用户名: 密码: 验证码:
碳纳米管的功能化修饰及其在电化学传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过氮烯环加成反应(nitrene cycloaddition)将含叠氮端基的温敏型嵌段共聚物聚N,N-二甲基丙烯酰胺-b-聚(N-异丙基丙烯酰胺-co-N-丙烯酰氧基琥珀酰亚胺)(PDMA-b-P(NIPAM-co-NAS))共价接枝到单壁碳纳米管(SWNTs)表面(合成f-SWNTs);研究在外界环境刺激下,温敏型嵌段共聚物和f-SWNTs在水溶液中的共组装,并通过乙二胺交联实现胶束在SWNTs表面的负载;通过在f-SWNTs表面负载纳米粒子功能性物质,以及用三聚氰胺对多壁碳纳米管(MWNTs)进行功能化修饰,进而构筑电化学传感器用于检测双酚A(BPA),从而实现碳纳米管(CNTs)在电化学传感器中的应用。本论文主要从以下四个方面展开研究工作:
     (1)温敏型嵌段共聚物的合成。采用可逆加成-断裂链转移(RAFT)聚合反应合成了结构规整且含叠氮端基的温敏型嵌段共聚物PDMA-b-P(NIPAM-co-NAS)和P(DMA-co-NAS)-b-PNIPAM,系统研究了共聚物浓度以及NAS交联单元含量对温敏型嵌段共聚物自组装行为的影响。
     (2)温敏型嵌段共聚物/f-SWNTs共组装研究。首先利用氮烯环加成反应将温敏型嵌段共聚物共价接枝到SWNTs表面(合成f-SWNTs),然后通过加入自由的嵌段共聚物进行共组装,通过交联实现聚合物胶束在SWNTs表面的负载。系统考察了共聚物/f-SWNTs组成对共组装结构的影响。
     (3) f-SWNTs负载磁性纳米粒子(MNPs)及其电化学传感应用。先通过MNPs和硅烷偶联剂反应合成胺基功能化的磁性纳米粒子(MNP-NH2),然后通过磁性纳米粒子表面的胺基和f-SWNTs接枝共聚物中NAS单元反应将MNP负载在碳纳米管表面(SWNT-MNP)。研究了BPA在SWNT-MNP修饰电极上的电化学行为,实验结果表明,此修饰电极对BPA有明显的电催化作用,从而建立了一种快速而又灵敏的用于检测BPA的电化学方法。在最佳条件下,BPA的氧化峰电流与浓度在0.005~8.43μM范围内呈良好的线性关系,检测限为1.21nM。
     (4)碳纳米管/三聚氰胺复合物在电化学传感中的应用。利用三聚氰胺(MAM)对MWNTs进行功能化修饰,并将此MWNT-MAM复合物修饰电极用于检测BPA。实验结果表明,BPA在此修饰电极上的氧化峰电流显著增加,由此建立了一种快速而又灵敏的直接测定BPA的电化学方法。在最佳条件下,BPA的氧化峰电流与其浓度在10.0~40.8μM范围内呈良好的线性关系,检测限为5.0nM。将此方法应用于塑料实样中BPA的测定,其回收率在96%~102%之间。
Covalent functionalization of single-walled carbon nanotubes (SWNTs) with well-defined, azide-derivatized poly(N,N-dimethylacrylamide)-b-poly(N-isopropylacrylam-ide-co-N-acryloxysuccinimide), PDMA-b-P(NIPAM-co-NAS),(f-SWNTs) wasaccompished by nitrene cycloaddition reaction. Subsequently, the co-assembly of thecopolymer and f-SWNT blends was carried out in aqueous solution, leading tothermoresponsive polymeric micelles that adhered to the surface of nanotubes. Thecopolymer aggregates were stabilized and covalently anchored to SWNTs aftercrosslinking with ethylenediamine (SWNT-micelle). In addition, two electrochemicalsensing platforms were developed for the determination of biphenol A (BPA) basedon the immobilization of Fe3O4nanoparticles onto f-SWNTs as well as modificationof nanotubes with melamine. The main research contents were shown as follows:
     (1) Synthesis and self-assembly of thermoresponsive copolymers. Well-defineddiblock copolymers with azide terminated group, PDMA-b-P(NIPAM-co-NAS) andP(DMA-co-NAS)-b-PNIPAM, were successfully synthesized by reversible addition-fragmentation transfer (RAFT) polymerization. Core and shell cross-linked micelleswere fabricated by ethylenediamine crosslinking. The effect of polymer concentrationas well as copolymer composition (i.e., NAS content) on the self-assembly behaviourof the thermoresponsive copolymers were studied by dynamical light scattering.
     (2) Co-assembly of copolymers and f-SWNTs. Firstly, covalent functionalizationof SWNTs with block copolymer was accomplished by nitrene cycloaddition, andthen the co-assembly of the copolymer and f-SWNT blends was carried out inaqueous solution. The effect of the concentrations of polymer and f-SWNTs on theresultant co-assembled structures was investigated.
     (3) Immobilization of magnetic nanoparticles (MNPs) to f-SWNTs (SWNT-MNP)and the application for electrochemical sensing. MNP-NH2was first synthesizedthrough the reaction between MNPs and silane coupling agent. After which it wasimmobilized onto the surface of f-SWNTs through reacting with the NAS units. Theelectrochemical behaviors of BPA at the SWNT-MNP composites modified electrodeexhibited remarkable electrocatalytic behaviors for BPA. Therefore, a quick andsensitive electroanalytical method was developed for the determination of BPA.Under optimized conditions, a good linear relationship between the oxidation peakcurrent and its concentration was obtained in the range of0.005~8.43μM, with a limit of detect of1.21nM.
     (4) The application of MWNT/melamine complex (MWNT-MAM) for electro-chemical sensing. MWNT-MAM was synthesized through modification of MWNTwith melamine, and a novel electrochemical sensor for the determination of BPA inwater was fabricated by immobilization of MWNT-MAM onto the surface of glassycarbon electrode. The cyclic voltammetry results showed that the sensor exhibitedstrong catalytic activity toward the oxidation of BPA with a well-defined cyclicvoltammetric peak at0.56V. Therefore, a quick, direct and sensitive electrochemicalmethod for the determination of BPA was developed. Under optimal conditions, theelectrochemical sensor exhibited a wider linearity range from10.0nM to40.8μMBPA with a detection limit of5.0nM (S/N=3). This novel sensor was successfullyapplied to determine BPA leached from real plastic samples with good recovery,ranging from96%to102%.
引文
[1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [2] Baughman R H, Zakhidov A A, Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792.
