用户名: 密码: 验证码:
具有钙钛矿结构多铁材料的高温高压合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于铁电有序以及铁磁有序的共存使得多铁性材料具有丰富的物理性质。同时上述两种有序之间的磁电耦合效应也使得材料能通过外加电场控制其磁化,或通过外加磁场调节其自发极化,从而使其具有广阔的应用前景。虽然多铁材料在发现之初就受到人们的广泛关注,但早期合成的单相多铁材料的磁电耦合效应非常弱,以至于无法在器件中实际应用。近些年随着在具有钙钛矿结构的稀土锰酸盐TbMnO3和TbMn2O5中发现了强的磁电耦合效应后,人们又再次将目光投入到具有强磁电耦合效应的稀土锰酸盐上。由于实际应用的要求,多铁材料在室温以上应该同时具有强的铁电极化强度和强的磁化强度以外,还应该具有强的自发极化与自发磁化之间的耦合。但遗憾的是至今为止,还没有任何一种材料能符合这些要求。目前已知的多铁材料多数为反铁磁材料。因此寻找在室温以上具有强磁电耦合效应的单相多铁材料仍是亟待解决的难题。
     被广泛研究的强磁电耦合多铁材料—正交结构的TbMnO3具有27K的铁电转变温度和41K的反铁磁转变温度。TbMnO3属于Pnma空间群,其中的Mn3+离子的电子构型为t2g3eg1。TbMnO3中ab面内自旋铁磁排列,而沿着c轴方向的ab面间自旋反铁磁排列。这两种相互作用间的竞争导致了ab面内自旋失措,进而引起自发极化。因此在o-TbMnO3中磁性和铁电性之间有着十分紧密的关联,即较强的耦合。
     另外一种研究较多的正交稀土锰酸盐o-YMnO3具有21K的铁电转变温度和42K的反铁磁温度。如何大幅的提高这类材料的磁和铁电转变温度,是非常有意义的课题。人们做出了非常多的尝试,很遗憾的是转变温度的提升并不显著。这是由于之前的掺杂工作都集中在A位掺杂,即以其他稀土离子掺杂取代A位的Tb3+或Y3+离子。这样做的好处就是最小程度的破坏或改变o-TbMnO3及o-YMnO3的磁结构,从而保护铁电极化不被破坏。近几年的研究表明在B位掺杂Mn4+离子或Cr3+离子不一定会破坏铁电极化,也就是说精心挑选的B位掺杂离子不会破坏铁电极化,这为提高o-YMnO3的转变温度带来了希望。
     另外,六方YbFeO3薄膜也表现出了非常好的磁电耦合效应以及强的铁电极化强度,其剩余极化率高达10μC/cm2。随着对其研究的深入人们发现其铁电起源与以下两个因素密切相关,P63cm空间群带来的六方相结构中FeO平面两侧不对称性和5dz2(Yb)-2pz(OA)相互作用。通常情况下,YbFeO3块体材料属于正交Pnma空间群,目前为止有关六方YbFeO3的合成及其多铁性质表征尚无报道。因此本论文设计了一系列新的多铁材料,通过在具有六方结构的InFeO3中掺杂引入Yb离子提供六方晶体结构的几何环境。由于Yb离子的随机取代可以破坏P63/mmc空间群中FeO平面两侧的对称性,同时提供5dz2(Yb)-2pz(OA)之间的相互作用。
     本论文通过高压助熔剂方法首次合成制备了具有正交结构的YFe0.5Mn0.5O3(YFMO)和YCr0.5Mn0.5O3(YCMO)。通过X-射线衍射等表征手段确定了其晶体结构。通过磁性测试、介电温谱和电滞回线测试证明了YFMO是多铁材料,其反铁磁转变温度为328K。YCMO为亚铁磁材料,磁转变温度为74K。通过介电温谱的测试发现YCMO样品存在类似弛豫铁电体特有的介电弛豫行为。铁电测试却发现YCMO不存在铁电极化。这一结果也从实验上证明了正交稀土锰酸盐铁电极化只出现在反铁磁材料中这一推论。
     通过高温固相法将Yb离子引入六方InFeO3,为Yb5dz2-O2pz杂化轨道提供了六方晶体结构的几何环境。磁化率曲线的测试以及10K及100K下的磁滞回线证明样品为具有倾斜铁磁性的反铁磁材料,反铁磁转变温度即奈尔温度约为150K。双波法测试得到的电滞回线证明了In0.8Yb0.2FeO3的铁电性质。通过对In0.8Yb0.2FeO3结构的讨论得出Yb离子在FeO面两侧的不对称分布造成了微弱的宏观铁电极化的结论。这样的结果为未来多铁材料的设计,尤其是六方稀土铁酸盐块体多铁材料的设计提供新的思路与方法。
Single-phase multiferroic material is a class of single-phase compounds which hasboth ferroelectric and magnetic properties. Firstly, multiferroic materials have bothferroelectric and magnetic properties; secondly, there may be coupling effects betweenferroelectric and magnetic properties, which can achieve the mutual regulation offerroelectric and magnetic materials.
     Normally, multiferroic materials are categorized into two different classesdepending on the origin of the ferroelectric properties. The first class called properferroelectrics is exemplified by BiFeO3, BiMnO3and Bi2NiMnO6, which are typicalmultiferroic materials universal with both relative high ferroelectric Curie temperatureand high magnetic Curie temperature. However, this class of materials generally showweak magnetoelectric coupling, because of the different origins of anti/ferromagneticand ferroelectric orderings that FM desires transition metals with unpaired3d electronsand unfilled3d orbital, whereas FE polarization requires transition metals with filled3dorbital. Members of the second class known as improper ferroelectrics have broughtbetter magnetoelectric coupling effect, exemplified by orthorhombic RMnO3(R=Tb-Luand Y) and GdFeO3.
