用户名: 密码: 验证码:
Co_2VZ(Z=Ga,Al)薄膜半金属性及三维HgTe拓扑绝缘相研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在考虑电子电荷的基础上,同时利用电子的自旋属性发展起来的自旋电子学,近年来引起了物理和材料科学领域众多科学家的广泛关注。与传统半导体器件相比,自旋电子器件具有耗能低、速度快、体积小和非易失性等优点,具有不可估量的潜在应用价值。重要地,具有奇异特性的半金属磁体和拓扑绝缘体的出现,使自旋电子器件在信息技术产业中的实际应用成为可能。因此,进一步探索半金属和拓扑绝缘材料的物理特性并运用到自旋电子器件中去,是当前凝聚态物理和材料物理研究的一个热点。
     本文利用基于密度泛涵理论的材料模拟软件WIEN2K和CASTEP,研究了半金属全霍伊斯勒合金Co_2VZ(Z=Ga,Al)表面和界面的结构电磁特性以及三维HgTe在晶格扭曲作用下产生的拓扑绝缘相。具体地,本文的研究内容和结果主要有以下几个方面:
     (1)研究了全霍伊斯勒合金Co_2VGa(111)方向所有可能的四个表面的结构和电磁特性。结构优化和计算的表面能都显示,以Ga原子为端面的表面是四个表面结构中最稳定的一个。我们发现以Ga和V原子为端面的两个表面保持了Co_2VGa块材结构中的半金属特性,而以Co原子为端面的表面失去了半金属性。
     (2)研究了全霍伊斯勒合金Co_2VGa(001)表面掺杂诱发的半金属特性。我们发现以Co和VGa原子为端面的两个表面失去了块材中的半金属性,但在以VGa原子为端面的(001)表面中,通过用V原子代替表面层的Ga原子构造的纯V原子为端面的(001)表面,由于表面层原子的重新杂化半金属性又恢复了。
     (3)构造了全霍伊斯勒合金Co_2VGa和半导体PbS在(111)方向上的异质结并探究了界面效应对其电子结构的影响。结构优化和界面结合能的计算都显示V-S界面是最有应用价值的一个结构。我们预言V-S和V-Pb两种界面结构分别表现出半金属和近半金属特性,而另外两个界面Ga-S和Ga-Pb都出现了一些界面态。
     (4)研究了全霍伊斯勒合金Co_2VAl块材和(111)表面的结构及电磁性质,证实了L21型的全霍伊斯勒合金Co_2VAl具有半金属铁磁基态。我们预言以V和Al原子为端面的两个表面结构保持了块材系统的半金属特性,而以Co原子为端面的两个表面失去了半金属特性。结构优化显示:由于较小的原子弛豫,具有半金属特性的两个表面具有较高的稳定性。
     (5)探究了三维HgTe在晶格扭曲作用下产生的拓扑绝缘相。结果表明:无论原胞体积变化与否,由于晶格扭曲HgTe都会产生一个拓扑绝缘相,这和最近的理论研究和实验结果十分一致。重要的是,在适当的晶格扭曲作用下,产生的拓扑绝缘带隙超过了0.3eV。
Spintronics, developed by using the spin nature of electrons based on considering theelectron charge, has attracted immense attentions of many scientists in recent years fromthe fields of physics and materials science. Compared to the traditional semiconductordevices, the spintronics devices have the advantages of lower energy consumption, quickworking speed, smaller size and nonvolatility, and the potential application isimmeasurable. Importantly, the coming of the half-metallic magnets and topologicalinsulators with the peculiar properties separately, makes possible for the practicalapplication of the spintronics devices in the information technology industry. Therefore, itis currently a research hotspot in condensed matter physics and materials physics tofurther explore the physical characteristics of the half-metals and topological insulatorsand make them applied to the spintronics devices.
