Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edition 2009,48 (37):6849-6852.
    [73]Kiesling, T.; Cox, K.; Davidson, E. A.; Dretchen, K.; Grater, G.; Hibbard, S.; Lasken, R. S.; Leshin, J.; Skowronski, E.; Danielsen, M., Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research 2007,35 (18):e117.
    [74]Miranda-Castro, R.; Marchal, D.; Limoges, B.; Mavr6, R., Homogeneous electrochemical monitoring of exonuclease Ⅲ activity and its application to nucleic acid testing by target recycling. Chemical Communications 2012,48 (70):8772-8774.
    [75]Yin, B. C.; Liu, Y. Q.; Ye, B. C., One-Step, Multiplexed Fluorescence Detection of microRNAs Based on Duplex-Specific Nuclease Signal Amplification. Journal of the American Chemical Society 2012,134 (11):5064-5067.
    [76]Zhang, M.; Guan, Y. M.; Ye, B. C., Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease Ⅲ-catalyzed signal amplification. Chemical Communications 2011,47 (12):3478-3480.
    [77]Tong, P.; Zhang, L.; Xu, J. J.; Chen, H. Y, Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosensors and Bioelectronics 2011,29(1):97-101.
    [78]Hsieh, K.; Xiao, Y.; Tom Soh, H., Electrochemical DNA detection via exonuclease and target-catalyzed transformation of surface-bound probes. Langmuir 2010,26 (12): 10392-10396.
    [79]Guo, Q.; Yang, X.; Wang, K.; Tan, W.; Li, W.; Tang, H.; Li, H., Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research 2009,37 (3):e20-e20.
    [80]Ren, R.; Leng, C.; Zhang, S., Detection of DNA and indirect detection of tumor cells based on circular strand-replacement DNA polymerization on electrode. Chemical Communications 2010,46 (31):5758-5760.
    [81]Gao, F.; Zhu, Z.; Lei, J.; Geng, Y.; Ju, H., Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosensors and Bioelectronics 2013,39 (1): 199-203.
    [82]Chen, H.; Jiang, C.; Yu, C.; Zhang, S.; Liu, B.; Kong, J., Protein chips and nanomaterials for application in tumor marker immunoassays. Biosensors and Bioelectronics 2009,24 (12): 3399-3411.
    [83]Wu, J.; Fu, Z.; Yan, F.; Ju, H., Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends in Analytical Chemistry 2007,26 (7): 679-688.
    [84]Liu, G.; Wang, J.; Kim, J.; Jan, M. R.; Collins, G. E., Electrochemical coding for multiplexed immunoassays of proteins. Analytical Chemistry 2004,76 (23):7126-7130.
    [85]Qian, X.; Xiang, Y.; Zhang, H.; Chen, Y.; Chai, Y.; Yuan, R., Aptamer/Nanoparticle-Based Sensitive, Multiplexed Electronic Coding of Proteins and Small Biomolecules through a Backfilling Strategy. Chemistry-A European Journal 2010,16 (48):14261-14265.
    [86]Li, X.; Liu, J.; Zhang, S., Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chemical Communications 2010,46 (4):595-597.
    [87]Xiang, Y.; Qian, X.; Chen, Y.; Zhang, Y.; Chai, Y.; Yuan, R., A reagentless and disposable electronic genosensor:from multiplexed analysis to molecular logic gates. Chemical Communications 2011,47 (7):2080-2082.
    [88]Xiang, Y.; Qian, X.; Zhang, Y.; Chen, Y.; Chai, Y.; Yuan, R, A reagentless, disposable and multiplexed electronic biosensing platform:Application to molecular logic gates. Biosensors and Bioelectronics 2011,26 (6):3077-3080.
    [89]Xiang, Y; Qian, X.; Jiang, B.; Chai, Y.; Yuan, R., An aptamer-based signal-on and multiplexed sensing platform for one-spot simultaneous electronic detection of proteins and small molecules. Chemical Communications 2011,47 (16):4733-4735.