    [3] Joumet C, Maser W K, Bernier P. Large-scale production of single-walled carbon nanotubesby the electric arc technique [J]. Nature,1997,388(6644):756-758.
    [4]胡文平,刘文圻,曾鹏举.纳米碳管[J].化学通报,2000,63(2):7-11.
    [5] Zen J M, Kumar A S, Tsai D M. Recent updates of chemically modified electrodes inanalytical chemistry [J]. Electroanalysis,2003,15(13):1073-1087.
    [6] Bakker E. Electrochemical sensors [J]. Anal. Chem.,2004,76(12):3285-3298.
    [7]梁文平,庄乾坤.分析化学的明天-学科发展前沿与挑战[M].北京:科学出版社,2003,12-18.
    [8] Liang R P, Qiu J D, Cai P X. A novel amperometric immunosensor based onthree-dimensional sol-gel network and nanoparticle self-assemble technique [J]. Anal. Chim.Acta.,2005,534(2):223-229.
    [9] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, andtoughness of nanorods and nanotubes [J]. Science,1997,277(5334):1971-1975.
    [10] Qverney G, Zhong W, Tomanek D. Structural digidity and low-frequency vibrational-modesof long carbon tubues [J]. Z. Phys. D,1993,27(1):93-96.
    [11] Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes instabilities beyondlinear response [J]. Phys. Rev. Lett.,1996,76(14):2511-2514.
    [12] Yi W, Lu L, Zhang D L. Linear specific heat of carbon nanotubes [J]. Phys. Rev. B,1999,59(14):9015-9018.
    [13] Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Appl. Phys. Lett.,2001,79(25):4225-4227.
    [14] Lu W, Dong J, Li Z. Optical properties of aligned carbon nanotube systems studied by theeffective-medium approximation method [J]. Phys. Rev. B,2001,63(3):33401-33404.
    [15] Watanabe H, Manabe C, Shimiza M. Carbon nanotube ring transistor [J]. Oyo. Butsuri.,2001,70(12):1431-1435.
    [16] Sleypan G Y, Maksimenko S A, Lakhtakia A. Electromagnetic response of carbon nanotubesand nanotube ropes [J]. Synth. Met.,2001,124(1):121-123.
    [17] Vivien L, Anglaret E, Riehl D. Optical limiting properties of singlewall carbon nanotubes [J].Opt. Commun.,2000,174(1-4):271-275.
    [18] de Heer W A, Chatelain A, Ugarte D. A carbon nanotubes field-emission electron source [J].Science,1995,270(5239):1179-1180.
    [19] Collins P G, Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix fieldemitters [J]. Phys. Rev. B,1997,55(15):9391-9399.
    [20] Cao A, Ci L, Li D, et al. Vertical aligned carbon nanotubes grown on Au film and reductionof threshold field in field emission [J]. Chem. Phys. Lett.,2001,335(3-4):150-154.
    [21] Cao A, Zhang X, Wu C, et al. Thinning and diluting aligned carbon nanotube films foruniform field emission [J]. Appl. Phys. A,2002,74(3):415-418.
    [22] Ebbesen T W, Lezee H J, Hiura H. Electrical conductivity of individual carbon nanotubes [J].Nature,1996,382(6586):54-56.
    [23] Saito R, Fujita M, Dreselhaus G. Electronic structure and growth mechanism of carbontubules [J]. Mater. Sci. Eng., B1993,19(1-2):185-191.
    [24]黄桂荣,陈建.石墨烯的合成与应用[J].炭素技术,2009,1(28):35-39.
    [25] Huang Y H, Okada M, Tanaka K. Estimation of superconducting transition temperature inmetallic carbon nanotubes [J]. Phys. Rev. B,1996,53(9):5129-5132.
    [26]徐甲强,陈玉萍,李亚栋,等.一维纳米材料在气体传感器中的应用[J].传感器技术,2005,24(1):4-6.
    [27] Jing K, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors [J].Science,2000,287(5453):622-625.
    [28] Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts [J]. Appl. Phys. Lett.,2002,81(10):1869-1871.
    [29]刘华平,程国安,彭宜彬,等.碳纳米管负载Ni催化剂制备碳纳米管的研究[J].北京师范大学学报(自然科学版),2005,41(1):38-41.
    [30]麦亚潘,刘忠范.碳纳米管-科学与应用[M].北京:科学出版社,2007,121-123.
    [31] Yang H S, Zhou X, Zhang Q W. Studies on preparation and properties ofpolyaniline/franctionized carbon nanotube composite [J]. Acta Polym. Sin.,2004,1(5):766-769.
    [32] Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubesand subsequent derivatization reactions [J]. Acc. Chem. Res.,2002,35(12):1087-1095.
    [33] Coleman K S, Bailey S R, Fogden S, et al. Functionalization of single-walled carbonnanotubes via the bingel reaction [J]. J. Am. Chem. Soc.,2003,125(29):8722-8723.
    [34] Weiss R, Reichel S, Handke M, et al. Generation and trapping reactions of a formal1:1complex between singlet carbon and2,2′-bipyridine [J]. Angew. Chem., Int. Ed.,1998,37(3):344-347.
    [35] Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes [J].J. Am. Chem. Soc.,2002,124(5):760-761.
    [36] Holzinger M, Vostrowsky O, Hirsch A. Sidewall functionalization of carbon nanotubes [J].Angew. Chem., Int. Ed.,2001,40(21):4002-4005.
    [37] Chen Y, Haddon R C, Fang S, et al. Chemical attachment of organic functional groups to asingle-walled carbon nanotube material [J]. J. Mater. Res.,1998,13(9):2423-2431.
    [38] Dyke C A, Tour J M. Solvent-free functionalization of carbon nanotubes [J]. J. Am. Chem.Soc.,2003,125(5):1156-1157.
    [39] Banerjee S, Wong S S. Selective metallic tube reactivity in the solution-phase osmylation ofsingle-walled carbon nanotubes [J]. J. Am. Chem. Soc.,2004,126(7):2073-2081.
    [40] Hirsch A. Functionalization of single-walled carbon nanotubes [J]. Angew. Chem., Int. Ed.,2002,41(11):1853-1859.
    [41] Pekker S, Salvetat J P, Jakab E. Hydrogenation of carbon nanotubes and graphite in liquidammonia [J]. J. Phys. Chem. B,2001,105(33):7938-7943.
    [42] Gao C, He H, Zhou L, et al. Scalable functional group engineering of carbon nanotubes byimproved one-step nitrene chemistry [J]. Chem. Mater.,2009,21(2):360-370.
    [43] Campidelli S, Sooambar C, Lozano Diz E, et al. Dendrimer-functionalized single-walledcarbon nanotubes: synthesis, characterization, and photoinduced electron transfer [J]. J. Am.Chem. Soc.,2006,128(38):12544-12552.