     Orthorhombic RMnO3(o-RMnO3) has attracted great research interests owing tothe strong coupling between magnetic ordering and ferroelectric ordering. Themagnetoelectric is useful for storing information in a memory device. Usually the operating temperature is too low to meet the practical applications. Although manystudies have been carried out, the finding of new multiferroics with higher transitiontemperatures is still lacking. Previous studies have mostly focused on doping at therare-earth site to increase the magnetic transition temperature while protecting theferroelectric properties at the same time. Unfortunately, the multiferroic properties haveyet witnessed any significant improvement as desired. Recent reports suggest that asmall quantity of Cr3+doping at Mn3+sites significantly enhances the FM component ofthe samples although the AFM order is dominant. Furthermore, the newdouble-perovskite compound Tb0.5Ca0.5MnO3treated as Mn4+doping at Mn3+siteshowed a high ferroelectric transition temperature at about270K. These are excitingsignals that the carefully chosen atoms doping at the B site may effectively improve themultiferroic peoperties while avoide limination of the FE polarization.
     The most widely studied in RMnO3(R=Tb-Lu and Y) is o-TbMnO3, withantiferromagnetic (AFM) ordering at41K and ferroelectric ordering at27K. Anothertypical improper ferroelectric, albeit less studied because of the extraordinary conditionssuch as high-pressure sintering required during synthesis, othorhombic YMnO3(o-YMnO3) is an orthorhombic distorted perovskite (ABO3) in Pnma (No.62) spacegroup. And o-YMnO3shows antiferromagnetic ordering at about42K and ferroelectricordering at21K. Compared with TbMnO3, o-YMnO3is a less complex material to bestudied because the Y3+ion is nonmagnetic. The substitution of the3d5ion Fe3+and3d3ion Cr3+in o-YMnO3gives Fe3+-O-Mn3+(e2-O-1) and Cr3+-O-Mn3+(0gegeg-O-)interaction, thus improving antiferromagnetic transition temperature withoutsignificantly changing the structures. Furthermore, YCrO3is also a multiferroic materialwith antiferromagnetic order at140K and ferroelectric order at437K. Fascinatingproperties are thus expected through the introducing of Cr3+into o-YMnO3. But thedoping product of o-YMnO3, especially high-quality single phase product was barelyreported in the past years. This fact also suggests that it’s difficult to substitute Mn or Yions by other elements in o-YMnO3. The high-quality samples may lead to moreaccurate magnetism and dielectric test results. So the lacking of high-quality samples limited the research of this kind of materials.
     The Hexagonal YbFeO3thin-film shows good ferroelectric properties at Curietemperature of470K. The remanent polarizarion is as large as10μC/cm2. To understandthe reason why this material can exhibit ferroelectric polarization reported in theliterature, two very important factors can not be ignored—the absence of mirror-plane ofhexagonal structure of P63cm and the empty5dz2(Yb)-2pz(OA) interaction. The bulkmaterial of YbFeO3belongs to the Pnma space group, in general, while no hexagonalstructure YbFeO3bulk material have been reported. To obtain multiferroic properties inthe bulk material, we designed and synthesized a series compands of Yb ions dopedInFeO3. First, InFeO3has a hexagonal structure. Though InFeO3belongs to the P63/mmcspace group which has a mirror-plane, the random presence of Yb ions makes anonmirror symmetry for Yb ions. Second, this system also has an empty5dz2(Yb)-2pz(OA) interaction of Yb ions. Otherwise, indium-based perovskite have been reported asan multiferroic near room temperature. So good multiferroic is expected in theIn1-xYbxFeO3.
     The highly pure crystals of Y2FeMnO6(YFMO) and Y2CrMnO6(YCMO) havebeen firstly synthesized using flux method under high temperature of1573K and highpressure of6GPa. Both YFMO and YCMO have orthorhombic structures in space groupPnma. The temperature-dependent magnetization and the nonlinear M-H hysteresisloops of both materials indicate that an antiferromagnetic transition occurs at Néeltemperature of328K for YFMO, and a ferrimagnetic transition occurs at74K forYCMO. YFMO is a relaxor ferroelectric in which three dielectric relaxations wereobserved at245K,328K and358K, respectively. The first relaxation process is due toMaxwell-Wagner polarization at the grain boundary whereas the second and the thirdrelaxation behaviours arise from the beginning and the ending of antiferromagneticordering, respectively. The presence of the dielectric anomaly near TNindicates themagnetoelectric effect. Ferroelectric hysteresis loops and PUND (positive-up&negative-down) pulse data reveal weak ferroelectric behaviors of YFMO at77K.Otherwise one dielectric constant anomaly has been found for YCMO at about390K.But no ferroelectric polarization was observed in YCMO.
     A new series of multiferroic materials In1-xYbxFeO3(0.1≤x≤0.3) with giantdielectric constant were firstly prepared. The substitution of Yb ions for In induced theweak ferroelectric properties of this system. Dielectric measurement shows that thedielectric property is closely related to the crystal structures. The crystallize in spacegroup P63/mmc similarly to InFeO3. The increase in the Yb content leads to anincrement in a and reduction in c parameters. Magnetic measurements show thatIn0.8Yb0.2FeO3has antiferromagnetic transition temerature at about150K. And onedielectric constant change has been fund for In0.8Yb0.2FeO3at about553K.
引文
[1] I. S. Zheludev, Ferroelectricity and Symmetry [J]. Solid State Phys.,1971,26:429-464.
    [2] L. A. Shuvolov, Symmetry Aspects of Ferroelectricity [J]. Phy. Soc. Jpn.,1970,28:38-51.
