用户名: 密码: 验证码:
一维纳米多元氧化物材料的静电纺丝法制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维纳米多元氧化物材料以其新颖的微观结构(如纳米纤维、纳米管、纳米棒和纳米带)、不同于传统块材的特殊的物理和化学性能,以及在基础研究和微纳米器件应用方面的重要价值而受到人们的广泛关注。锆钛酸铅(PZT)作为一种铁电、压电性能优异的功能性材料,具有高机电耦合系数、大剩余极化强度、高介电常数、热电效应和高的光电系数等,在传感器、制动器、结构系统、非挥发性铁电存储设备、微机电系统(MEMS)等技术领域显示出十分重要的现实应用价值。而尖晶石相NiFe2O4铁氧体作为一种软磁材料,具有低的矫顽力、低涡流损耗和高的化学稳定性,在高密度磁记录、磁传感器、微纳功能器件、自旋电子器件等方面有望得到实际应用。
     制备一维微/纳米结构材料的方法多种多样,包括模板法、水热合成法、高分子辅助共沉淀法、磁场辅助自组装法和高压静电纺丝技术。在众多的方法中,高压静电纺丝技术具有制备过程简单、成本低廉、样式多变、可大量生产等优势,更重要的是较容易实现纤维的直径可控、形貌多样化,制备的纤维直径从几十纳米到数百纳米、长度达到宏观尺度。通过使用适当的收集器,还能够实现纤维的定向排列。
     本论文以高压静电纺丝技术为基础,与溶胶-凝胶技术和热处理工艺调控相结合,以铁电性材料锆钛酸铅和铁磁性材料铁酸镍为研究对象,实现了一维纳米纤维/纳米管的直径可控、形貌与相关性能的调控,主要工作和创新成果如下:
     1、采用静电纺丝技术制备了PVDF纤维结构,讨论了前驱体溶液的物理参数(溶液的浓度/粘度、溶剂比)和静电纺丝过程参数(施加电压、溶液流速和接收距离)等条件对所得纤维形貌和直径分布的影响,实现了PVDF纤维的直径从200nm到1.6μm可调。
     2、以静电纺丝法结合溶胶-凝胶技术和烧结工艺,成功制备了直径可控、成分在准同型相界附近、具有类单晶结构的PbZr0.52Ti0.48O3纳米纤维。调节前驱体溶液的物理参数(溶液的浓度/粘度)和静电纺丝过程参数(施加电压、溶液流速和接收距离),实现了PZT纳米纤维直径从50nm到540nm可调;烧结工艺(烧结温度、保温时间和升温速率)对PZT纳米纤维的形貌和相成分有显著的影响;引入分级退火制度,在400℃预烧结0.5h后,再在650℃烧结2h能够得到单一钙钛矿相的类单晶结构PZT纳米纤维,并研究了其形成机理。
     3、以同轴静电纺丝法结合溶胶-凝胶技术和烧结工艺,成功制备了直径可控、成分在准同型相界附近、具有类单晶结构的PZT纳米管。研究发现调节内、外层溶液的物理参数(溶液的浓度/粘度、PZT摩尔浓度)和静电纺丝过程参数(施加电压,内、外层溶液流速)能够调节凝胶纤维的直径,进而调节烧结后PZT纳米管的直径和壁厚,实现了PZT纳米管的外部直径从100nm到1.3μm可调,壁厚从50nm到~200nm可调。引入分级退火制度,在360℃预烧结0.5h再在700℃烧结2h后成功制得单一钙钛矿相的具有类单晶结构的PZT纳米管。
     4、以静电纺丝法结合溶胶-凝胶技术和烧结工艺,通过在不同的温度烧结,成功制备了直径约90nm的多颗粒纳米链和单颗粒纳米链NiFe2O4纳米纤维。发现烧结温度对NiFe2O4纳米纤维的形貌及其磁性能有显著的影响,单晶纳米颗粒组成的NiFe2O4纳米纤维的磁性能最优,室温下其饱和极化强度和矫顽力都比多颗粒纳米链高。这为研究NiFe2O4纳米链的尺寸效应和准一维纳米结构的磁化反转机理提供了较好的研究对象。
In recent years, one dimensional (1D) functional nanomaterials with various morphologies, have attracted much increased attention due to their large specific surface area, high aspect ratio and unique shape anisotropy. Considering their distinctive physical and chemical properties from their bulk and nanoparticle counterpartes,1D nanomaterials can be used in various potential applications. Lead zirconate titanate (PZT) is widely used as ferroelectric materials in sensor, actuators, non-volatile ferroelectric memory devices, micro-electromechanical systems (MEMS), because of its highest electromechanical coupling coefficient, large remnant polarization, and high dielectric, pyroelectric, and electro-optic coefficients.1D PZT nano structures are expected to have more attractive properties than those of their bulk counterparts due to their reduced sizes and large surface-to-volume ratios, and fibrous PZT has great potential for utilization in high performance hydrophones and ultrasonic transducer applications. Recently, nanoscale spinel ferrites have also attracted much attention due to their unique magnetic and electrical properties. Since nickel ferrite has the low coercivity, low eddy current loss, and chemical stability, its diverse potential applications include high-density magnetic recording, magnetic sensor, micro/nano devices, spin-electron device, etc.