    [90]Zhang, H.; Jiang, B.; Xiang, Y.; Zhang, Y.; Chai, Y.; Yuan, R., Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Analytica Chimica Acta 2011,688 (2):99-103.
    [91]Tang, D.; Tang, J.; Li, Q.; Su, B.; Chen, G., Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Analytical Chemistry 2011,83 (19):7255-7259.
    [92]Famulok, M; Mayer, G.; Blind, M., Nucleic acid aptamers from selection in vitro to applications in vivo. Accounts of Chemical Research 2000,33 (9):591-599.
    [93]Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J., Aptamer-based biosensors. TrAC Trends in Analytical Chemistry 2008,27 (2):108-117.
    [94]Willner, I.; Zayats, M., Electronic Aptamer-Based Sensors. Angewandte Chemie International Edition 2007,46 (34):6408-6418.
    [95]Privett, B. J.; Shin, J. H.; Schoenfisch, M. H., Electrochemical sensors. Analytical Chemistry 2010,82 (12):4723-4741.
    [96]Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S., Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications 2007, (36):3735-3737.
    [97]Xiao, Y.; Qu, X.; Plaxco, K. W.; Heeger, A. J., Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of the American Chemical Society2 007,129 (39):11896-11897.
    [98]He, J. L.; Wu, Z. S.; Zhou, H.; Wang, H. Q.; Jiang, J. H.; Shen, G. L.; Yu, R. Q., Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Analytical Chemistry 2010,82 (4):1358-1364.
    [99]Liu, J.; Cao, Z.; Lu, Y., Functional nucleic acid sensors. Chemical Reviews 2009,109 (5): 1948-1998.
    [100]Elbaz, J.; Shlyahovsky, B.; Li, D.; Willner, I., Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer:applications for biosensing and logic gate operations. ChemBioChem 2008,9 (2):232-239.
    [101]White, R. J.; Plaxco, K. W., Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Analytical Chemistry 2009,82 (1):73-76.
    [102]Du, Y; Li, B.; Wang, F.; Dong, S., Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosensors and Bioelectronics 2009, 24(7):1979-1983.
    [103]Li, B.; Wang, Y; Wei, H.; Dong, S., Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics 2008,23 (7): 965-970.
    [104]Du, D.; Zou, Z.; Shin, Y; Wang, J.; Wu, H.; Engelhard, M. H.; Liu, J.; Aksay, I. A.; Lin, Y, Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Analytical Chemistry 2010,82 (7):2989-2995.
    [105]Wang, H.; Liu, Y; Liu, C.; Huang, J.; Yang, P.; Liu, B., Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochemistry Communications 2010,12 (2):258-261.
    [106]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L., Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts. Angewandte Chemie International Edition 2004,116 (12):1566-1569.
    [107]You, T.; Niwa, O.; Tomita, M.; Hirono, S., Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry 2003,75 (9):2080-2085.
    [108]Vasquez, Y.; Sra, A. K.; Schaak, R. E., One-pot synthesis of hollow superparamagnetic CoPt nanospheres. Journal of the American Chemical Society 2005,127 (36):12504-12505.
    [109]Zhai, Y.; Zhai, J.; Dong, S., Temperature-dependent synthesis of CoPt hollow nanoparticles: from "nanochain" to "nanoring". Chemical Communications 2010,46 (9):1500-1502.
    [110]Zhai, J.; Huang, M.; Zhai, Y.; Dong, S., Magnet-assisted assembly of 1-dimensional hollow PtCo nanomaterials on an electrode surface. Journal of Materials Chemistry 2008,18 (8): 923-928.
    [111]Deng, M.; Zhang, D.; Zhou, Y.; Zhou, X., Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society 2008,130(39):13095-13102.
    [112]Xiao, Y; Pavlov, V.; Niazov, T.; Dishon, A.; Kotler, M.; Willner, I., Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society 2004, 126(24):7430-7431.
    [113]Yin, B. C; Ye, B. C.; Tan, W.; Wang, H.; Xie, C. C., An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper (Ⅱ). Journal of the American Chemical Society 2009,131 (41):14624-14625.