     In this thesis, using the materials design codes of WIEN2K and CASTEP based ondensity functional theory, we performed the studies of the structural, electronic andmagnetic properties of surface and interface for half-metallic full-Heusler alloysCo_2VZ(Z=Ga, Al), and the lattice distortion-induced topological insulating phase inthree-dimensional HgTe. Concretely, the main research contents and results are as follows:
     (1) We have investigated the structural, electronic and magnetic properties of fourpossible surfaces of the full-Heusler alloy Co_2VGa in (111) direction. Both the structuralrelaxation and the calculated surface energy show that the Ga-terminated surface is themost stable among the four possible surfaces. It is found that the two surfaces terminatedby atoms Ga and V preserve the half-metallic properties of the bulk system while the othertwo surfaces terminated by atom Co lose the half-metallicity.
     (2) We have studied the doping-induced half-metallicity at the (001) surface of full-Heusler alloy Co_2VGa. We find that both Co-and VGa-terminated surfaces have lostthe bulk half-metallicity while the pure V atom-terminated surface with V-doping atVGa-terminated (001) surfaces, has recovered the half-metallic character due to therehybridization between the surface V atoms.
     (3) We have constructed the (111) heterostructures of full-Heusler alloy Co_2VGa withsemiconductor PbS and explored the interface effect on the electronic structure. Both thestructural relaxation and the calculated interfacial adhesion energy indicate that V-Sinterface is the most favorable structure. We predict that the two interfaces of V-S andV-Pb exhibit half-metallicity and nearly half-metallicity respectively while someinterfacial states exist in the other two interfaces of Ga-S and Ga-Pb.
     (4) We have studied the structural, electronic and magnetic properties of the bulkCo_2VAl and its (111) surfaces and confirmed that full-Heusler alloy Co_2VAl with L21structure exhibits half-metallic ferromagnetism with a ground state. It is predicted that V-and Al-terminated surfaces retain the bulk half-metallicity, but the half-metallicity is lostat the two surfaces terminated by atom Co. The structural relaxation shows that the twosurfaces with the half-metallicity are more stable due to the smaller relaxation.
     (5) We have explored the topological insulating phase induced by the latticedistortion in three-dimensional HgTe. Our results show that a topological insulating phaseis obtained by the lattice distortion in bulk HgTe with the assumption of therelaxed-volume and the constant-volume, which accords well with the recent theoreticaland experimental results. Importantly, the topological insulating band gap exceeds0.3eVunder proper lattice distortion.
引文
[1] H. Ohno. Making Nonmagnetic Semiconductors Ferromagnetic. Science281,951(1998).
    [2] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, et al. Spintronics: A Spin-BasedElectronics Vision for the Future. Science294,1488(2001).
    [3] Zutic, J. Fabian, S. D. Sarma. Spintronics: Fundamentals and applications. Rev.Mod. Phys.76,323(2004).
    [4] C. Felser, G. H. Fecher, B. Balke. Spintronics: A Challenge for Materials Scienceand Solid-State Chemistry. Angew. Chem. Int. Ed.46,668(2007).
    [5] M. N. Baibich, J. M. Broto, A. Fert, et al. Giant Magnetoresistance of(001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett.61,2472(1988).
    [6] G. Binasch, P. Grünberg, F. Saurenbach, et al. Enhanced magnetoresistance inlayered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev.B39,4828(1988).
    [7]刘华瑞.自旋阀结构及GMR传感器研究.清华大学博士学位论文(2006).
    [8] B. Dieny, V. S. Speriosu, S. S. P. Parkin, et al. Giant Magnetoresistance in SoftFerromagneticMultilayers. Phys. Rev. B43,1297(1991).
    [9] H. C. Tong, X. Shi, F. Liu, et al. Greater Than14Gb/in2Spin Valve Heads. IEEE.Trans. Magn.35(5),2574(1999).
    [10] J. L. Leal, M. K. Kryder. Spin Valves Exchange Biased by Co/Ru/Co SyntheticAntiferromagnets. J. Appl. Phys.83(7),3720(1998).
    [11] Swagten, G. J. Strijkers, P. J. H. Bloemen, et al. Enhanced Giant Magnetoresistancein Spin-Valves Sandwiched Between Insulating NiO. Phys. Rev. B.53,9108(1996).