    [44] Ballesteros B, de la Torre G, Ehli C, et al. Single-Wall carbon nanotubes bearing covalentlylinked phthalocyanines-photoinduced electron tranfer [J]. J. Am. Chem. Soc.,2007,129(16):5061-5068.
    [45] Georgakilas V, Bourlinos A B, Zboril R, et al. Synthesis, characterization and aspects ofsuperhydrophobic functionalized carbon nanotubes [J]. Chem. Mater.,2008,20(9):2884-2886
    [46] Fabre B, Hauquier F, Herrier C, et al. Covalent assembly and micropatterning offunctionalized multiwalled carbon nanotubes to monolayer-modified Si(111) surfaces [J].Langmuir,2008,24(13):6595-6602.
    [47] Bae J H, Shanmugharaj A M, Noh W H, et al. Surface chemical functionalized single-walledcarbon nanotube with anchored phenol structures: Physical and chemical characterizationAppl. Surf. Sci.,2007,253(9):4150-4155.
    [48] Li H M, Cheng F Y, Duft A M et al. Functionalization of single-walled carbon nanotubes withwell-defined polystyrene by “click” coupling [J]. J. Am. Chem. Soc.,2005,127(41):14518-14524.
    [49] Doyle C D, Tour J M. Environmentally friendly functionalization of single-walled carbonnanotubes in molten urea [J]. Carbon,2009,47(14):3215-3218.
    [50] Fu K F, Huang W J, Lin Y, Riddle L A, et al. Defunctionalization of functionalized carbonnanotubes [J]. Nano. Lett.,2001,1(4):439-443.
    [51] Wang Y, Iqbal Z, Malhotra S V. Functionalization of carbon nanotubes with amines andenzymes [J]. Chem. Phys. Lett.,2005,402(1-3):96-101.
    [52] Hu N, Dang G, Zhou H, et al. Efficient direct water dispersion of multi-walled carbonnanotubes by functionalization with lysine [J] Mater. Lett.,2007,61(30):5285-5287.
    [53] Ehli C, Rahman G M A, Jux N B, D. et al. Interactions in single wall carbonnanotubes/pyrene/porphyrin nanohybrids [J]. J. Am. Chem. Soc.,2006,128(34):11222-11231.
    [54] Ogoshi T, Takashima Y, Yamaguchi H, et al. Chemically-responsive sol gel transition ofsupramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids ofSWNTs and cyclodextrins [J]. J. Am. Chem. Soc.,2007,129(16):4878-4879.
    [55] Wu P, Chen X, Hu N, et al. Biocompatible carbon nanotubes generated by functionalizationwith glycodendrimers [J]. Angew. Chem., Int. Ed.,2008,47(27):5022-5025.
    [56] Cheng F, Zhang S, Adronov A, et al. Triply fused Zn(II)-porphyrin oligomers: Synthesis,properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs)[J]Chem. Eur. J.,2006,12(23):6062-6070.
    [57] Han L, Wu W, Kirk F L, et al. A direct route toward assembly of nanoparticle-carbonnanotube composite materials [J]. Langmuir,2004,20(14):6019-6025.
    [58] Gao C, Li W W, Morimoto H, et al. Magnetic carbon nanotubes: Synthesis by electrostaticself-assembly approach and application in biomanipulations [J]. J. Phys. Chem. B,2006,110(14):7213-7220.
    [59] Sainsbury T, Stolarczyk J, Fitzmaurice D. An experimental and theoretical study of theself-assembly of gold nanoparticles at the surface of functionalized multiwalled carbonnanotubes [J]. J. Phys. Chem. B,2005,109(34):16310-16325.
    [60] Hwang S H, Moorefield C N, Wang P, et al. Dendron-tethered and templated CdS quantumdots on single-walled carbon nanotubes [J]. J. Am. Chem. Soc.,2006,128(23):7505-7059.
    [61] Hasobe T, Fukuzumi S, Kamat P V. Organized assemblies of single wall carbon nanotubesand porphyrin for photochemical solar cells: Charge injection from excited porphyrin intosingle-walled carbon nanotubes [J]. J. Phys. Chem. B,2006,110(50):25477-25484.
    [62] Chen R J, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walledcarbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc.,2001,123(16):3838-3839.
    [63] Showkat A, Lee K P, Gopalan A I, et al. Dispersion of gold nanoparticles intothiol-functionalized carbon nanotubes by γ-radiation [J]. Diam. Relat. Mater.,2007,16(8):1688-1692.
    [64] Eder D, Windle A H. Carbon–inorganic hybrid materials: The carbon-nanotube/TiO2interface[J]. Adv. Mater.,2008,20(9):1787-1793.
    [65] Peng M, Li D, Chen Y, et al. Electrostatic-assembly of carbon nanotubes (CNTs) and polymerparticles in water: A facile approach to improve the dispersion of CNTs in thermoplastics [J].Macromol. Rapid. Commun.,2006,27(11):859–864.
    [66] Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes: A route to nanotube composites[J]. J. Am. Chem. Soc.,2003,125(19):5650-5651.
    [67] Wang R, Cherukuri P, Duque J G, et al. SWCNT PEG-eggs: Single-walled carbon nanotubesin biocompatible shell-crosslinked micelles [J]. Carbon,2007,45(12):2388-2393.
    [68] Zhou W, Lv S, Shi W. Preparation of micelle-encapsulated single-wall and multi-wall carbonnanotubes with amphiphilic hyperbranched polymer [J]. Eur. Polym. J.,2008,44(3):587-601.
    [69] Zou P, Shi G Y, Pan C Y. Large-compound vesicle-encapsulated multiwalled carbonnanotubes: A unique route to nanotube composites [J]. J. Polym. Sci. Part A-Poly. Chem.,2009,47(14):3669-3679.
    [70] Nagarajan R, Bradley R A, Nair B R. Thermodynamically stable, size selective solubilizationof carbon nanotubes in aqueous solutions of amphiphilic block copolymers [J]. J. Chem.Phys.,2009,131(10):104906-104919.
    [71] Shvartzman-Cohen R, Monje I, Florent M, et al. Self-assembly of amphiphilic blockcopolymers in dispersions of multiwalled carbon nanotubes as reported by spin probeelectron paramagnetic resonance spectroscopy [J]. Macromolecules,2010,43(2):606-614.
    [72] Florent M, Shvartzman-Cohen R, Goldfarb D, et al. Self-assembly of pluronic blockcopolymers in aqueous dispersions of single-wall carbon nanotubes as observed by spinprobe EPR [J]. Langmuir,2008,24(8):3773-3779.