    [114]Sharon, E.; Freeman, R.; Willner, I., CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Analytical Chemistry 2010,82 (17):7073-7077.
    [115]Pavlov, V.; Xiao, Y.; Gill, R.; Dishon, A.; Kotler, M.; Willner, I., Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry 2004,76 (7):2152-2156.
    [116]Kong, D. M.; Xu, J.; Shen, H. X., Positive effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Analytical Chemistry 2010,82 (14):6148-6153.
    [117]Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992,355 (6): 564-566.
    [118]Stubbs, M. T.; Bode, W., The clot thickens:clues provided by thrombin structure. Trends in Biochemical Sciences 1995,20 (1):23-28.
    [119]Wang, K. Y.; McCurdy, S.; Shea, R. G.; Swaminathan, S.; Bolton, P. H., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 1993,32(8):1899-1904.
    [120]Radi, A. E.; Acero Sanchez, J. L.; Baldrich, E.; O'Sullivan, C. K., Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society 2006,128 (1):117-124.
    [121]Xiao, Y.; Piorek, B. D.; Plaxco, K. W.; Heeger, A. J., A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society 2005,127 (51):17990-17991.
    [122]Liu, B.; Cui, Y.; Tang, D.; Yang, H.; Chen, G., Au (Ⅲ)-assisted core-shell iron oxide@ poly (o-phenylenediamine) nanostructures for ultrasensitive electrochemical aptasensors based on DNase I-catalyzed target recycling. Chemical Communications 2012,48 (20):2624-2626.
    [123]Tang, D.; Yuan, R.; Chai, Y., Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Analytical Chemistry 2008,80 (5):1582-1588.
    [124]Song, Z.; Yuan, R.; Chai, Y.; Jiang, W.; Su, H.; Che, X.; Ran, X., Simultaneous immobilization of glucose oxidase on the surface and cavity of hollow gold nanospheres as labels for highly sensitive electrochemical immunoassay of tumor marker. Biosensors and Bioelectronics 2011,26 (5):2776-2780.
    [125]Tang, J.; Tang, D.; Li, Q.; Su, B.; Qiu, B.; Chen, G, Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Analytica ChimicaActa 2011,697 (1):16-22.
    [126]Chen, S.; Yuan, R.; Chai, Y.; Zhang, L.; Wang, N.; Li, X., Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics 2007,22 (7):1268-1274.
    [127]Wang, Y; Shao, Y; Matson, D. W.; Li, J.; Lin, Y, Nitrogen-doped graphene and its application in electrochemical biosensing. ACSNano 2010,4 (4):1790-1798.
    [128]Guo, C. X.; Zheng, X. T.; Ng, S. R.; Lai, Y.; Lei, Y.; Li, C. M., In situ molecular detection of ischemic cells by enhanced protein direct electron transfer on a unique horseradish peroxidase-Au nanoparticles-polyaniline nanowires biofilm. Chemical Communications 2011, 47 (9):2652-2654.
    [129]Rahman, M. A.; Noh, H. B., Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer:application for a catechin sensor. Analytical Chemistry 2008,80 (21):8020-8027.
    [130]Goran, J. M.; Lyon, J. L.; Stevenson, K. J., Amperometric detection of 1-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Analytical Chemistry 2011, 83 (21):8123-8129.
    [131]Chen, J.; Yan, F.; Dai, Z.; Ju, H., Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosensors and Bioelectronics 2005,21 (2):330-336.
    [132]Dai, Z.; Yan, F.; Chen, J.; Ju, H., Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125. Analytical Chemistry 2003,75 (20):5429-5434.
    [133]Si, P.; Ding, S.; Yuan, J.; Lou, X. W.; Kim, D. H., Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 2011,5 (9):7617-7626.
    [134]He, X.; Zhou, L.; Nesterenko, E. P.; Nesterenko, P. N.; Paull, B.; Omamogho, J. O.; Glennon, J. D.; Luong, J. H., Porous Graphitized Carbon Monolith as an Electrode Material for Probing Direct Bioelectrochemistry and Selective Detection of Hydrogen Peroxide. Analytical Chemistry 2012,84 (5):2351-2357.