    [12] B. A. Gurney, V. S. Speriosu, J. P. Nozieres, et al. Direct Measurement ofSpin-Dependent Conduction-Electron Mean Free Paths in Ferromagnetic Metals.Phys. Rev. Lett.71,4023(1993).
    [13]陈阂江,年彩玉,孙连峰等.自旋电子学与自旋电子器件.物理教学.33卷第10期,2(2011).
    [14] P. M. Tedrow, R. Meservey. Spin-dependent tunneling into ferromagnetic nickel.Phys. Rev. Lett.26,192(1971).
    [15] P. M. Tedrow, R. Meservey. Spin-polarized electron tunneling. Phys. Rep.238,173(1994).
    [16] R. A. de Groot, F. M. Mueller, P. G. van Engen, et al. New Class of Materials:Half-Metallic Ferromagnets. Phys. Rev. Lett.50,2024(1983).
    [17] B. R. K. Nanda, I. Dasgupta. Electronic structure and magnetism in half-Heuslercompounds. J. Phys.: Condens.Matter15,7307(2003).
    [18] S. Picozzi, A. Continenza, A. J. Freeman. Co2MnX (X=Si, Ge, Sn) Heuslercompounds: ab initio study of their structural, electronic, and magnetic properties atzero and elevated pressure. Phys. Rev. B66,094421(2002).
    [19] Galanakis. Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B71,012413(2005).
    [20] S. Wurmehl, G.H. Fecher, H.C. Kandra, et al. Investigation of Co2FeSi: TheHeusler compound with highest Curie temperature and magnetic moment. Appl.Phys. Lett.88,032503(2006).
    [21] L. Kronik, M. Jain, J. R. Chelikowsky. Electronic structure and spin polarization ofMnxGa1-xN. Phys. Rev. B66,041203(R)(2002).
    [22] J. Hong, R. Q. Wu. Magnetic ordering and x-ray magnetic circular dichroism of Codoped ZnO. J. Appl. Phys.97,063911(2005).
    [23] M. S. Park, S. K. Kwon, B. I. Min. Electronic structures of doped anatase TiO2:Ti1-xMxO2(M=Co, Mn, Fe, Ni). Phys. Rev. B65,161201(R)(2002).
    [24] S. Picozzi, T. Shishidou, A. J. Freeman, et al. First-principles prediction ofhalf-metallic ferromagnetic semiconductors: V-and Cr-doped BeTe. Phys. Rev. B67,165203(2003).
    [25] S. P. Lewis, P. B. Allen, T. Sasaki. Band structure and transport properties of CrO2.Phys. Rev. B55,10253(1997).
    [26] F. J. Jedema, A. T. Filip, B. J. van Wees. Electrical spin injection and accumulationat room temperature in an all-metal mesoscopic spin valve. Nature (London)410,345(2001).
    [27] Z. Szotek, W. M. Temmerman, A. Svane, et al. Electronic structure of half-metallicdouble perovskites. Phys. Rev. B68,104411(2003).
    [28] P. K. de Boer, H. van Leuken, R. A. de Groot, et al. Electronic structure ofLa0.5Ca0.5MnO3. Solid State Commun.102,621(1997).
    [29] R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, et al. Measuring the Spin Polarizationof a Metal with a Superconducting Point Contact. Science282,85(1998).
    [30] H. Akinaga, T. Manago, M. Shirai. Material design of half-metallic zinc-blendeCrAs and the synthesis by molecular-beam epitaxy. Jpn. J. Appl. Phys.39, L1118(2000).
    [31] Y. Q. Xu, B. G. Liu, D.G. Pettifor. Half-metallic ferromagnetism of MnBi in thezinc-blende structure. Phys. Rev. B66,184435(2002).
    [32] J. C. Zheng, J. W. Davenport. Ferromagnetism and stability of half-metallic MnSband MnBi in the strained Predictions from full potential and pseudopotentialzinc-blende structure: calculations. Phys. Rev. B69,144415(2004).
    [33] B. G. Liu. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B67,172411(2003).