    [73] Shvartzman-Cohen R, Florent M, Goldfarb D, et al. Aggregation and self-assembly ofamphiphilic block copolymers in aqueous dispersions of carbon nanotubes [J]. Langmuir,2008,24(9):4625-4632.
    [74] Shin H I, Min B G, Jeong W Y, et al. Amphiphilic block copolymer micelles: New dispersantfor single wall carbon nanotubes [J]. Macromol. Rapid Commun.,2005,26(18):1451-1457.
    [75] Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly ofpoly(ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates [J].Macromolecules,2007,6(40):2148-2157.
    [76] Giacomelli C, Men L L, Borsali R, et al. Phosphorylcholine-based pH-responsive diblockcopolymer micelles as drug delivery vehicles: Light scattering, electron microscopy, andfluorescence experiments [J]. Biomacromolecules,2006,7(3):817-828.
    [77] Hafner J H, Cheung C L, Leiber C M. Dircet growth of single-walled carbon nanotubesscanning probe microscopy tips [J]. J. Am. Chem. Soc.,1999,121(41):9750-9751.
    [78] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a singlecarbon nanotube [J]. Nature,1998,393(6680):49-52.
    [79] Li Y H, Wang S G, Wei J Q, et al. Lead adsorption on carbon nanotubes [J]. Chem. Phys.Lett.,2002,357(3-4):263-266.
    [80] Li Y H, Di Z C, Ding J, et al. Adsorption thermo-dynamic, kinetic and desorption studies ofpb2+on carbon nanotubes [J]. Water Res.,2005,39(4):605-609.
    [81] Di Z C, Ding J, Peng X J, et al. Chromium adsorption by aligned carbon nanotubes supportedceria nanopartieles.[J]. Chemosphere,2006,62(5):861-865.
    [82]李权龙,袁东星.多壁碳纳米管作为气相色谱固定相的性能研究[J].化学学报,2002,60(10):1876-1882.
    [83] Wang Z H, Luo G A, Chen J F, et al. Carbon nanotubes as separation carrier in capillaryelectrophoresis [J]. Electrophoresis,2003,24(24):4181-4188.
    [84] Liu C Y, Bard A J, Wudl F, et al. Electrochemical characterization of films of single-walledcarbon nanotubes and their possible application in supercapacitors [J]. Electrochem.Solid-State Lett.,1999,2(11):577-578.
    [85] Luo H X, Shi Z J, Li N Q, et al. Investigation on the electrochemical and electrocatalyticbehavior of chemically modified electrode of single wall carbon nanotube functionalizedwith carboxylic acid group [J]. Chem. Res. Chin. Univ.,2000,21(9):1372-1374.
    [86] Luo H, Shi Z, Li N. Investigation of the electrochemical and electrocatalytic behavior ofsingle-wall carbon nanotube film on a glassy carbon electrode [J]. Anal. Chem.,2001,73(5):915-920.
    [87] Li J, Liu Q, Liu Y, et al. DNA biosensor based on chitosan film doped with carbon nanotubes[J]. Anal. Biochem.,2005,346(1):107-114.
    [88] Zhai X, Wei W, Zeng J, et al. Layer-by-layer assembled film based on chitosan carbonnanotubes,and its application to electrocatalytic oxidation of NADH [J]. Microchim. Acta,2006,154(3-4):315-320.
    [89] Wang J, Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor [J]. Anal.Chim. Acta,2005,539(1-2):209-213.
    [90] Wu K, Hu S. Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode byelectropolymerization [J]. Carbon,2004,42(15):3237-3242.
    [91] Sassolas A, Leca-Bouvier B D, Blum L. DNA Biosensors and Microarrays [J]. J. Chem. Rev.,2008,108(1):109-139.
    [92]龚美娟,李静,韩涛,等.电化学方法检测DNA碳纳米管修饰电极[J].应用化学,2008,25(9):1037-1041.
    [93] Guo M L, Chen J H, Liu D Y. Electrochemical characteristics of the immobilization of calfthymus DNA molecules on multi-walled carbon nanotubes [J]. Bioelectrochemistry,2004,62(1):29-35.
    [94] Clerldenin J, Kim J W, Tung S. Proceeding of the2nd IEEE international conference onnano/micro engineered and molecular systems [J].2007,1028.
    [95] Cai C X, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbonnanotube electrode [J]. Anal. Biochem.,2004,325(2):285-292.
    [96] Zhao G C, Zhang L, Zhang X W, et al. Myoglobin on multi-walled carbon nanotubesmodified electrode: Direct electrochemistry and electrocatalysis.[J]. Electrochem. Commun.,2003,5(9):825-829.
    [97] Qu S, Wang J, Kong J, et al. Magnetic loading of carbon nanotube/nano-Fe3O4composite forelectrochemical sensing [J]. Talanta,2007,71(3):1096-1102.
    [98] Qu F, Yang M, Jiang J, et al. Amperometric biosensor for choline based on layer-by-layerassembled functionalized carbon nanotube and polyaniline multilayer film [J]. Anal.Biochem.,2005,344(1):108-114.
    [99] Yin Y J, Lu Y F, Wu P. Direct electrochemistry of redox proteins and enzymes promoted bycarbon nanotubes [J]. Sensors,2005,5(4):220-234.
    [100] Wang M K, Shen Y, Liu Y. Direct electrochemistry of microperoxidase11using carbonnanotube modified electrodes [J]. J. Electroanal. Chem.,2005,578(1):121-127.
    [101] Hrapovic S, Liu E Y, Male K, et al. Metallic nanoparticle-carbon nanotube composites forelectrochemical determination of explosive nitroaromatic compounds [J]. Anal. Chem.,2006,78(15):5504-5512.
    [102] Yang P, Wei W, Tao C. Determination of trace thiocyanate with nano-silver coatedmulti-walled carbon nanotubes modified glassy carbon electrode [J]. Chim. Acta,2007,585(2):331-336.
    [103] Gao Y, Cao Y, Yang D, et al. Sensitivity and selectivity determination of bisphenol A usingSWCNT–CD conjugate modified glassy carbon electrode [J]. J. Hazard. Mater.,2012,199-200:111-118.
    [104] Chiu J Y, Yu C M, Yen M J, et al. Glucose sensing electrodes based on apoly(3,4-ethylenedioxythiophene)/prussian blue bilayer and multi-walled carbon nanotubes[J]. Biosens. Bioelectron.,2009,24(7):2015-2020.
    [105]朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H2O2的研究[J].广西师范大学学报(自然科学版),2003,21(4):1637-1638.