    [135]Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L., Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry 2009,81 (6): 2378-2382.
    [136]Xie, Q.; Zhao, Y.; Chen, X.; Liu, H.; Evans, D. G.; Yang, W., Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor. Biomaterials 2011,32 (27):6588-6594.
    [137]Feng, X. M.; Li, R. M.; Ma, Y. W.; Chen, R. F.; Shi, N. E.; Fan, Q. L.; Huang, W., One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Advanced Functional Materials 2011,21 (15):2989-2996.
    [138]Zhu, C.; Guo, S.; Fang, Y.; Dong, S., Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010,4 (4):2429-2437.
    [139]Yang, M.; Javadi, A.; Li, H.; Gong, S., Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosensors and Bioelectronics 2010,26 (2): 560-565.
    [140]Bai, L.; Yan, B.; Chai, Y.; Yuan, R.; Yuan, Y.; Xie, S.; Jiang, L.; He, Y., An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification. Analyst 2013,138 (21):6595-6599.
    [141]Bai, L.; Yuan, R.; Chai, Y.; Zhuo, Y.; Yuan, Y.; Wang, Y., Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 2012,33 (4):1090-1096.
    [142]Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J. D.; Kim, S. N.; Gillespie, J.; Gutkind, J. S.; Papadimitrakopoulos, F., Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society 2006,128 (34):11199-11205.
    [143]Li, L. L.; Liu, K. P.; Yang, G H.; Wang, C. M.; Zhang, J. R.; Zhu, J. J., Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Advanced Functional Materials 2011,21 (5):869-878.
    [144]Fan, H.; Li, H.; Wang, Q.; He, P.; Fang, Y., A host-guest-recognition-based electrochemical aptasensor for thrombin detection. Biosensors andBioelectronics 2012,35 (1):33-36.
    [145]Chen, Q.; Tang, W.; Wang, D.; Wu, X.; Li, N.; Liu, F., Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Biosensors and Bioelectronics 2010,26 (2):575-579.
    [146]Lin, Z.; Chen, L.; Zhu, X.; Qiu, B.; Chen, G., Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chemical Communications 2010,46 (30):5563-5565.
    [147]Zheng, A. X.; Wang, J. R.; Li, J.; Song, X. R.; Chen, G N.; Yang, H. H., Nicking enzyme based homogeneous aptasensors for amplification detection of protein. Chemical Communications 2011,48 (3):374-376.
    [148]Ikebukuro, K.; Kiyohara, C.; Sode, K., Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics 2005,20 (10): 2168-2172.
    [149]Holland, C. A.; Henry, A. T.; Whinna, H. C.; Church, F. C., Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor Ⅱ and antithrombin. FEBS Letters 2000,484 (2):87-91.
    [150]Bode, W., The structure of thrombin, a chameleon-like proteinase. Journal of Thrombosis and Haemostasis 2005,3 (11):2379-2388.
    [151]Richardson, J. L.; Kroger, B.; Hoeffken, W.; Sadler, J. E.; Pereira, P.; Huber, R.; Bode, W.; Fuentes-Prior, P., Crystal structure of the human a-thrombin-haemadin complex:an exosite Ⅱ-binding inhibitor. The EMBO Journal 2000,19 (21):5650-5660.
    [152]Inuyama, H.; Saito, T.; Takagi, J.; Saito, Y, Factor X-dependent, thrombin-generating activities on a neuroblastoma cell and their disappearance upon differentiation. Journal of Cellular Physiology 1997,173 (3):406-414.
    [153]Wang, J.; Shan, Y.; Zhao, W. W.; Xu, J. J.; Chen, H.Y., Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Analytical Chemistry 2011,83 (11):4004-4011.
    [154]Yan, F.; Wang, F.; Chen, Z., Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sensors and Actuators B:Chemical 2011, 160(1):1380-1385.