    [34] W. H. Xie, Y. Q. Xu, B. G. Liu, et al. Half-Metallic Ferromagnetism and StructuralStability of Zinc-blende Phases of the Transition-Metal Chalcogenides. Phys. Rev.Lett.91,037204(2003).
    [35] Galanakis, P. Mavropoulos. Zinc-blende compounds of transition elements with N,P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B67,104417(2003).
    [36] J. E. Pask, L. H. Yang, C. Y. Fong, et al. Six low-strain zinc-blende half metals: Anab initio investigation. Phys. Rev. B67,224420(2003).
    [37] G. Y. Gao, K. L. Yao, E. a o lu, et al. Half-metallic ferromagnetism inzinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B75,174442(2007).
    [38] G. Y. Gao, K. L. Yao. Half-metallic sp-electron ferromagnets in rocksalt structure:The case of SrC and BaC. Appl. Phys. Lett.91,082512(2007).
    [39] Droghetti, N. Baadji, S. Sanvito. MgN: A possible material for spintronicapplications. Phys. Rev. B80,235310(2009).
    [40] M. Geshi, K. Kusakabe, H. Nagara, et al. Synthetic ferromagnetic nitrides: FirstPrinciple calculations of CaN and SrN. Phys. Rev. B76,054433(2007).
    [41] Volnianska, P. Boguslawski. Magnetic and structural properties of IIA-V nitrides.Phys. Rev. B75,224418(2007).
    [42] E. Sasioglu, L. M. Sandratskii, P. Bruno. Exchange interactions and temperaturedependence of the magnetization in half-metallic Heusler alloys. Phys. Rev. B72,184415(2005).
    [43] Galanakis, P. Mavropoulos, P. H. Dederichs. Electronic structure and Slater-Paulingbehaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D:Appl. Phys.39,765(2006).
    [44] Galanakis, P. H. Dederichs, N. Papanikolaou. Slater-Pauling behavior and origin ofthe half-metallicity of the full-Heusler alloys. Phys. Rev. B66,174429(2002).
    [45]叶飞,苏刚.拓扑绝缘体及其研究进展.物理.39卷第8期,564(2010).
    [46] C. M. Hurd. The Hall Effect in Metals and Alloys. Plenum, New York (1973).
    [47] W. Smith, R. W. Sears The Hall Effect in Permalloy. Phys. Rev.34,1466(1929).
    [48] J. Sinova, D. Culcer, Q. Niu. et al. Universal Intrinsic Spin Hall Effect. Phys. Rev.Lett.92,126603(2004).
    [49] K. V. Klitzing, G. Dorda, M. Pepper. New Method for High-AccuracyDetermination of the Fine-Structure Constant based on Quantized Hall Resistance.Phys. Rev. Lett.45,494(1980).
    [50] Y. B. Zhang, Y. W. Tan, H. L. Stormer. et al. Experimental Observation of theQuantum Hall Effect and Berry’s Phase in Graphene. Nature438,201(2005).
    [51] R. B. Laughlin. Anomalous Quantum Hall Effect: An Incompressible QuantumLiquid with Fractionally Charged Excitations. Phys. Rev. Lett.50,1395(1983).
    [52] R. Yu, W. Zhang, H. J. Zhang. et al. Quantized Anomalous Hall Effect in MagneticTopological Insulators. Science329,61(2010).
    [53] C. Z. Chang, J. S. Zhang, X. Feng. et al. Experimental Observation of the QuantumAnomalous Hall Effect in a Magnetic Topological Insulator. Science340,167(2013).
    [54] C. L. Kane, E. J. Mele. A New Spin on the Insulating State. Science314,1692(2006).
    [55] C. L. Kane, E. J. Mele. Z2Topological Order and the Quantum Spin Hall Effect.Phys. Rev. Lett.95,146802(2005).
    [56] B. A. Bernevig, T. L. Hughes, S. C. Zhang. Quantum Spin Hall Effect andTopological Phase Transition in HgTe Quantum Wells. Science314,1757(2006).
    [57] M. K nig, S. Wiedmann, C. Brüne. et al. Spin Hall Insulator State in HgTeQuantum Wells. Science318,766(2007).