    [3] J. C Wojde, P. Hermet, M. P. Ljungberg, et al., First-Principles ModelPotentials for Lattice-Dynamical Studies: General Methodology and Exampleof Application to Ferroic Perovskite Oxides [J]. J. Phys.: Condens. Matter.,2013,25:305401.
    [4] M. B. Smith, K. Page, T. Siegrist, et al., Crystal Structure and theParaelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3[J]. J. Am.Chem. Soc.,2008,22:6955-6963.
    [5] B. D. Qu, M. Evstigneev, D. J. Johnson, et al., Dielectric Properties ofBaTiO3/SrTiO3Multilayered Thin Films Prepared by Pulsed Laser Deposition[J]. Appl. Phys. Lett.,1998,11:1394-1396.
    [6] Z. Wu, R. E. Cohen, Pressure-Induced Anomalous Phase Transitions andColossal Enhancement of Piezoelectricity in PbTiO3[J]. Phys. Rev. Lett.,2005,95(3):037601.
    [7] Ragini, S. K. Mishra, D. Pandey, Evidence for Another Low-TemperaturePhase Transition in Tetragonal Pb(ZrxTi1-x)O3(x=0.515,0.520)[J]. Phys. Rev.B,2001,64(1):054101.
    [8] N. B. Ming, J. F. Hong, D. Feng, The Growth Striations and FerroelectricDomain Structures in Czochralski Grown LiNbO3Single Crystals [J]. J.Mater. Sci.,1982,17:1663-1670.
    [9] S. Miyazawa, Ferroelectric Domain Inversion in Ti-Diffused LiNbO3OpticalWaveguide [J]. Appl. Phys. Lett.,1979,50:4599-4603.
    [10] S. H. Wemple, M. D. Jr., I. Camlibel, Relationship Between Linear andQuadratic Electrooptic Coefficients in LiNbO3, LiTaO3, and OtherOxygenoctahedra Ferroelectrics Based on Direct Measurement ofSpontaneous Polarization [J]. Appl. Phys. Lett.,1968,12:209-211.
    [11]殷之文,电介质物理学[M],北京:科学出版社,2003.
    [12] L. E. Cross, Relaxor Ferroelectrics [J]. Ferroelectris,1987,76:241-267.
    [13] D. Viehland, J.F. Li, Glassy Polarization Behavior of Relaxor Ferroelectrics[J], Phys. Rev. B,1992,46(13):8013.
    [14] Y. Ma, X. M. Chen, Y. Q. Lin, Relaxorlike Dielectric Behavior and WeakFerromagnetism in YFeO3Ceramics [J]. J. Appl. Phys.,2008,103(12):124111.
    [15]姜寿亭,铁磁性理论[M].北京:科学出版社,1993.
    [16] P. W. Anderson, Localized Magnetic States in Metals [J]. Phys. Rev. Lett.,1961,124(1):41.
    [17]周永洽,现代磁性材料原料和应用[M].北京:北京化工出版社,2002.
    [18] H. M. Rietveld, A Profile Refinement Method for Nuclear and MagneticStructures [J]. J. Appl. Cryst.,1969,2:65-71.
    [19] E. J. Cussen, M. J. Rosseinsky, P. D. Battle, et al., Control of MagneticOrdering by Jahn-Teller Distortions in Nd2GaMnO6and La2GaMnO6[J]. J.Am. Chem. Soc.,2001,123:1111-1122.
    [20] I. B. Bersuker, Pseudo Jahn-Teller Origin of Perovskite Multiferroics,Magnetic-Ferroelectric Crossover, and Magnetoelectric Effects: The d0-d10Problem [J]. Phys. Rev. Lett.,2012,108(13):137202.
    [21] M. Tachibana, T. Shimoyama, H. Kawaji, et al., Jahn-Teller Distortion andMagnetic Transitions in Perovskite RMnO3(R=Ho, Er, Tm, Yb, and Lu)[J].Phys. Rev. B,2007,75(14):144425.
    [22] I. A. Sergienko, E. Dagotto, Role of the Dzyaloshinskii-Moriya Interaction inMultiferroic Perovskites [J]. Phys. Rev. B,2006,73(9):094434.
    [23] I. Solovyev, N. Hamada, K. Terakura, Crucial Role of the Lattice Distortionin the Magnetism of LaMnO3[J]. Phys. Rev. Lett.,1996,76(25):4825-4828.
    [24] D Coffey, K. S. Bedell, S. A. Trugman, Effective Spin Hamiltonian for theCuO Planes in La2CuO4and Metamagnetism [J]. Phys. Rev. B,1990,42(10):6509.
    [25] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and MagnetoelectricMaterials [J]. Nature,2006,442:759-765.
    [26] M. Fiebig, Revival of the Magnetoelectric Effect [J]. J. Phys. D: Appl. Phys.2005,38(8): R123.
    [27] H. Ryu, P. Murugavel, J. H. Lee, et al., Magnetoelectric Effects ofNanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4Composite Films [J]. Appl. Phys.Lett,2006,89(10):102907.
    [28] N. A. Hill, Why Are There so Few Magnetic Ferroelectrics?[J]. J. Phys.Chem. B,2000,104:6694-6709.
    [29] K. Ueda, H. Tabata, T. Kawai. et al., Ferromagnetism in LaFeO3–LaCrO3Superlattices [J]. Science,1998,280(5366):1064-1066.
    [30] M. Azuma, K. Takata, T. Saito, et al., Designed Ferromagnetic, FerroelectricBi2NiMnO6[J]. J. Am. Chem. Soc.,2005,127(24):8889-8892.