    [155]Citartan, M; Gopinath, S. C.; Tominaga, J.; Tan, S. C.; Tang, T. H., Assays for aptamer-based platforms. Biosensors and Bioelectronics 2012,34 (1):1-11.
    [156]Zhang, D. W.; Sun, C. J.; Zhang, F. T.; Xu, L.; Zhou, Y. L.; Zhang, X. X., An electrochemical aptasensor based on enzyme linked aptamer assay. Biosensors and Bioelectronics 2012,31 (1):363-368.
    [157]Wu, L.; Zhang, X.; Liu, W.; Xiong, E.; Chen, J., Sensitive Electrochemical Aptasensor by Coupling "Signal-on"and "Signal-off"Strategies. Analytical Chemistry 2013,85 (17): 8397-8402.
    [158]Jie, G; Yuan, J., Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Analytical Chemistry 2012,84 (6):2811-2817.
    [159]Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I., Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:Application for logic gate operations. ACS Nano 2012,6 (4):3553-3563.
    [160]Xue, L.; Zhou, X.; Xing, D., Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Analytical Chemistry 2012,84 (8):3507-3513.
    [161]Hu, P.; Zhu, C.; Jin, L.; Dong, S., An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Biosensors and Bioelectronics 2012,34 (1):83-87.
    [162]Fan, Q.; Zhao, J.; Li, H.; Zhu, L.; Li, G., Exonuclease Ⅲ-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosensors and Bioelectronics 2012,33 (1):211-215.
    [163]Venkataraman, S.; Dirks, R. M.; Rothemund, P. W.; Winfree, E.; Pierce, N. A., An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2007,2 (8):490-494.
    [164]Yin, P.; Choi, H. M.; Calvert, C. R.; Pierce, N. A., Programming biomolecular self-assembly pathways. Nature 2008,451 (7176):318-322.
    [165]Huang, J.; Wu, Y; Chen, Y.; Zhu, Z.; Yang, X.; Yang, C. J.; Wang, K.; Tan, W., Pyrene-Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. Angewandte Chemie International Edition 2011,50 (2): 401-404.
    [166]Li, J.; Fu, H. E.; Wu, L. J.; Zheng, A. X.; Chen, G. N.; Yang, H. H., General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Analytical Chemistry 2012,84 (12):5309-5315.
    [167]Wang, Y.; Bao, L.; Liu, Z.; Pang, D. W., Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Analytical Chemistry 2011,83 (21):8130-8137.
    [168]Gutsmann, T.; Schromm, A. B.; Brandenburg, K., The physicochemistry of endotoxins in relation to bioactivity. International Journal of Medical Microbiology 2007,297 (5): 341-352.
    [169]Tobias, P.; Gegner, J.; Tapping, R.; Orr, S.; Mathison, J.; Lee, J. D.; Kravchenko, V.; Han, J.; Ulevitch, R., Lipopolysaccharide dependent cellular activation. Journal of Periodontal Research 1997,32 (1):99-103.
    [170]Kim, Y. G.; Lee, C. S.; Chung, W. J.; Kim, E. M; Shin, D. S.; Rhim, J. H.; Lee, Y. S.; Kim, B. G.; Chung, J., Screening of LPS-specific peptides from a phage display library using epoxy beads. Biochemical and Biophysical Research Communications 2005,329 (1):312-317.
    [171]Murai, T.; Ogawa, Y; Kawasaki, H.; Kanoh, S., Physiology of the potentiation of lethal endotoxin shock by streptococcal pyrogenic exotoxin in rabbits. Infection and Immunity 1987, 55 (10):2456-2460.
    [172]Kotani, S.; Takada, H.; Tsujimoto, M.; Ogawa, T.; Takahashi, I.; Ikeda, T; Otsuka, K.; Shimauchi, H.; Kasai, N.; Mashimo, J., Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infection and Immunity 1985,49 (1):225-237.
    [173]Voss, S.; Fischer, R.; Jung, G.; Wiesmuller, K.-H.; Brock, R., A fluorescence-based synthetic LPS sensor. Journal of the American Chemical Society 2007',129 (3):554-561.