    [58] J. Schrier, D. O. Demchenko, L. W. Wang. Optical Properties of ZnO/ZnS andZnO/ZnTe Heterostructures for Photovoltaic Applications. Nano Lett.7,2377(2007).
    [59] M. Born, R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys.84,457(1927).
    [60] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev.136, B864(1964).
    [61] W. Khon, L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects. Phys. Rev.140, A1133(1965).
    [62] W. Kohn, P. Vashishta. Theory of the Inhomogeneous Electron Gas. edited by S.Lundgvist and N. H. March. Plenum Press, New York.(1983).
    [63] J. P. Perdew, J. A. Chevary, S. H. Vosko. et al. Atoms, molecules, solids, andsurfaces: Applications of the generalized gradient approximation for exchange andcorrelation. Phys. Rev. B46,6671(1992).
    [64] J. P. Perdew, K. Burke, M. Emzerhof. Generalized Gradient Approximation MadeSimple. Phys. Rev. Lett.77,3865(1996).
    [65] J. P. Perdew, K. Burke, M. Emzerhof. Generalized Gradient Approximation MadeSimple. Phys. Rev. Lett.78,1396(1997).
    [66] E. Wimmer, H. Krakauer, M. Weinert. et al. Full-potential self-consistentlinearized-augmented-plane-wave method for calculating the electronic structure ofmolecules and surfaces: O2molecule. Phys. Rev. B24,864(1981).
    [67] H. J. F. Jansen, A. J. Freeman. Total-energy full-potential linearizedaugmented-plane-wave method for bulk solids: Electronic and structural propertiesof tungsten. Phys. Rev. B30,561(1984).
    [68] K. Andersen. Linear methods in band theory. Phys. Rev. B12,3060(1975).
    [69] M. Weinert. Solution of Poisson’s equation: Beyond Ewald-type methods J. Math.Phys.22,2433(1981).
    [70] G. Schmidt, D. Ferrand, L. W. Molenkamp. et al. Fundamental obstacle forelectrical spin injection from a ferromagnetic metal into a diffusive semiconductor.Phys. Rev. B62, R4790(2000).
    [71] Y. Ji, G. J. Strijkers, F. Y. Yang. et al. Determination of the Spin Polarization ofHalf-Metallic CrO2by Point Contact Andreev Reflection. Phys. Rev. Lett.86,5585(2001).
    [72] B. Sanyal, L. Bergqvist, O. Eriksson. Ferromagnetic materials in the zinc-blendestructure. Phys. Rev. B68,054417(2003).
    [73] K. L. Yao, G. Y. Gao, Z. L. Liu. et al. Half-metallic ferromagnetism of zinc-blendeCrS and CrP: a first-principles pseudopotential study. Solid State Commun.133,301(2005).
    [74] T. W. Kim, H. C. Jeon, T. W. Kang. et al. Microstructural and magnetic propertiesof zinc-blende MnAs films with half metallic characteristics grown on GaAs (100)substrates. Appl. Phys. Lett.88,021915(2006).
    [75] E. a io lu, I. Galanakis, L. M. Sandratskii. et al. Stability of ferromagnetism in thehalf-metallic pnictides and similar compounds: a first-principles study. J. Phys.:Condens. Matter17,3915(2005).
    [76] M. G. Sreenivasan, J. F. Bi, K. L. Teo. et al. Systematic investigation of structuraland magnetic properties in molecular beam epitaxial growth of metastablezinc-blende CrTe toward halfmetallicity. J. Appl. Phys.103,043908(2008).
    [77] H. C. Kandpal, G. H. Fecher, C. Felser. Calculated electronic and magneticproperties of the half-metallic, transition metal based Heusler compounds. J. Phys.D: Appl. Phys.40,1507(2007).
    [78] Galanakis, P. H. Dederichs, and N. Papanikolaou. Origin and properties of the gapin the half-ferromagnetic Heusler alloys. Phys. Rev. B66,134428(2002).