     In the last decade, many synthesis methods, including template preparation, hydrothermal routs, polymer-assisted co-precipitation method, magnetic-field-induced assembly and electrospinning process have been developed to fabricate ID micro/nanomaterials. Among these methods, electrospinning technique is a simple, low cost, versatile and effective technology for fabricating nanofibers in large scale. It has been utilized to synthesize size-controlled1D nanostructural material with various morphologies and the diameter ranging from tens to hundreds of nanometers. By virtue of the collection facilities to align fibers uniaxial, electrospinning has also been considered as a promising way to assemble ordered magnetic circuits instead of using expensive electron-beam lithography.
     In this dissertation, we combined electrospinning technique with sol-gel method and heat treatment process to synthesis size-controlled, morphology tunable1D nanostructures. The relevant characterization and property investigation of1D nano structures for ferroelectric PZT and ferromagnetic NiFe2O4materials have also been carried out. The main work and innovative results are as follows:
     1. Size-tunable piezoelectric polymer PVDF nanofibers have been fabricated via electrospinning technique. We discussed the influences of the precursor solution's physical parameters (solution concentration/viscosity and solvent ratio) and electrospinning process parameters (voltage, flow rate, collect distance) on the fiber morphology and diameter distribution, and realized the PVDF fiber diameter tuned from200nm to1.6μm.
     2. Size-controlled single-crystal-like lead zirconate titanate (PbZr0.52Ti0.48O3, PZT) ceramic nanofibers have been successfully prepared by sol-gel based electrospinning and subsequent calcination process. The fiber diameter can be precisely controlled from~50to540nm by varying the PVP concentration and electrospinning process parameters. The crystal structure of the nanofibers pyrolyzed at400℃for0.5h and calcined at650℃for2h is proved to be single-crystal-like tetragonal perovskite phase. A formation mechanism is also discussed based on the thermal decomposition process, effect of the calcination and pyrolysis procedure. It is found that the pyrolysis procedure is a critical factor for the fabrication of single-crystal-like structure PZT nanofibers using electrospinning.
     3. Size-controlled single-crystal-like lead zirconate titanate (PbZr0.52Ti0.48O3, PZT) ceramic nanotubes have been successfully prepared by sol-gel based co-axial electrospinning and subsequent calcination process. We discussed the influences of the inner and outer solutions'physical parameters (solution concentration/viscosity and molar concentration) and electrospinning process parameters (inner/outer flow rate ratio) on the fiber morphology, diameter and wall thickness. The outer diameter of PZT nanotubes can be tuned from100nm to1.3μm and their wall thickness is varied from~50to200nm. After pyrolyzed at400℃for0.5h and calcined at650℃for2h, the obtained PZT nanotubes are tetragonal perovskite phase and single-crystal-like.
     4. We report a facile way to fabricate NiFe2O4multiparticle-chain to single-particle chain via sol-gel-based electrospinning and calcination. NiFe2O4nanofibers with tunable morphology can be obtained by virtue of different calcination temperature. The NiFe2O4single-particle-chain nanofibers exhibit the highest saturated magnetization (Ms) and coercivity (Hc) at room temperature compared to multiparticle-chain. This provides a unique model system for the fundamental investigation into the size-dependent magnetism of NiFe2O4nanofibers from multiparticle-chain to singleparticle-chain, and the magnetization reversal mechanism with the quasi-1D nanostructure.