    [106] Wang J X, Li M X, Shi Z J, et al. Electrocatalytic oxidation of3,4-dihydroxyphenylaceticacid at a glassy carbon electrode modified with single wall carbon nanotubes [J].Electrochim. Acta,2001,47(4):651-657.
    [107] Banks C E, Davies T J, Wildgoose G G, et al. Electrocatalysis at graphite and carbonnanotube modified eleetrodes: Edge-plane sites and tube ends are the reactive sites [J].Chem. Commun.(Camb),2005,7:829-841.
    [1] Gaucher G, Dufresne M H, Sant V P, et al. Block copolymer micelles: preparation,characterization and application in drug delivery [J]. J. Control. Release,2005,109(1-3):169-188.
    [2] Huang W, Zhou Y F, Yan D Y. Direct synthesis of amphiphilic block copolymers fromglycidyl methacrylate and poly(ethylene glycol) by cationic ring-opening polymerization andsupramolecular self-assembly [J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43(10):2038-2047.
    [3] Yin L G, Dalsin M C, Sizovs A, Reineke T M, Marc A. Hillmyer M A,Glucose-functionalized, serum-stable polymeric micelles from the combination of anionicand RAFT polymerizations [J]. Macromolecules,2012,45(10),43224332.
    [4] Zhao Y Q, Duan S F, Zeng X, Liu C J, et al. Prodrug strategy for PSMA-targeted delivery ofTGX-221to prostate cancer cells [J]. Mol. Pharmaceutics2012,9(6),1705-1716.
    [5] Cotanda P, Lu A, Patterson J P, et al. Functionalized organocatalytic nanoreactors:Hydrophobic pockets for acylation reactions in water [J]. Macromolecules2012,45(5),2377-2384.
    [6] Theodoly O, Cascao-Pereira L, Bergeron V, et al. A combined streaming-potential opticalreflectometer for studying adsorption at the water/solid surface [J]. Langmuir,2005,21(22):10127-10139.
    [7] Seuring J, Agarwal S. First example of a universal and cost-effective approach: polymerswith tunable upper critical solution temperature in water and electrolyte solution [J].Macromolecules2012,45(9),39103918.
    [8] Wan X J, Liu T, Liu S Y. Thermoresponsive core cross-linked micelles for selectiveratiometric fluorescent detection of Hg2+ions [J]. Langmuir2011,27(7),4082–4090.
    [9] Butun V, Liu S, Weaver J V M, et al. A brief review of ‘schizophrenic’ block copolymers [J].React. Funct. Polym.,2006,66(1):157-165.
    [10] Adelsberger J, Kulkarni A, Jain A, et al. Thermoresponsive PS-b-PNIPAM-b-PS micelles:aggregation behavior, segmental dynamics, and thermal response [J]. Macromolecules,2010,43(5),2490–2501.
    [11] Li Y, Lokitz B S, McCormick C L. RAFT synthesis of a thermally responsive ABC triblockcopolymer incorporating N-acryloxysuccinimide for facile in situ formation of shellcross-linked micelles in aqueous media [J]. Macromolecules,2006,39(1):81-89.
    [12] Zhang J, Jiang X, Zhang Y, et al. Facile fabrication of reversible core cross-linked micellespossessing thermosensitive swellability [J]. Macromolecules,2007,40(25):9125-9132.
    [13] Liu J Y, Nie Z H, Gao Y, et al."Click" coupling between alkyne-decorated multiwalledcarbon nanotubes and reactive PDMA-PNIPAM micelles [J]. J. Polym. Sci., Part A: Polym.Chem.,2008,46(21):7187–7199.
    [14] Relógio P, Charreyre M T, Farinha J P S, et al. Well-defined polymer precursors synthesizedby RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide: random andblock copolymers [J]. Polymer,2004,45(26):8639–8649.
    [15] Xu Z, Niu Y, Yang L, et al. Morphology, rheology and crystallization behavior of polylactidecomposites prepared through addition of five-armed star polylactide grafted multiwalledcarbon nanotubes [J]. Polymer,2010,51(3):730-737.
    [16] Kim J J, Park K. Immobilization of concanavalin A to glucose containing polymers [J].Macromol. Symp.,2001,172(1):95-102.
    [17] Jiang J Q, Qi B, Lepage M, et al. Polymer micelles stabilization-on-demand throughreversible photocrosslinking [J]. Macromolecules,2007,40(4):790-792.
    [18] Stewart S, Liu G. Hollow Nanospheres from polyisoprene-block-poly(2-cinnamoylethylmeth-acrylate)-block-poly(tert-butyl acrylate)[J]. Chem. Mater.,1999,11(4):1048-1054.
    [19] Jiang X Z, Zhang G Y, Narain R, Liu S Y. Fabrication of two types of shell-cross-linkedmicelles with “inverted” structures in aqueous solution from schizophrenic water-solubleABC triblock copolymer via click chemistry [J]. Langmuir2009,25(4),2046-2054.
    [20] Cho E C, Lee J, Cho K. Role of bound water and hydrophobic interaction in phase transitionof poly(N-isopropylacrylamide) aqueous solution [J]. Macromolecules,2003,36(26):9929-9934.
    [21] Thurmond K B, Kowalewski T, Wooley K L. Water-soluble knedel-like structures: Thepreparation of shell-cross-linked small particles [J]. J. Am. Chem. Soc.,1996,118(30):7239-7240.
    [1] Gonzalez-Dominguez J M, Tesa-Serrate M A, Anson-Casaos A, et al. Wrapping of SWCNTsin polyethylenoxide-based amphiphilic diblock copolymers: An approach to purification,debundling, and integration into the epoxy matrix [J]. J. Phys. Chem. C,2012,116(13):7399–7408.
    [2] Ertas M, Walczak R M, Das R K, et al. Supercapacitors based on polymeric dioxypyrrolesand single walled carbon nanotubes [J]. Chem. Mater.,2012,24(3):433-443.
    [3] Zydziak N, Hübner C, Bruns M, et al. One-step functionalization of single-walled carbonnanotubes (SWCNTs) with cyclopentadienyl-capped macromolecules via Diels Alderchemistry [J]. Macromolecules,2011,44(9):3374-3380.
    [4] Aprile C, Martín R, Alvaro M, et al. Covalent functionalization of short, single-wall carbonnanotubes: Photophysics of2,4,6-triphenylpyrylium attached to the nanotube walls [J]. Chem.Mater.,2009,21(5):884–890.
    [5] Furmanchuk A O, Leszczynski J, Tretiak S, et al. Morphology and optical response of carbonnanotubes functionalized by conjugated polymers [J]. J. Phys. Chem. C,2012,116(12):6831–6840.