    [79] H. C. Kandpal, G. H. Fecher, C. Felser. et al. Correlation in thetransition-metal-based Heusler compounds Co2MnSi and Co2FeSi. Phys. Rev. B73,094422(2006).
    [80] Y. Sakuraba, K. Takanashi, Y. Kota. et al. Evidence of Fermi level control in ahalf-metallic Heusler compound Co2MnSi by Al-doping: Comparison ofmeasurements with first-principles calculations. Phys. Rev. B81,144422(2010).
    [81] T. Kanomata, Y. Chieda, K. Endo. et al. Magnetic properties of the half-metallicHeusler alloys Co2VAl and Co2VGa under pressure. Phys. Rev. B82,144415(2010).
    [82] G. Y. Gao, K. L. Yao, Z. L. Liu. et al. Search for new half-metallic ferromagnets inzinc blende CaSi and CaGe by first-principles calculations. J. Phys.: Condens.Matter19,315222(2007).
    [83] G. Y. Gao, K. L. Yao, Z. L. Liu. et al. A first-principles study of half-metallicferromagnetism in binary alkaline-earth nitrides with rock-salt structure. Phys. Lett.A372,1512(2008).
    [84] M. I.Katsnelson, V. Yu. Irkhin, L. Chioncel. et al. Half-metallic ferromagnets:From band structure to many-body effects. Rev. Mod. Phys.80,315(2008).
    [85] S. Trudel, O. Gaier, J. Hamrle. et al. Magnetic anisotropy, exchange and damping incobalt-based full-Heusler compounds: an experimental review. J. Phys. D: Appl.Phys.43,193001(2010).
    [86] M. Le ai, I. Galanakis, G. Bihlmayer. et al. Structural and magnetic properties ofthe (001) and (111) surfaces of the half-metal NiMnSb. J. Phys.: Condens. Matter17,3121(2005).
    [87] Galanakis. Surface properties of the half-and full-Heusler alloys. J. Phys.: Condens.Matter14,6329(2002).
    [88] Sh. Khosravizadeh, S. Javad Hashemifar, Hadi Akbarzadeh. First-principles studyof the Co2FeSi(001) surface and Co2FeSi/GaAs(001) interface. Phys. Rev. B79,235203(2009).
    [89] G. Y. Gao, K. L. Yao, N. Li. Preserving the half-metallicity at the surfaces ofrocksalt CaN and SrN and the interfaces of CaN/InN and SrN/GaP: a densityfunctional study. J. Phys.: Condens. Matter23,075501(2011).
    [90] P. Klaer, M. Kallmayer, C. G. F. Blum. et al. Tailoring the electronic structure ofhalf-metallic Heusler alloys. Phys. Rev. B80,144405(2009).
    [91] J. Barth, G. H. Fecher, B. Balke. et al. Itinerant half-metallic ferromagnets Co2TiZ(Z=Si, Ge, Sn): Ab initio calculations and measurement of the electronic structureand transport properties. Phys. Rev. B81,064404(2010).
    [92] S. Yamada, K. Hamaya, K. Yamamoto. et al. Significant growth-temperaturedependence of ferromagnetic properties for Co2FeSi/Si(111) prepared bylow-temperature molecular beam epitaxy. Appl. Phys. Lett96,082511(2010).
    [93] T. Saito, T. Katayama, T. Ishikawa. et al. Interface structure of half-metallicHeusler alloy Co2MnSi thin films facing an MgO tunnel barrier determined by x-raymagnetic circular dichroism. Phys. Rev. B81,144417(2010).
    [94] P. Blaha, K. Schwartz, J. Luitz, WIEN2k,2001, Wien2k, Vienna University ofTechnology,2002, ISBN3-9501031-1-2, improved and updated Unix version of theoriginal copyrighted Wien-code, which was published by P. Blaha, K. Schwarz, P.Sorantin, et al. Comput. Phys. Commun.59,399(1990).
    [95] B. Bialek, J. I. Lee. Half-metallic properties of the (110) surface of alkali earthmetal monosilicides in the zinc blende phase. Semicond. Sci. Technol.26,125018(2011).