    [31] J. de Groot, T. Mueller, R. A. Rosenberg, et al., Charge Order in LuFe2O4: AnUnlikely Route to Ferroelectricity [J]. Phys. Rev. Lett.,2012,108(18):187601.
    [32] X. S. Xu, M. Angst, T. V. Brinzari, et al., Charge Order, Dynamics, andMagnetostructural Transition in Multiferroic LuFe2O4[J]. Phys. Rev. Lett.,2008,101(22):227602.
    [33] N. Balke, B. Winchester, W. Ren, et al., Enhanced Electric Conductivity atFerroelectric Vortex Cores in BiFeO3[J]. Nat. Phys.,2011,8(1):81-88.
    [34] J. Wang, et al., Epitaxial BiFeO3Multiferroic Thin Film Heterostructures [J].Science,2003,299(5613):1719-1722.
    [35] T. Choi, S. Lee, Y. J. Choi, et al., Switchable Ferroelectric Diode andPhotovoltaic Effect in BiFeO3[J]. Science,2009,324(5923):63-66.
    [36] A. M. Santos, A. K. Cheetham, T. Atou, et al., Orbital Ordering as theDeterminant for Ferromagnetism in Biferroic BiMnO3[J]. Phys. Rev. B,2002,66(6):064425.
    [37] T. Kimura, S. Kawamoto, I. Yamada, et al., Magnetocapacitance Effect inMultiferroic BiMnO3[J]. Phys. Rev. B,2003,67(18):180401.
    [38] M. Guennou, P. Bouvier, P. Toulemonde, et al., Jahn-Teller, Polarity, andInsulator-to-Metal Transition in BiMnO3at High Pressure [J]. Phys. Rev. Lett.,2014,112(7):075501.
    [39] T. Zhao, A. Scholl, F. Zavaliche, et al., Electrical control of antiferromagneticdomains in multiferroic BiFeO3films at room temperature [J]. Nature Mater.,2006,5(10):823-829.
    [40] E. F. Bertaur, R. Pauthenet, M. Mercier, Proprietes Magnetiques et Structuresdu Manganite d'Yttrium [J]. Physics Letters,1963,7(2):110-111.
    [41] A. Filipetti, N. A. Hill, Why Are There any Magnetic Ferroelectrics?[J]. J.Magn. Magn. Mater.,2002,242:976-979.
    [42] A. B. B. Van, T. T. M. Palstra, A. Filipetti, et al., The Origin ofFerroelectricity in Magnetoelectric YMnO3[J]. Nat. Mater.,2004,3(3):164-170.
    [43A. B. B. Van, A. Meetsma, T. T. M. Palstra, Hexagonal YMnO3[J]. Acta Cryst.C,2001,57(3):230-232.
    [44] T. Katsufuji, Dielectric and Magnetic Anomalies and Spin Frustration inHexagonal RMnO3(R=Y, Yb, and Lu)[J]. Phys. Rev. B,2001,64(10):104419.
    [45] M. Fiebig, C. Degenhardt, R. V. Pisarev, Interaction of Frustrated MagneticSublattices in ErMnO3[J]. Phys. Rev. Lett.,2001,88(2):027203.
    [46] S. Y. Jang, D. Lee, J. H. Lee, et al., Oxygen Vacancy Induced Reentrant SpinGlass Behavior in Multiferroic Thin Films [J]. Appl. Phys. Lett.,2008,93(16):162507.
    [47] P. Dey, T. K. Nath, M. L. N. Goswami, et al., Room Temperature Ferroelectricand Ferromagnetic Properties of Multiferroics xLa0.7Sr0.3MnO3–(1-x)ErMnO3(weight percent x=0.1,0.2) Composites [J]. Appl. Phys. Lett.,2007,90(16):162510.
    [48] N. Iwataa, K. Kohna, Magnetoelectric Effect and Rare Earth MagneticOrdering of ErMnO3[J]. Ferroelectrics,1998,219:161-168.
    [49] A. Mu oz, J. A. Alonso, M. J. Martínez-Lope, et al., Evolution of theMagnetic Structure of Hexagonal HoMnO3from Neutron Powder DiffractionData [J]. Chem. Mater.,2001,13:1497-1505.
    [50] P. Murugavel, J. H. Lee, D. Lee, et al., Physical Properties of MultiferroicHexagonal HoMnO3Thin Films [J]. Appl. Phys. Lett.,2007,90(14):142902.
    [51] M. Fiebig, C. Degenhardt, R. V. Pisarev, Magnetic Phase Diagram ofHoMnO3[J]. Appl. Phys. Lett.,2002,91(10):8867-8869.
    [52] N. Hur, I. K. Jeong, M. F. Hundley, et al., Giant Magnetoelectric Effect inMultiferroic HoMnO3with a High Ferroelectric Transition Temperature [J].Phys. Rev. B,2009,79(13):134120.
    [53] D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys, et al., The MagneticSusceptibility, Specific Heat and Dielectric Constant of Hexagonal YMnO3,LuMnO3and ScMnO3[J]. J. Phys.: Condens. Matter.,2001,13(20):4543.
    [54] B. B. V. Aken, T. T. M. Palstra, Influence of Magnetic on FerroelectricOrdering in LuMnO3[J]. Phys. Rev. B,2004,69(13):134113.
    [55] D. Lim, R. D. Averitt, J. Demsar, et al., Coherent Acoustic Phonons inHexagonal Manganite LuMnO3[J]. Appl. Phys. Lett.,2003,83(23):4800-4802.
    [56] B. V. Aken, T. T. M. Palstra, A. Filipetti, et al., The Origin of Ferroelectricityin Magnetoelectric YMnO3[J]. Nature Mater.,2004,3:164-170.