    [6] Zhao Y-B, Wu W, Chen J-F, et al. Preparation of polyaniline/multiwalled carbon nanotubesnanocomposites by high gravity chemical oxidative polymerization [J]. Ind. Eng. Chem. Res.,2012,51(9):3811–3818.
    [7] Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes: A route to nanotube composites[J]. J. Am. Chem. Soc.,2003,125(19):5650-5651.
    [8] Wang R, Cherukuri P, Duque J G, et al. SWCNT PEG-eggs: Single-walled carbon nanotubesin biocompatible shell-crosslinked micelles [J]. Carbon,2007,45(12):2388-2393.
    [9] Zou P, Shi G, Pan C. Large-compound vesicle-encapsulated multiwalled carbon nanotubes: Aunique route to nanotube composites [J]. J. Polym. Sci., Part. A: Polym. Chem.,2009,47(14):3669–3679.
    [10] Nagarajan R, Bradley R A, Nair B R. Thermodynamically stable, size selective solubilizationof carbon nanotubes in aqueous solutions of amphiphilic block copolymers [J]. J. Chem.Phys.,2009,131(10):104906-104919.
    [11] Shvartzman-Cohen R, Monje I, Florent M, et al. Self-assembly of amphiphilic blockcopolymers in dispersions of multiwalled carbon nanotubes as reported by spin probeelectron paramagnetic resonance spectroscopy [J]. Macromolecules,2010,43(2):606-614.
    [12] Shvartzman-Cohen R, Florent M, Goldfarb D, et al. Aggregation and self-assembly ofamphiphilic block copolymers in aqueous dispersions of carbon nanotubes [J]. Langmuir,2008,24(9):4625-4632.
    [13] Peng M, Li D, Chen Y, et al. Electrostatic-assembly of carbon nanotubes (CNTs) and polymerparticles in water: A facile approach to improve the dispersion of CNTs in thermoplastics [J].Macromol. Rapid. Commun.,2006,27(11):859–864.
    [14] Shin H I, Min B G, Jeong W Y, et al. Amphiphilic block copolymer micelles: New dispersantfor single wall carbon nanotubes [J]. Macromol. Rapid. Commun.,2005,26(18):1451-1457.
    [15] Discher D E, Ortiz V, Srinivas G, et al. Emerging applications of polymersomes in delivery:From molecular dynamics to shrinkage of tumors [J]. Prog. Polym. Sci.,2007,32(8-9):838–857.
    [16] Yow H N, Routh A F. Formation of liquid core–polymer shell microcapsules [J]. Soft Mater.,2006,2(11):940-949.
    [17] Huang H, Hoogenboom R, Leenen M A M, et al. Solvent-induced morphological transition incore-cross-linked block copolymer micelles [J]. J. Am. Chem. Soc.,2006,128(11):3784-3788.
    [18] Jiang J Q, Qi B, Lepage M, et al. Polymer micelles stabilization-on-demand throughreversible photocrosslinking [J]. Macromolecules,2007,40(4):790-792.
    [19] Li Y, Lokitz B S, McCormick C L. RAFT synthesis of a thermally responsive ABC triblockcopolymer incorporating N-acryloxysuccinimide for facile in situ formation of shellcross-linked micelles in aqueous media [J]. Macromolecules,2006,39(1):81-89.
    [20] Convertine A J, Lokitz B S, Vasileva Y, et al. Direct synthesis of thermally responsiveDMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, roomtemperature RAFT polymerization [J]. Macromolecules,2006,39(5):1724-1730.
    [21] Roux E, Francis M, Winnik F M, et al. Stimuli-responsive liposome-polymer complexes,toward the design of intelligent drug carriers [J]. ACS Symp. Ser.,2004,879:26-39.
    [22] Piskin E. Molecularly designed water soluble, intelligent, nanosize polymeric carriers [J]. Int.J. Pharm.,2004,277(1-2):105–118.
    [23] Liu Y, Yao.Z., et al. Functionalization of single-walled carbon nanotubes with well-definedpolymers by radical coupling [J]. Macromolecules,2005,38(4):1172-1179.
    [24] Gao C, He H, Zhou L, et al. Scalable functional group engineering of carbon nanotubes byimproved one-step nitrene chemistry [J]. Chem. Mater.,2009,21(2):360-370.
    [25] Holzinger M, Steinmetz J, Samaille D, et al.[2+1] cycloaddition for cross-linking SWCNTs[J]. Carbon2004,42(5-6):941–947.
    [26] Michael Holzinger, Juergen Abraham, Paul Whelan, et al. Functionalization of single-walledcarbon nanotubes with (r-)oxycarbonyl nitrenes [J]. J. Am. Chem. Soc.,2003,125(28):8566-8580.
    [1] Gonzalez-Dominguez J M, Tesa-Serrate M A, Anson-Casaos A, et al. Wrapping of SWCNTs inpolyethylenoxide-based amphiphilic diblock copolymers: An approach to purification,debundling, and integration into the epoxy matrix [J]. J. Phys. Chem. C,2012,116(13):7399-7408.
    [2] Ertas M, Walczak R M, Das R K, et al. Supercapacitors based on polymeric dioxypyrroles andsingle walled carbon nanotubes [J]. Chem. Mater.,2012,24(3):433-443.
    [3] Abrahamson J T, Song C, Hu J H, et al. Synthesis and energy release ofnitrobenzene-functionalized single-walled carbon nanotubes [J]. Chem. Mater.,2011,23(20):4557-4562.
    [4] Wan D, Yuan S, Li G L, et al. Glucose biosensor from covalent immobilization ofchitosan-coupled carbon nanotubes on polyaniline-modified gold electrode [J]. ACS Appl.Mater. Interfaces,2011,2(11):3083-3091.
    [5] Georgakilas V, Tzitzios V, Gournis D, et al. Attachment of magnetic nanoparticles on carbonnanotubes and their soluble derivatives [J]. Chem. Mater.2005,17(7):1613-1617.
    [6] Amiri A, Shanbedi M, Eshghi H, et al. Highly dispersed multiwalled carbon nanotubesdecorated with Ag nanoparticles in water and experimental investigation of the thermophysicalproperties [J]. J. Phys. Chem. C,2012,116(5):3369-3375.
    [7] Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots tomultiwalled carbon nanotubes for electronic device applications [J]. Nano. Lett.,2003,3(4):447-453.
    [8] Kuo P-L, Hsu C-H. Stabilization of embedded Pt nanoparticles in the novel nanostructurecarbon materials [J]. ACS Appl. Mater. Interfaces,2011,3(2):115-118.
    [9] Su F, Lu C, Chen H-S. Adsorption, desorption, and thermodynamic studies of CO2withhigh-amine-loaded multiwalled carbon nanotubes [J]. Langmuir,2011,27(13):8090-8098.