    [96] S. J. Hashemifar, P. Kratzer, M. Scheffler. Preserving the Half-Metallicity at theHeusler Alloy Co2MnSi(001) Surface: A Density Functional Theory Study. Phys.Rev. Lett.94,096402(2005).
    [97] K. Reuter, M. Scheffler. Composition, structure, and stability of RuO2(110) as afunction of oxygen pressure. Phys. Rev. B65,035406(2001).
    [98] T. Ambrose, J. J. Krebs, G. A. Prinz. Epitaxial growth and magnetic properties ofsingle-crystal Co2MnGe Heusler alloy films on GaAs(001). Appl. Phys. Lett.76,3280(2000).
    [99] J. W. Dong, L. C. Chen, C. J. Palmstrom. et al. Molecular beam epitaxy growth offerromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett.75,1443(1999).
    [100] M. S. Lund, J. W. Dong, J. Lu Xie. et al. Anomalous magnetotransport properties ofepitaxial full Heusler alloys. Appl. Phys. Lett.80,4798(2002).
    [101] W. H. Wang, M. Przybylski, W. Kuch. et al. Magnetic properties and spinpolarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs(001).Phys. Rev. B71,144416(2005).
    [102] S. Picozzi, A. Continenza, A. J. Freeman. Role of structural defects on thehalf-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B69,094423(2004).
    [103] L. J. Singh, Z. H. Barber, Y. Miyoshi. et al. Structural and transport studies ofstoichiometric and off-stoichiometric thin films of the full Heusler alloy Co2MnSi. J.Appl. Phys.95,7231(2004).
    [104] Nahid Ghaderi, S. Javad Hashemifar, Hadi Akbarzadeh. et al. First principle studyof Co2MnSi/GaAs(001) heterostructures. J. Appl. Phys.102,074306(2007).
    [105] Kazutaka Nagao, Yoshio Miura, Masafumi Shirai. Half-metallicity at the (110)interface between a full Heusler alloy and GaAs. Phys. Rev. B73,104447(2006).
    [106] S. Chadov, T. Graf, K. Chadova. et al. Efficient Spin Injector Scheme Based onHeusler Materials. Phys. Rev. Lett.107,047202(2011).
    [107] D. Asakura, T. Koide, S. Yamamoto. et al. Magnetic states of Mn and Co atoms atCo2MnGe/MgO interfaces seen via soft x-ray magnetic circular dichroism. Phys.Rev. B82,184419(2010).
    [108] R. Y. Umetsu, K. Kobayashi, A. Fujita. et al. Magnetic properties, phase stability,electronic structure, and half-metallicity of L21-type Co2(V1xMnx)Ga Heusleralloys. Phys. Rev. B77,104422(2008).
    [109] R.Y. Umetsu, K. Kobayashi, R. Kainuma. et al. Powder neutron diffraction studiesfor the L21phase of Co2YGa (Y=Ti, V, Cr, Mn and Fe) Heusler alloys. J. AlloysCompd.499,1(2010).
    [110] M. Mozafari, F. Moztarzadeh, M. Tahriri. Green synthesis and characterisation ofspherical PbS luminescent micro-and nanoparticles via wet chemical technique.Adv. Appl. Ceram.110,1(2011).
    [111] D. G. Chen, H. H. Zhang, X. F. Yu. Synthesis and Crystal Structure of VS4Cu6Py8I3.Chinese J. Struct. Chem.22,591(2003).
    [112] H. Romero, M. Cardona, R. K. Kremer. et al. Electronic and phononic properties ofthe chalcopyrite CuGaS2. Phys. Rev. B83,195208(2011).
    [113] M. Meinert, J. M. Schmalhorst, G. Reiss. et al. Ferrimagnetism and disorder ofepitaxial Mn2xCoxVAl Heusler compound thin films. J. Phys. D: Appl. Phys.44,215003(2011).
    [114] Y. Miura, M. Shirai, K. Nagao. Ab initio study on stability of half-metallicCo-based full-Heusler alloys. J. Appl. Phys.99,08J112(2006).