    [57] B. Lorenz, Y. Q. Wang, C. W. Chu, Ferroelectricity in Perovskite HoMnO3and YMnO3[J]. Phys. Rev. B,2007,76(10):104405.
    [58] C. Y. Ren, Atomic, Electronic, and Ferroelectric Properties of ManganiteRMnO3(R=Ho, Er, Tm, Lu) in Hexagonal and Orthorhombic Phases [J]. Phys.Rev. B,2009,79(12):125113.
    [59] S. Seki, Y. Yamasaki, Y. Shiomi, et al. Impurity-Doping-InducedFerroelectricity in the Frustrated Antiferromagnet CuFeO2[J]. Phys. Rev. B,2007,75(10):100403.
    [60] T. Kimura, J. C. Lashley, A. Ramirez, Inversion-Symmetry Breaking in theNoncollinear Magnetic Phase of the Triangular-Lattice AntiferromagnetCuFeO2[J]. Phys. Rev. B,2006,73(22):220401.
    [61] N. Aliouane, D. N. Argyriou, J. Strempfer, et al., Field-Induced LinearMagnetoelastic Coupling in Multiferroic TbMnO3[J]. Phys. Rev. B,2006,73(2):020102.
    [62] A. Pimenov, A. Shuvaev, A. Loidl, et al., Magnetic and MagnetoelectricExcitations in TbMnO3[J]. Phys Rev.Lett.,2009,102(10):107203.
    [63] T. Kimura, T. Goto, H. Shintani, et al., Magnetic Control of FerroelectricPolarization [J]. Nature,2003,426(6962):55-58.
    [64] T. Goto, G. Lawes, A. P. Ramirez, et al., Ferroelectricity and GiantMagnetocapacitance in Perovskite Rare-Earth Manganites [J]. Phys. Rev. Lett.,2004,92(25):257201.
    [65] D. Iusan, K. Yamauchi, P. Barone, et al., Effects of Strain on FerroelectricPolarization and Magnetism in Orthorhombic HoMnO3[J]. Phys. Rev. B,2013,87(1):014403.
    [66] I. V. Solovyev, Magnetic Structure and Ferroelectric Activity in OrthorhombicYMnO3: Relative Roles of Magnetic Symmetry Breaking and AtomicDisplacements [J]. Phys. Rev. B,2012,86(14):144406.
    [67] S. Tripathi, V. Petkov, S. M. Selbach, et al., Structural Coherence andFerroelectric Order in Nanosized Multiferroic YMnO3[J]. Phys. Rev. B,2012,86(9):094101.
    [68] N. Lee, Y. J. Choi, M. Ramazanoglu, et al., Mechanism of Exchange Strictionof Ferroelectricity in Multiferroic Orthorhombic HoMnO3Single Crystals [J].Phys. Rev. B,2011,84(2):020101.
    [69] S. Ishiwata, Y. Tokunaga, Y. Taguchi, et al., High-Pressure HydrothermalCrystal Growth and Multiferroic Pproperties of a Perovskite YMnO3[J]. J.Am. Chem. Soc.,2011,133(35):13818-13820.
    [70] D. Okuyama, S. Ishiwata, Y. Takahashi, et al., Magnetically DrivenFerroelectric Atomic Displacements in Orthorhombic YMnO3[J]. Phys. Rev.B,2011,84(5):054440.
    [71] N. Mufti, A. A. Nugroho, G. R. Blake, et al., Relaxor Ferroelectric Behaviorin Ca-Doped TbMnO3[J]. Phys. Rev. B,2008,78(2):024109.
    [72] D. O’Flynn, C. V. Tomy, M. R. Lees, et al., Multiferroic Properties andMagnetic Structure of Sm1-xYxMnO3[J]. Phys. Rev. B,2011,83(17):174426.
    [73] J. Hemberger, F. Schrettle, A. Pimenov, et al., Multiferroic Phases ofEu1xYxMnO3[J]. Phys. Rev. B,2007,75(3):035118.
    [74] S. Z. Li, T. T. Wang, H. Q. Han, et al., Modulated Multiferroicity of Cr-dopedOrthorhombic Polycrystalline YMnO3[J]. J. Phys. D: Appl. Phys.,2012,45(5):055003.
    [75] T. Terai, T. Sasaki, T. Kakeshita, et al., Electronic and Magnetic Properties ofR0.5A0.5MnO3Compounds (R=Gd, Dy, Ho, Er; A=Sr, Ca)[J]. Phys. Rev. B,2000,61(5):3488.
    [76] J. Blasco, C. Ritter, J. García, et al., Structural and Magnetic Study ofTb1-xCaxMnO3Perovskites [J]. Phys. Rev. B,2000,62(9):5609.
    [77] Y. Hiramitsu, K. Yoshii, Y. Yoneda, et al., Magnetic and Dielectric Propertiesof Tb0.5Ca0.5MnO3[J]. Jpn. J. Appl. Phys.,2007,46(10S):7171.
    [78] V. Cuartero, J. Blasco, J García, et al., Enhancement of FerromagneticCorrelations on Multiferroic TbMnO3by Replacing Mn with Co [J]. J. Phys.:Condens. Matter.,2012,24(45):455601.
    [79] T. Portengen, O. Ostreich, L. J. Sham, Theory of Electronic Ferroelectricity[J]. Phys. Rev. B,1996,54(24):017452.
    [80] E. J. Verwey, P. W. Haayman, Electronic Conductivity and Transition Point ofMagnetite (Fe3O4)[J]. Physica,1941,8(9):979-987.
    [81] K. Kato, S. Irda, Observation of Ferroelectric Hysteresis Loop of Fe3O4at4.2K [J]. J. Phys. Soc. Jpn.,1982,51(5):1335-1336.