引文
[1]Valiev R. Materials science:Nanomaterial advantage. Nature.2002,419 (6910):887-889.
    [2]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research.1999,32 (5): 435-445.
    [3]Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures:Synthesis, characterization, and applications. Advanced Materials.2003,15 (5):353-389.
    [4]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials.2002,14 (1):80-82.
    [5]Law M, Goldberger J, Yang P D. Semiconductor nanowires and nanotubes. Annual Review of Materials Research.2004,34:83-122.
    [6]Rao C N R, Deepak F L, Gundiah G, Govindaraj A. Inorganic nanowires. Progress in Solid State Chemistry.2003,31 (1-2):5-147.
    [7]Wang Z L. Oxide nanobelts and nanowires-Growth, properties and applications. Journal of Nanoscience and Nanotechnology.2008,8 (1):27-55.
    [8]Bae C, Yoo H, Kim S, Lee K, Kim J, Sung M A, Shin H. Template-directed synthesis of oxide nanotubes:Fabrication, characterization, and applications. Chemistry of Materials. 2008,20 (3):756-767.
    [9]Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G. Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical sensors. Progress in Materials Science.2009,54 (1):1-67.
    [10]Tenne R, Seifert G. Recent progress in the study of inorganic nanotubes and fullerene-like structures. In:Annual review of materials research,2009:387-413.
    [11]Fan H J, Yang Y, Zacharias M. ZnO-based ternary compound nanotubes and nanowires. Journal of Materials Chemistry.2009,19 (7):885-900.
    [12]Rao C N R, Govindaraj A. Synthesis of inorganic nanotubes. Advanced Materials.2009,21 (42):4208-4233.
    [13]Zhu X H, Liu Z G, Ming N B. Perovskite oxide nanotubes:Synthesis, structural characterization, properties and applications. Journal of Materials Chemistry.2010,20 (20): 4015-4030.
    [14]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial+large crystals Si E). Applied Physics Letters.1964,4 (5):89-&.
    [15]Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society.2001,123 (13):3165-3166.
    [16]Trentler T J, Hickman K M, Goel S C, Viano A M, Gibbons P C, Buhro W E. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors:An analogy to vapor-liquid-solid growth. Science.1995,270(5243):1791-1794.
    [17]Trentler T J, Goel S C, Hickman K M, Viano A M, Chiang M Y, Beatty A M, Gibbons P C, Buhro W E. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors:Elucidation of molecular and nonmolecular components of the pathway. Journal of the American Chemical Society.1997,119 (9):2172-2181.
    [18]Holmes J D, Johnston K P, Doty R C, Korgel B A. Control of thickness and orientation of solution-grown silicon nanowires. Science.2000,287 (5457):1471-1473.
    [19]Nielsch K, Muller F, Li A P, Gosele U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Advanced Materials.2000,12 (8):582-586.
    [20]Choi K H, Lee S H, Kim Y R, Malkinski L, Vovk A, Barnakov Y, Park J H, Jung Y K, Jung J S. Magnetic behavior of Fe3O4 nanostructure fabricated by template method. Journal of Magnetism and Magnetic Materials.2007,310 (2):E861-E863.
    [21]Chen W, Tao X, Liu Y, Sun X, Hu Z, Fei B. Facile route to high-density, ordered ZnO nanowire arrays and their photoluminescence properties. Applied Surface Science.2006, 252 (24):8683-8687.
    [22]Zhou Y K, Huang J, Shen C M, Li H L. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2002,335 (1-2):260-267.
    [23]Zhou Y K, Huang J, Li H L. Synthesis of highly ordered LiMnO2 nanowire arrays (by AAO properties template) and their structural properties. Applied Physics A-Materials Science & Processing.2003,76 (1):53-57.
    [24]Qu F, Yang M, Shen G, Yu R. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosensors and Bioelectronics.2007,22 (8):1749-1755.
    [25]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science.1995,268 (5216):1466-1468.
    [26]Li F Y, Zhang L, Metzger R M. On the growth of highly ordered pores in anodized aluminum oxide. Chemistry of Materials.1998,10 (9):2470-2480.
    [27]Li J, Papadopoulos C, Xu J M, Moskovits M. Highly-ordered carbon nanotube arrays for electronics applications. Applied Physics Letters.1999,75 (3):367-369.