    [115] X. L. Qi, S. C. Zhang. The quantum spin Hall effect and topological insulators.Phys. Today63(1),33(2010).
    [116] M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys.82,3045(2010).
    [117] J. E. Moore. The birth of topological insulators. Nature464,194(2010).
    [118] C. Liu, Y. Lee, T. Kondo. et al. Metallic surface electronic state in half-Heuslercompounds RPtBi (R=Lu, Dy, Gd). Phys. Rev. B83,205133(2011).
    [119] H. J. Zhang, C. X. Liu, X. L. Qi. et al. Topological insulators in Bi2Se3, Bi2Te3andSb2Te3with a single Dirac cone on the surface. Nat. Phys.5,438(2009).
    [120] J. E. Moore. Topological insulators: The next generation. Nat. Phys.5,378(2009).
    [121] D. Hsieh, Y. Xia, L. Wray. et al. Observation of Unconventional Quantum SpinTextures in Topological Insulators. Science323,5916(2009).
    [122] D. Hsieh, D. Qian, L. Wray. et al. A topological Dirac insulator in a quantum spinHall Phase. Nature452,970(2008).
    [123] Y. Xia, D. Qian, D. Hsieh. et al. Observation of a large-gap topological-insulatorclass with a single Dirac cone on the surface. Nat. Phys.5,398(2009).
    [124] D. Hsieh, J. W. McIver, D. H. Torchinsky. et al. Nonlinear Optical Probe ofTunable Surface Electrons on a Topological Insulator. Phys. Rev. Lett.106,057401(2011).
    [125] Y. Xia, D. Qian, L. Wray. et al. Fermi Surface Topology and Low-LyingQuasiparticle Dynamics of Parent Fe1+xTe/Se Superconductor. Phys. Rev. Lett.103,037002(2009).
    [126] Y. L. Chen, J. G. Analytis, J. H. Chu. et al. Experimental Realization of aThree-Dimensional Topological Insulator, Bi2Te3. Science325,178(2009).
    [127] H. Lin, L. A. Wray, Y. Xia. et al. Half-Heusler ternary compounds as newmultifunctional experimental platforms for topological quantum phenomena. NatureMater.9,546(2010).
    [128] S. Chadov, X. Qi, J. Kübler. et al. Tunable multifunctional topological insulators internary Heusler compounds. Nature Mater.9,541(2010).
    [129] W. Al Sawai, Hsin Lin, R. S. Markiewicz. et al. Topological electronic structure inhalf-Heusler topological insulators. Phys. Rev. B82,125208(2010).
    [130] X. M. Zhang, W. H. Wang, E. K. Liu. et al. Influence of tetragonal distortion on thetopological electronic structure of the half-Heusler compound LaPtBi from firstprinciples. Appl. Phys. Lett.99,071901(2011).
    [131] D. Xiao, Y. Yao, W. Feng. et al. Half-Heusler Compounds as a New Class ofThree-Dimensional Topological Insulators. Phys. Rev. Lett.105,096404(2010).
    [132] H. Lin, R. S. Markiewicz, L. A. Wray. et al. Single-Dirac-Cone TopologicalSurface States in the TIBiSe2Class of Topological Semiconductors. Phys. Rev. Lett.105,036404(2010).
    [133] L. Fu, C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B76,045302(2007).
    [134] Xi Dai, T. L. Hughes, X. L. Qi. et al. Helical edge and surface states in HgTequantum wells and bulk insulators. Phys. Rev. B77,125319(2008).
    [135] C. Brüne, C. X. Liu, E. G. Novik. et al. Quantum Hall Effect from the TopologicalSurface States of Strained Bulk HgTe. Phys. Rev. Lett.106,126803(2011).
    [136] H. MacDonald, W. E. Pickett, D. D. Koelling. A linearised relativisticaugmented-plane-wave method utilising approximate pure spin basis functions. J.Phys. C13,2675(1980).
    [137] T. Skauli, T. Colin. Accurate determination of the lattice constant of molecularbeam epitaxial CdHgTe. J. Cryst. Growth222,719(2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700