    [174]Jones, G.; Jiang, H., Detection of lipopolysaccharide and lipid A employing a spermine-pyrene conjugate. Bioconjugate Chemistry 2005,16 (3):621-625.
    [175]Zeng, L.; Wu, J.; Dai, Q.; Liu, W.; Wang, P.; Lee, C. S., Sensing of bacterial endotoxin in aqueous solution by supramolecular assembly of pyrene derivative. Organic Letters 2010,12 (18):4014-4017.
    [176]Rangin, M.; Basu, A., Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. Journal of the American Chemical Society 2004,126 (16):5038-5039.
    [177]Cani, P. D.; Bibiloni, R.; Knauf, C0; Waget, A.; Neyrinck, A. M.; Delzenne, N. M.; Burcelin, R., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008,57 (6):1470-1481.
    [178]Little, R. G.; Kelner, D. N.; Lim, E.; Burke, D. J.; Conlon, P. J., Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). Journal of Biological Chemistry 1994,269 (3):1865-1872.
    [179]Bai, L.; Yuan, R.; Chai, Y.; Yuan, Y.; Wang, Y.; Xie, S., Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin. Chemical Communications 2012,48 (89):10972-10974.
    [180]Yin, X. B.; Xin, Y. Y.; Zhao, Y, Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen) 32+-double-strand DNA composite film electrode. Analytical Chemistry 2009,81 (22):9299-9305.
    [181]Kim, S. E.; Su, W.; Cho, M.; Lee, Y.; Choe, W. S., Harnessing aptamers for electrochemical detection of endotoxin. Analytical Biochemistry 2012,424 (1):12-20.
    [182]Su, W.; Lin, M.; Lee, H.; Cho, M.; Choe, W. S.; Lee, Y, Determination of endotoxin through an aptamer-based impedance biosensor. Biosensors and Bioelectronics 2012,32 (1):32-36.
    [183]Liu, Z.; Zhang, W.; Zhu, S.; Zhang, L.; Hu, L.; Parveen, S.; Xu, G., Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosensors and Bioelectronics 2011,29 (1):215-218.
    [184]Zhang, Y.; Guo, Y.; Quirke, P.; Zhou, D., Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification. Nanoscale 2013,5 (11):5027-5035.
    [185]Zhu, X.; Zhao, J.; Wu, Y.; Shen, Z.; Li, G., Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Analytical Chemistry 2011,83 (11):4085-4089.
    [186]Nakayama, S.; Yan, L.; Sintim, H. O., Junction probes-sequence specific detection of nucleic acids via template enhanced hybridization processes. Journal of the American Chemical Society 2008,130(38):12560-12561.
    [187]Kong, R. M.; Zhang, X. B.; Zhang, L. L.; Huang, Y.; Lu, D. Q.; Tan, W.; Shen, G L.; Yu, R. Q., Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Analytical Chemistry 2010,83 (1):14-17.
    [188]Wang, Q.; Yang, L.; Yang, X.; Wang, K.; He, L.; Zhu, J.; Su, T., An electrochemical DNA biosensor based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy. Chemical Communications 2012,48 (24):2982-2984.
    [189]Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T., Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Applied Materials & Interfaces 2013,5 (8):3382-3391.
    [190]Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100):282-286.
    [191]Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K., Composites of graphene with large aromatic molecules. Advanced Materials2009,21 (31):3191-3195.
    [192]Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 2008,130(18):5856-5857.
    [193]Ambrosi, A.; Castaneda, M. T.; Killard, A. J.; Smyth, M. R.; Alegret, S.; Merkoci, A., Double-codified gold nanolabels for enhanced immunoanalysis. Analytical Chemistry 2007, 79 (14):5232-5240.
    [194]Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and characterization of Au colloid monolayers. Analytical Chemistry 1995,67 (4):735-743.
    [195]Huang, C. C.; Huang, Y. F.; Cao, Z.; Tan, W.; Chang, H. T., Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry 2005,77 (17):5735-5741.