    [28]Cornelius T W, Brotz J, Chtanko N, Dobrev D, Miehe G, Neumann R, Mollares M E T. Controlled fabrication of poly-and single-crystalline bismuth nanowires. Nanotechnology. 2005,16 (5):S246-S249.
    [29]Hu Z A, Xu T, Liu R J, Li H L. Template preparation of high-density, and large-area ag nanowire array by acetaldehyde reduction. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2004,371(1-2):236-240.
    [30]Liu C H, Zapien J A, Yao Y, Meng X M, Lee C S, Fan S S, Lifshitz Y, Lee S T. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Advanced Materials.2003,15 (10): 838-+.
    [31]Zhou D, Anoshkina E V, Chow L, Chai G Y. Synthesis of carbon nanotubes by electrochemical deposition at room temperature. Carbon.2006,44 (5):1013-1016.
    [32]Li N, Li X T, Yin X J, Wang W, Qiu S L. Electroless deposition of open-end Cu nanotube arrays. Solid State Communications.2004,132 (12):841-844.
    [33]Luo Y M, Hou Z Y, Jin D F, Gao J, Zheng X M. Template assisted synthesis of Ga2O3-Al2O3 nanorods. Materials Letters.2006,60 (3):393-395.
    [34]McGary P D, Stadler B J H. Electrochemical deposition of Fe1-xGax nanowire arrays. Journal of Applied Physics.2005,97 (10)
    [35]Huber T E, Onakoya O, Ervin M H. Constitutional supercooling and the growth of 200 nm Bi-Sb wire array composites. Journal of Applied Physics.2002,92 (3):1337-1343.
    [36]Zhou Y K, Shen C M, Li H L. Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template. Solid State Ionics.2002,146 (1-2):81-86.
    [37]Xu H, Qin D H, Yang Z, Li H L. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Materials Chemistry and Physics.2003,80 (2): 524-528.
    [38]Xu C, Zhao X, Liu S, Wang G. Large-scale synthesis of rutile SnO2 nanorods. Solid State Communications.2003,125 (6):301-304.
    [39]Kahn M L, Monge M, Colliere V, Senocq F, Maisonnat A, Chaudret B. Size- and shape-control of crystalline zinc oxide nanoparticles:A new organometallic synthetic method. Advanced Functional Materials.2005,15 (3):458-468.
    [40]Kahn M L, Monge M, Snoeck E, Maisonnat A, Chaudret B. Spontaneous formation of ordered 2d and 3d superlattices of ZnO nanocrystals. Small.2005,1 (2):221-224.
    [41]Zhang Q, Cao G. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today. 2011,6(1):91-109.
    [42]Sun T, Qing G, Su B, Jiang L. Functional biointerface materials inspired from nature. Chemical Society Reviews.2011,40 (5):2909-2921.
    [43]Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures. Advanced Materials.2009,21 (36):3621-3638.
    [44]Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces:From natural to artificial. Advanced Materials.2002,14 (24): 1857-1860.
    [45]Miao J, Miyauchi M, Simmons T J, Dordick J S, Linhardt R J. Electrospinning of nanomaterials and applications in electronic components and devices. Journal of Nanoscience and Nanotechnology.2010,10 (9):5507-5519.
    [46]Hou Z, Li G, Lian H, Lin J. One-dimensional luminescent materials derived from the electrospinning process:Preparation, characteristics and application. Journal of Materials Chemistry.2012,22 (12):5254-5276.
    [47]Sill T J, von Recum H A. Electrospinning:Applications in drug delivery and tissue engineering. Biomaterials.2008,29 (13):1989-2006.
    [48]Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method. Journal of the American Chemical Society.2007,129 (4):764-765.
    [49]Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir.2010,26 (13): 11291-11296.
    [50]Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters.2003,3 (8):1167-1171.
    [51]Li D, Wang Y L, Xia Y N. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Advanced Materials.2004,16 (4):361-366.
    [52]Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Electrospinning of collagen nanofibers. Biomacromolecules.2002,3 (2):232-238.
    [53]Boland E D, Wnek G E, Simpson D G, Pawlowski K J, Bowlin G L. Tailoring tissue engineering scaffolds using electrostatic processing techniques:A study of poly(glycolic acid) electrospinning. Journal of Macromolecular Science, Part A.2001,38 (12): 1231-1243.