    [10] Mikhaylova M, Kim D K, Berry C C, et al. BSA immoblization on amine-functionalizedsuperparamagnetic iron oxide nanoparticles [J]. Chem. Mater.,2004,16(12):2344-2354.
    [11] Ennas G, Musinu A, Piecaluga G, et al. Characterization of iron oxide nanopartieles in anFe2O3-SiO2composite prepared by a sol-gel method [J]. Chem. Mater.,1998,10(2):495-502.
    [12] Pe′rez J A L, Quintela M A L, Mira J, et al. Advances in the preparation of magneticnanoparticles by the microemulsion method [J]. J. Phys. Chem. B,1997,101(41):8045-8047.
    [13] Jiang L Q, Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes:Formation,characterization,and enhanced electrical properties [J]. Chem. Mater.,2003,15(14):2848-2853.
    [14] Jiang W Q, Yang H C, Yang S Y, et al. Preparation and properties of superparamagneticnanoparticles with narrow size distribution and biocompatible [J]. J. Magn. Magn. Mater.,2004,283(2-3):210-214.
    [15] Ismaili H, Lagugné-Labarthet F O, Workentin M S. Covalently assembled goldnanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction [J].Chem. Mater.,2011,23(6):1519–1525.
    [16] Lu X, Imae T. Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modifiedcarbon nanotubes [J]. J. Phys. Chem. C,2007,111(6):2416–2420.
    [17] Chaudhary S, Kim J H, Singh K V, et al. Fluorescence microscopy visualization ofsingle-walled carbon nanotubes using semiconductor nanocrystals [J]. Nano. Lett.,2004,4(12):2415-2419
    [18]樊静.环境激素若干分析新方法研究[M].中国科学院研究生院(广州地球化学研究所).2007.
    [19] Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Analytical methods for the determination ofbisphenol A in food [J]. J. Chromatogr. A,2009,1216(3):449-469.
    [20] Sajiki J, K. Takahashi J Y. Sensitive method for the determination of bisphenol A in serumusing two systems of high-performance liquid chromatography [J]. J. Chromatogr. B,1999,736(1-2):255-261.
    [21] Sambe H, Hoshina K, Hosoya K, et al. Direct injection analysis of bisphenol A in serum bycombination of isotope imprinting with liquid chromatography-mass spectrometry [J].Analyst,2005,130(1):38-40.
    [22] Zhao M P, Li Y Z, Guo Z Q, et al. A new competitive enzyme-linked immunosorbent assay(ELISA) for determination of estrogenic bisphenols [J]. Talanta,2002,57(6):1205-1210.
    [23] Zhang J, Cooke G M, Curran I H A, et al. GC-MS analysis of bisphenol A in human placentaland fetal liver samples [J]. J. Chromatogr. B,2011,879(2):209-214.
    [24] Raj C R, Ohsaka T. Electroanalysis of ascorbate and dopamine at a gold electrode modifiedwith a positively charged self-assembled monolayer [J]. J. Electroanal. Chem.,2001,496(1-2):44-49.
    [25] Ma M, Zhang Y, Yu W, et al. Preparation and characterization of magnetite nanoparticlescoated by amino silane [J]. Colloids Surf., A: Physico. Chem. Eng. Asp.,2003,212(2-3):219-226.
    [26] Ehret R, Baumann M B, Schwinde A, Stegbauer K, Wolf B, Monitoring of cellular behaviourby impedance measurements on interdigitated electrode structures,[J]. Biosens. Bioelectron.,1997,12(1):29-41.
    [27] Ajayan P. Nanotubes from carbon [J]. Chem. Rev.,1999,99(7):1787-1800.
    [28] Yin H, Zhou Y, Ai S, et al. Sensitivity and selectivity determination of BPA in real watersamples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode[J]. J. Hazard. Mater.,2010,174(1-3):236-243.
    [29] Banks C E, Crossley C S, Wilkins S J, Compton R G, Carbon nanotubes contain metalimpurities which are responsible for the “electrocatalysis”seen at some nanotube-modifiedelectrodes [J]. Angew. Chem.,Int. Ed.,2006,45(16):2533–2537.
    [30] Dai X, Wildgoose G G. Apparent "electrocatalytic" activity of multiwalled carbon nanotubesin the detection of the anaesthetic halothane: Occluded copper nanoparticles [J]. Analyst,2006,131(8):901–906.
    [31] Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications,second ed.[J]. Wiley, New York,1980,
    [32] Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linearpotential sweep voltammetry [J]. J. Electroanal. Chem.,1974,52(3):355-393.
    [33] Li J, Kuang D, Feng Y, et al. Voltammetric determination of bisphenol A in food package by aglassy carbon electrode modified with carboxylated multi-walled carbon nanotubes [J].Microchimi. Acta,2011,172(3):379-386.
    [1] Gore A C. Endocrine-disrupting chemicals: From basic research to clinical practice [M].Humana Press Inc, New Jersey,2007.
    [2] Lang I A, Galloway T S, Scarlett A, et al.. Association of urinary bisphenol A concentrationwith medical disorders and laboratory abnormalities in adults [J]. J. Am. Med. Assoc.,2008,300(11):303-1310.
    [3] Soto A M, Sonnenschein C. Environmental causes of cancer: Endocrine disruptors ascarcinogens [J]. Nat. Rev. Endocrinol.,2010,6(7):363-370.
    [4] Goodson A, W. Summerfield I C. Survey of bisphenol A and bisphenol F in canned foods [J].Food. Addit. Contam.,2002,19(8):796-802.
    [5] Egan L. Canada declares BPA toxic, sets stage for more bans [J].http://wwwtheglobeandmailcom/news/national/canada-first-to-declare-bisphenol-a-toxic/article175272.
    [6] Sajiki J, K. Takahashi J Y. Sensitive method for the determination of bisphenol A in serumusing two systems of high-performance liquid chromatography [J]. J. Chromatogr. B,1999,736(1-2):255-261.
    [7] Sambe H, Hoshina K, Hosoya K, et al. Direct injection analysis of bisphenol A in serum bycombination of isotope imprinting with liquid chromatography-mass spectrometry [J].Analyst,2005,130(1):38-40.
    [8] Zhang J, Cooke G M, Curran I H, et al. GC-MS analysis of bisphenol A in human placentaland fetal liver samples [J]. J. Chromatogr. B,2011,879(2):209-214.
    [9] Zhao M P, Li Y Z, Guo Z Q, et al. A new competitive enzyme-linked immunosorbent assay(ELISA) for determination of estrogenic bisphenols [J]. Talanta,2002,57(6):1205-1210.