    [82] M. Alexe, M. Ziese, D. Hesse, et al., Ferroelectric Switching in MultiferroicMagnetite (Fe3O4) Thin Films [J]. Adv. Mater.,2009,21(44):4452-4455.
    [83] Y. Zhang, H. X. Yang, H. F. Tian, et al., Charge-Stripe Order in the ElectronicFerroelectric LuFe2O4[J]. Phys. Rev. Lett.,2007,98(24):247602.
    [84] N. Ikeda, H. Ohsumi, K. Ohwada, et al., Ferroelectricity From Iron ValenceOrdering in theCharge-Frustrated System LuFe2O4[J]. Nature,2005,436(7054):1136-1138.
    [85] M. A. Subramanian, T. He, J. Chen, et al., Giant Room–TemperatureMagnetodielectric Response in the Electronic Ferroelectric LuFe2O4[J]. Adv.Mater.,2006,18(13):1737-1739.
    [86] J. Iida, M. Tanaka, Y. Nakagawa, et al., Magnetization and Spin Correlation ofTwo-Dimensional Triangular Antiferromagnet LuFe2O4[J]. J. Phys. Soc. Jpn.,1993,62(5):1723-1735.
    [1] Y. Tokura, Multiferroics as Quantum Electromagnetic [J]. Science,2006,5779:1481.
    [2] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and MagnetoelectricMaterials [J]. Nature,2006,442(7104):759-765.
    [3] Y. Tokura, Multiferroics Toward Strong Coupling Between Magnetization andPolarization in a Solid [J]. J. Magn. Magn. Mater.,2007,310(2):1145-1150.
    [4]迟振华,靳常青,单相磁电多铁性体研究进展[J].中国学术期刊文摘,2008,13(21):1.
    [5] D. I. Khomskii, Multiferroics: Different Ways to Combine Magnetism andFerroelectricity [J]. J. Magn. Magn. Mater.,2006,306(1):1-8.
    [6] S. W. Cheong, M. Mostovoy, Multiferroics: A Magnetic Twist forFerroelectricity [J]. Nat. Mater.,2007,6(1):13-20.
    [7] R. Ramesh, A. N. Spaldin, Multiferroics: Progress and Prospects in Thin Films[J]. Nat. Mater.,2007,6(1):21-29.
    [8] H. Schmid, Magnetic Ferroelectric Materials [J]. Bull. Mater. Sci.,2007,17(7):1411-1414.
    [9] N. A. Spaldin, M. Fiebig, The Renaissance of Magnetoelectric Multiferroics [J].Science,2005,309(5733):391-392.
    [10] M. Fiebig, Revival of the Magnetoelectric Effect [J]. J. Phys. D: Appl. Phys.,2005,38(8): R123.
    [11] G. T. Rado, V. Folen, Observation of the Magnetically InducedMagnetoelectric Effect and Evidence for Antiferromagnetic Domains [J]. PhysRev Lett,1961,7(8):310.
    [12] A. Castro, C. Correas, O. Pena, et al., Nanostructured BiMnO3+Obtained atAmbient Pressure: Analysis of Its Multiferroicity [J]. J. Mater. Chem.,2012,22(19):9928-9938.
    [13] Z. Li, Y. Shen, C. Yang, et al., Significant Enhancement in the Visible LightPhotocatalytic Properties of BiFeO3Graphene Nanohybrids [J]. J. Mater. Chem.A,2013,1(3):823-829.
    [14] A. Perejon, N. Murafa, P. E. S. Jimenez, et al., Direct Mechanosynthesis ofpure BiFeO3Perovskite Nanoparticles: Reaction Mechanism [J]. J. Mater.Chem. C,2013,1(22):3551-3562.
    [15] M. Azuma, K. Takata, T. Saito, et al., Designed Ferromagnetic, FerroelectricBi2NiMnO6[J]. J. Am.Chem. Soc.,2005,127(24):8889-8892.
    [16] J. Wang, J. B. Neaton, H. Zheng, et al., Epitaxial BiFeO3Multiferroic ThinFilm Heterostructures [J]. Science,2003,299(5613):1719-1722.
    [17] T. Kimura, T. Goto, H. Shintani, et al., Magnetic Control of FerroelectricPolarization [J]. Nature,2003,426(6962):55-58.
    [18] T. Kimura, G. Lawes, T. Goto, et al., Magnetoelectric Phase Diagrams ofOrthorhombic RMnO3(R=Gd, Tb, and Dy)[J]. Phys. Rev. B,2005,71(22):224425.
    [19] B. Lorenz, Y. Q. Wang, C. W. Chu, Ferroelectricity in Perovskite HoMnO3andYMnO3[J]. Phys. Rev. B,2007,76(10):104405.
    [20] Y. Tokunaga, N. Furukawa, H. Sakai, et al., Composite Domain Walls in aMultiferroic Perovskite ferrite [J]. Nat. Mater.,2009,8(7):558-562.
    [21] Y. Tokura, S. Seki, Multiferroics With Spiral Spin Orders [J]. Adv. Mater.,2010,22(14):1554-1565.
    [22] E. S. Stampler, W. C. Sheets, W. Prellier, et al., Hydrothermal Synthesis ofLnMnO3(Ln=Ho–Lu and Y): Exploiting Amphoterism in Late Rare-EarthOxides [J]. J. Mater. Chem.,2009,19(25):4375-4381.
    [23] J. Shah, R. K. Kotnala, Room Temperature Magnetoelectric CouplingEnhancement in Mg-Substituted Polycrystalline GdFeO3[J]. Scripta Mater.,2012,67(4):316-319.