    [196]Wang, Y.; Luo, W.; Reiser, G, Trypsin and trypsin-like proteases in the brain:proteolysis and cellular functions. Cellular and Molecular Life Sciences 2008,65 (2):237-252.
    [197]Zhu, C. L.; Lu, C. H.; Song, X. Y.; Yang, H. H.; Wang, X. R., Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. Journal of the American Chemical Society 2011,133 (5):1278-1281.
    [198]Bi, S.; Zhang, J.; Zhang, S., Ultrasensitive and selective DNA detection based on nicking endonuclease assisted signal amplification and its application in cancer cell detection. Chemical Communications 2010,46 (30):5509-5511.
    [199]Chang, C. C.; Wei, S. C.; Wu, T. H.; Lee, C. H.; Lin, C. W., Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified goldnanoparticles. Biosensors and Bioelectronics 2013,42:119-123.
    [200]Feng, L.; Chen, Y.; Ren, J.; Qu, X., A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011,32 (11):2930-2937.
    [201]Kuang, H.; Chen, W.; Xu, D.; Xu, L.; Zhu, Y.; Liu, L.; Chu, H.; Peng, C.; Xu, C.; Zhu, S., Fabricated aptamer-based electrochemical "signal-off'sensor of ochratoxin A. Biosensors and Bioelectronics 2010,26 (2):710-716.
    [202]Zuo, X.; Song, S.; Zhang, J.; Pan, D.; Wang, L.; Fan, C., A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society 2007,129 (5):1042-1043.
    [203]Hu, R.; Wen, W.; Wang, Q.; Xiong, H.; Zhang, X.; Gu, H.; Wang, S., Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosensors and Bioelectronics 2014,53: 384-389.
    [204]Xie, D.; Li, C.; Shangguan, L.; Qi, H.; Xue, D.; Gao, Q.; Zhang, C., Click chemistry-assisted self-assembly of DNA aptamer on gold nanoparticles-modified screen-printed carbon electrodes for label-free electrochemical aptasensor. Sensors and Actuators B:Chemical 2014,192:558-564.
    [205]Yang, X.; Qian, J.; Jiang, L.; Yan, Y.; Wang, K.; Liu, Q.; Wang, K., Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry 2014,96:7-13.
    [206]Xu, F.; Hua, M.; Luo, L.; Du, H.; Yang, Y., Electrochemical aptamer sensor for thrombin detection based on Au nanoneedle and enzymatic ascorbic acid oxidization. Journal of Nanoscience and Nanotechnology 2013,13 (1):558-563.
    [207]Song, L. H.; Lim, S. N.; Kang, K. K.; Park, S. B., Graphene-based mesoporous nanocomposites of spherical shape with a 2D layered structure. Journal of Materials Chemistry A 2013,1 (23):6719-6722.
    [208]Chen, Y.; Star, A.; Vidal, S., Sweet carbon nanostructures:carbohydrate conjugates with carbon nanotubes and graphene and their applications. Chemical Society Reviews 2013,42 (11):4532-4542.
    [209]Ihiawakrim, D.; Ersen, O.; Melin, F.; Hellwig, P.; Janowska, I.; Begin, D.; Baaziz, W.; Begin-Colin, S.; Pham-Huu, C.; Baati, R., A single-stage functionalization and exfoliation method for the production of graphene in water:stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. Nanoscale 2013,5(19):9073-9080.
    [210]Willner, I.; Baron, R.; Willner, B., Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics 2007,22 (9):1841-1852.
    [211]Yildiz, H. B.; Freeman, R.; Gill, R.; Willner, I., Electrochemical, photoelectrochemical, and piezoelectric analysis of tyrosinase activity by functionalized nanoparticles. Analytical Chemistry 2008,80 (8):2811-2816.
    [212]Cao, L.; Liu, Y; Zhang, B.; Lu, L., In situ controllable growth of prussian blue nanocubes on reduced graphene oxide:facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Applied Materials& Interfaces 2010,2 (8): 2339-2346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700