    [10] Yin H, Zhou Y, Cui L, et al. Electrochemical oxidation behavior of bisphenol A atsurfactant/layered double hydroxide modified glassy carbon electrode and its determination[J]. J. Solid State Electrochem.,2011,15(1):167-173.
    [11] Alkasir R S J, Ganesana M, Won Y H, et al. Enzyme functionalized nanoparticles forelectrochemical biosensors: A comparative study with applications for the detection ofbisphenol A [J]. Biosens. Bioelectron.,2010,26(1):43-49.
    [12] Perez P, Pulgar R, Olea-Serrano F, et al. The estrogenicity of bisphenol A-relateddiphenylalkanes with various substituents at the central carbon and the hydroxy groups [J].Environ. health perspect.,1998,106(3):167-174.
    [13] Spain E, Kojima R, Kaner R B, et al. High sensitivity DNA detection using gold nanoparticlefunctionalised polyaniline nanofibres [J]. Biosens. Bioelectron.,2011,26(5):2613-2618.
    [14] Tang X, Liu Y, Hou H, et al. A nonenzymatic sensor for xanthine based on electrospun carbonnanofibers modified electrode [J]. Talanta,2011,83(5):1410-1414.
    [15] Wu W, Zhu H, Fan L, Liu D, et al. Sensitive dopamine recognition by boronic acidfunctionalized multi-walled carbon nanotubes [J]. Chem. Commun.,2007,23,2345-2347.
    [16] Gonzalez-Dominguez J M, Tesa-Serrate M A, Anson-Casaos A, et al. Wrapping of SWCNTsin polyethylenoxide-based amphiphilic diblock copolymers: An approach to purification,debundling, and integration into the epoxy matrix [J]. J. Phys. Chem. C,2012,116(13):7399–7408.
    [17] Yin H, Yunlei Zhou J X, Shiyun Ai, Lin Cui, Lusheng Zhu. Amperometric biosensor based ontyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silkfibroin film and its application to determine bisphenol A [J]. Anal. Chim. Acta,2010,659(1-2):144-150.
    [18] Tu X, Yan L, Luo X, Luo S, Xie Q. Electroanalysis of bisphenol A at a multi-walled carbonnanotubes–gold nanoparticles modified glassy carbon electrode [J]. Electroanalysis,2009,21(22):2491-2494.
    [19] Cao Q, Zhao H, Wang J, et al. Electrochemical determination of melamine usingoligonucleotides modified gold electrodes [J]. Talanta,2009,80(2):484-488.
    [20] Sun H, Liu N, He P. Determination of melamine residue in liquid milk by capillaryelectrophoresis with solid-phase extraction [J]. J. Chromatogr. Sci.,2010,48(10):848-853.
    [21] de Prado L A S, Vega A D L, Sumfleth J, et al. Noncovalent functionalization of multiwalledand double-walled carbon nanotubes: Positive effect of the filler functionalization on highglass transition temperature epoxy resins [J]. J. Polym. Sci. Part B: Polym. Phys.,2009,47(19):1860-1868.
    [22] R. Ehret, W. Baumann M B, A. Schwinde, K. Stegbauer, B. Wolf. Monitoring of cellularbehaviour by impedance measurements on interdigitated electrode structures [J]. Biosens.Bioelectron.,1997,12(1):29-41.
    [23] Hua M Y, Chen H C, Tsai R Y, et al. A novel biosensing mechanism based on a poly (n-butylbenzimidazole)-modified gold electrode for the detection of hydrogen peroxide [J]. Anal.Chim. Acta,2011,693(1-2):114-120.
    [24] Su P G, Shiu C C. Electrical and sensing properties of a flexible humidity sensor made ofpolyamidoamine dendrimer-Au nanoparticles [J]. Sens. Actuators, B2012,165(1):151-156.
    [25] Banks C E, Crossley A, Salter C, Wilkins S J, Compton R G, Carbon nanotubes contain metalimpurities which are responsible for the “electrocatalysis” seen at some nanotube-modifiedelectrodes [J]. Angew. Chem.,Int. Ed.,2006,45(16):2533-2537.
    [26] Seto C T, Whitesides G M. Molecular self-assembly through hydrogen bonding:Supermolecular aggregates based on the cyanuric acid-melamine lattice [J]. J. Am. Chem.Soc.,1993,115(3):905-916.
    [27] Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications, second ed.[M]. Wiley, New York,1980,
    [28] Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linearpotential sweep voltammetry [J]. J. Electroanal. Chem.,1974,52(3):355-393.
    [29] Velasco J G. Determination of standard rate constants for electrochemical irreversibleprocesses from linear sweep voltammograms [J]. Electroanalysis,1997,9(11):880-882.
    [30] F.Anson. Application of potentiostatic current integration to the study of the adsorption ofcobalt (iii)–(ethylenedinitrilo)tetraacetate on mercury electrodes [J]. Anal. Chem.,1964,36(4):932-934.
    [31] Streeter I, Wildgoose G G, Shao L. Cyclic voltammetry on electrode surfaces covered withporous layers: An analysis of electron transfer kinetics at single-walled carbon nanotubemodified electrodes [J]. Sens. Actuators, B2008,133(2):462-466.
    [32] Sims M J, Rees N V. Dickinson R.G. Compton. Effects of thin-layer diffusion in theelectrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodesmodified with layers of multi-walled carbon nanotubes (MWNT-BPPG)[J]. Sens. Actuators,B2010,144(1):153-158.
    [33] Li J, Kuang D, Feng Y, et al. Voltammetric determination of bisphenol a in food package by aglassy carbon electrode modified with carboxylated multi-walled carbon nanotubes [J].Microchim. Acta,2011,172(3-4):379-386.
    [34] Lu S, Fei J J, Hu S S. Application of a multi-wall carbon nanotubes film coated electrode forthe determination of bisphenol A leached from plastic waste samples [J]. Chem. Anal.(Warsaw),2004,49(5):607-617.
    [35] Mita D G, Attanasio A, Arduini F, et al. Moscone. Enzymatic determination of BPA by meansof tyrosinase immobilized on different carbon carriers [J]. Biosens. Bioelectron.,2007,23(1):60-65.
    [36] Liu X Q, Feng H Q, Liu X H, Wong D KY. Electrocatalytic detection of phenolic estrogeniccompounds at NiPPS/carbon nanotube composite electrodes [J]. Anal. Chim. Acta,2011,689(2):212-218.
    [37] Yin H, Cui L, Chen Q, et al. Amperometric determination of bisphenol A in milk usingPAMAM–Fe3O4modified glassy carbon electrode [J]. Food Chem.,2011,125(3):1097–1103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700