    [24] V. Cuartero, J. Blasco, J. Garcia, et al., Structural Effects of Sc Doping on theMultiferroic TbMnO3[J]. Phys. Rev. B,2010,81(22):224117.
    [25] N. Mufti, A. A. Nugroho, G. R. Blake, et al., Relaxor Ferroelectric Behavior inCa-Doped TbMnO3[J]. Phys. Rev. B,2008,78(2):024109.
    [26] J. Blasco, C. Ritter, J. García, et al., Structural and Magnetic Study ofTb1-xCaxMnO3Perovskites [J]. Phys. Rev. B,2000,62(9):5609.
    [27] M. Staruch, M. Jain, Long-Range Magnetic Ordering in Bulk Tb1xMxMnO3(M=Ca, Sr)[J]. J. Phys.: Condens. Matter,2013,25(29):296005.
    [28] A. A. Nugroho, Risdiana, N. Mufti, et al., Changes of Spin Dynamics inMultiferroic Tb1-xCaxMnO3[J]. Physica B: Condensed Matter,2009,404(5):785-788.
    [29] S. Z. Li, T. T. Wang, H. Q. Han, et al., Modulated Multiferroicity of Cr-DopedOrthorhombic Polycrystalline YMnO3[J]. J. Phys. D: Appl. Phys.,2012,45(5):055003.
    [30] M Staruch, M Jain, Evidence of Antiferromagnetic and FerromagneticSuperexchange Interactions in Bulk TbMn1xCrxO3[J]. J. Phys.: Condens.Matter,2014,26(4):046005.
    [31] Y. Hiramitsu, K. Yoshii, Y. Yoneda, et al., Magnetic and Dielectric Propertiesof Tb0.5Ca0.5MnO3[J]. Jpn. J. Appl. Phys. Part1,2007,46(10S):7171.
    [32] T. Kimura, S. Kawamoto, I. Yamada, et al., Magnetocapacitance Effect inMultiferroic BiMnO3[J]. Phys. Rev. B,2003,67(18):180401.
    [33] E. Montanari, L. Righi, G. Calestani, et al., Room TemperaturePolymorphism in Metastable BiMnO3Prepared by High-Pressure Synthesis [J].Chem. Mater.,2005,17:1765-1773.
    [34] F. Sugawara, S. Iiida, Y. Syono, et al., Magnetic Properties and CrystalDistortions of BiMnO3and BiCrO3[J]. J. Phys. Soc. Jpn.,1968,25(6):1553-1558.
    [35] R. H. Wentorf, Cubic form of Boron Nitride [J]. J. Chem. Phys.,2004,34(3):809-812.
    [36] J. C. Carver, G. K. Schweitzer, T. A. Carlson, Use of X-Ray PhotoelectronSpectroscopy to Study Bonding in Cr, Mn, Fe, and Co Compounds [J]. J. Chem.Phys.,1972,57(2):973-982.
    [37] D. Briggs, Surf. Interface Anal.[M]1981,3: v-v.
    [38] J. A. Kurzman, J. Li, T. D. Schladt, et al., Pd2+/Pd0Redox Cycling inHexagonal YMn0.5Fe0.5O3: Implications for Catalysis by PGM-SubstitutedComplex Oxides [J]. Inorg. Chem.,2011,50(17):8073-8084.
    [39] Y. Du, Z. X. Cheng, S. X. Dou, et al., Magnetic Properties of Bi2FeMnO6: AMultiferroic Material with Double-Perovskite Structure [J]. Appl. Phys. Lett.,2010,97(12):122502.
    [40] P. Mandal, A. Iyo, Y. Tanaka, et al., Structure, Magnetism and Giant DielectricConstant of BiCr0.5Mn0.5O3Synthesized at High Pressures [J]. J. Mater. Chem.,2010,20(9):1646-1650.
    [41] J. F. Scott, Ferroelectrics Go Bananas [J]. J. Phys.: Condens. Matter,2008,20(2):02100
    [1] S. Z. Li, T. T. Wang, H. Q. Han, et al., Modulated Multiferroicity of Cr-DopedOrthorhombic Polycrystalline YMnO3[J]. J. Phys. D: Appl. Phys.,2012,45(5):055003.
    [2] C. R. Serrao, A. K. Kundu, S. B. Krupanidhi, et al., Biferroic YCrO3[J]. Phys.Rev. B,2005,72(22):220101.
    [3] K. Ramesha, A. Llobet, T. Proffen, et al., Observation of LocalNon-Centrosymmetry in Weakly Biferroic YCrO3[J]. J. Phys.: Condens.Matter,2007,19(10):102202.
    [4]聶安莉,多鐵材料YMnO3薄膜之光譜性質研究[M].臺灣師範大學物理學系學位論文,2009:1-137.
    [5] W. Prellier, M. P. Singh, P. Murugavel, The Single-Phase Multiferroic Oxides:From Bulk to Thin Film [J]. J. Phys.: Condens. Matter,2005,17(30): R803.
    [6] J. W. G. Bos, B. B. V. Aken, T. T. M. Palstra, Site Disorder InducedHexagonal-Orthorhombic Transition in Y3+1-xGd3+xMnO3[J]. Chem. Mater.,2001,13(12):4804-4807.
    [7] J. C. Carver, G. K. Schweitzer, T. A. Carlson, Use of X-Ray PhotoelectronSpectroscopy to Study Bonding in Cr, Mn, Fe, and Co Compounds [J]. J. Chem.Phys.,1972,57(2):973-982.
    [8] R. Kajimoto, H. Yoshizawa, H. Shintani, et al., Magnetic Structure of TbMnO3by Neutron Diffraction [J]. Phys. Rev. B,2004,70(1):012401.
    [9] F. N. Sayed, B. P. Mandal, O. D. Jayakumar, et al., Rare Examples ofFluoride-Based Multiferroic Materials in Mn-substituted BaMgF4Systems:Experimental and Theoretical Studies [J]. Inorg. Chem.,2011,50(22):11765-11772.
    [10] Y. Tokura, S. Seki, Multiferroics with Spiral Spin Orders [J]. Adv. Mater.,2010,22(14):1554-1565.
    [11] J. H. Lee, Y. K. Jeong, J. H. Park, et al., Spin-Canting-Induced ImproperFerroelectricity and Spontaneous Magnetization Reversal in SmFeO3[J]. Phys.
    Rev. Lett.,2011,107(11):117201.
    [1] P. P. Gardner, C. Wilkinson, J. B. Forsyth, et al., The Magnetic Structures ofthe Rare-Earth Manganates ErMn2O5and TbMn2O5[J]. J. Phys. C: Solid StatePhys.,1988,21(33):5653.
    [2] K. Saito, K. Kohn, Magnetoelectric Effect and Low-Temperature PhaseTransitions of TbMn2O5[J]. J. Phys.: Condens. Matter,1995,7(14):2855.
    [3] L. C. Chapon, G. R. Blake, M. J. Gutmann, et al., Structural Anomalies andMultiferroic Behavior in Magnetically Frustrated TbMn2O5[J]. Phys. Rev. Lett.,2004,93(17):177402.
    [4] R. Seshadr, N. A. Hill, Visualizing the Role of Bi6s―Lone Pairs‖in theOff-Center Distortion in Ferromagnetic BiMnO3[J]. Chem. Mater.,2001,13(9):2892-2899.
    [5] A. M. Santos, A. K. Cheetham, T. Atou, et al., Orbital Ordering as theDeterminant for Ferromagnetism in Biferroic BiMnO3[J]. Phys. Rev. B,2002,66(6):064425.
    [6] J. Wang, J. B. Neaton, H. Zheng, et al., Epitaxial BiFeO3Multiferroic ThinFilm Heterostructures [J]. Science,2003,299(5613):1719-1722.
    [7] M. M. Kumar, V. R. Palkar, K. Srinivas, et al., Ferroelectricity in a PureBiFeO3Ceramic [J]. Appl. Phys. Lett.,2000,76(19):2764-2766.
    [8] P. Fischer, M. Polomska, I. Sosnowska, et al., Temperature Dependence of theCrystal and Magnetic Structures of BiFeO3[J]. J. Phys. C: Solid State Phys.,1980,13(10):1931.
    [9] B. Rajeswaran, P. Mandal, R. Saha, et al., Ferroelectricity Induced by Cationsof Nonequivalent Spins Disordered in the Weakly Ferromagnetic Perovskites,YCr1–xMxO3(M=Fe or Mn)[J]. Chem. Mater.,2012,24(18):3591-33595.
    [10] A. A. Belik, T. Furubayashi, Y. Matsushita, et al., Indium-Based Perovskites: aNew Cass of Near-Room-Temperature Multiferroics [J]. Angew.Chem.,2009,48(33):6117-6120.
    [11] C. R. Serrao, S. B. Krupanidhi, J. Bhattacharjee, et al., InMnO3: A Biferroic [J].J. Appl. Phys.,2006,100(7):076104.
    [12] M. A. Subramanian, T. He, J. Chen, et al., Giant Room–TemperatureMagnetodielectric Response in the Electronic Ferroelectric LuFe2O4[J]. Adv.Mater.,2006,18(13):1737-1739.
    [13] N. Ikeda, H. Ohsumi, K. Ohwada, et al., Ferroelectricity from Iron ValenceOrdering in the Charge-Frustrated System LuFe2O4[J]. Nature,2005,436(7054):1136-1138.
    [14] A. Dixit, A. E. Smith, M. A. Subramanian, et al., Suppression of MultiferroicOrder in Hexagonal YMn1xInxO3Ceramics [J]. Solid State Commun,2010,150(15):746-750.
    [15] Y. K. Jeong, J. H. Lee, S. J. Ahn, et al., Structurally Tailored HexagonalFerroelectricity and Multiferroism in Epitaxial YbFeO3Thin-FilmHeterostructures [J]. J. Am. Chem. Soc.,2012,134(3):1450-1453.
    [16] H. Iida, T. Koizumi, Y Uesu, Physical Properties of New MultiferroicHexagonal YbFeO3Thin Film [J]. Phase Transitions: A Multinational Journal,2011,84(9-10):747-752.
    [17] W. Wang, J. Zhao, W. Wang, et al., Room-Temperature Multiferroic HexagonalLuFeO3Films [J]. Phys. Rev. Lett.,2013,110(23):237601.
    [18] Y. K. Jeong, J. H. Lee, S. J. Ahn, et al., Epitaxially Constrained HexagonalFerroelectricity and Canted Triangular Spin Order in LuFeO3Thin Films [J].Chem. Mater.,2012,24(13):2426-2428.
    [19] I. M. Reaney, E. L. Colla, N. Setter, Dielectric and Structural Characteristics ofBa-and Sr-based Complex Perovskites as a Function of Tolerance Factor [J].Jpn. J. Appl. Phys.,1994,33(part1):3984-3990.
    [20] J. R. Sun, G. H. Rao, J. K. Liang, Crystal Structure and Electronic TransportProperty of Perovskite Manganese Oxides with a Fixed Tolerance Factor [J].Appl. Phys. Lett.,1997,70(14):1900-1902.
    [21] X. P. Yuan, Y. k. Tang, Y. Sun, et al., Structure and Magnetic Properties ofY1xLuxFeO3(0≤x≤1) Ceramics [J]. J. Appl. Phys.,2012,111(5):053911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700