    [54]Theron A, Zussman E, Yarin A. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology.2001,12 (3):384.
    [55]Yan H, Liu L Q, Zhang Z. Alignment of electrospun nanofibers using dielectric materials. Applied Physics Letters.2009,95 (14)
    [56]Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology.2001,12 (3):384-390.
    [57]Pan H, Li L, Hu L, Cui X. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer.2006,47 (14):4901-4904.
    [58]Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. Ⅰ. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition.1981,19 (6):909-920.
    [59]Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration of bombyx mori silk by electrospinning-part 1:Processing parameters and geometric properties. Polymer.2003,44 (19):5721-5727.
    [60]Fong H, Reneker D H. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of Polymer Science Part B:Polymer Physics.1999,37 (24):3488-3493.
    [61]Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M, Ku Y, Rhyu I-C, Han S-B, Chung C-P. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. Journal of Biotechnology.2005,120 (3): 327-339.
    [62]Son W K, Youk J H, Lee T S, Park W H. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer.2004, 45 (9):2959-2966.
    [63]Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal.2005,41 (3):423-432.
    [64]Gupta P, Elkins C, Long T E, Wilkes G L. Electrospinning of linear homopolymers of poly(methyl methacrylate):Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer.2005,46 (13):4799-4810.
    [65]Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal.2005,41 (3):409-421.
    [66]Jun Z, Hou H, Schaper A, Wendorff J H, Greiner A. Poly-L-lactide nanofibers by electrospinning-influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers.2003,9:1-9.
    [67]Haghi A, Akbari M. Trends in electrospinning of natural nanofibers. physica status solidi (a). 2007,204(6):1830-1834.
    [68]Tan S, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer.2005,46 (16):6128-6134.
    [69]Hohman M M, Shin M, Rutledge G, Brenner M P. Electrospinning and electrically forced jets. II. Applications. Physics of Fluids.2001,13 (8):2221-2236.
    [70]Pham Q P, Sharma U, Mikos A G. Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds:Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules.2006,7(10):2796-2805.
    [71]Hayati I, Bailey A, Tadros T F. Investigations into the mechanisms of electrohydrodynamic spraying of liquids:I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science.1987,117 (1):205-221.
    [72]Zong X, Kim K, Fang D, Ran S, Hsiao B S, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer.2002,43 (16):4403-4412.
    [73]Baumgarten P K. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science.1971,36 (1):71-79.
    [74]Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology.1996,7 (3):216.
    [75]Demir M M, Yilgor I, Yilgor E e a, Erman B. Electrospinning of polyurethane fibers. Polymer.2002,43 (11):3303-3309.
    [76]Yordem O, Papila M, Menceloglu Y Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology. Materials & design.2008,29 (1):34-44.
    [77]Yuan X. Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International.2004,53 (11):1704-1710.
    [78]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules.2002,35 (22):8456-8466.
    [79]Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials.2005,26 (27):5427-5432.
    [80]Ki C S, Baek D H, Gang K D, Lee K H, Um I C, Park Y H. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer.2005,46 (14):5094-5102.
    [81]Zhao Z, Li J, Yuan X, Li X, Zhang Y, Sheng J. Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science.2005,97 (2): 466-474.
    [82]Buchko C J, Chen L C, Shen Y, Martin D C. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer.1999,40 (26): 7397-7407.
    [83]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics.2004,205 (17):2327-2338.
    [84]Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Controlling surface morphology of electrospun polystyrene fibers:Effect of humidity and molecular weight in the electrospinning process. Macromolecules.2004,37 (2):573-578.
    [85]Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Advanced Materials.2004,16 (4):361-366.
    [86]Li M, Mondrinos M J, Gandhi M R, Ko F K, Weiss A S, Lelkes P I. Electrospun protein fibers as matrices for tissue engineering. Biomaterials.2005,26 (30):5999-6008.
    [87]Wang L, Topham P D, Mykhaylyk O O, Howse J R, Bras W, Jones R A, Ryan A J. Electrospinning pH-responsive block copolymer nanofibers. Advanced Materials.2007,19 (21):3544-3548.
    [88]Qin X H, Wang S Y. Filtration properties of electrospinning nanofibers. Journal of Applied Polymer Science.2006,102 (2):1285-1290.
    [89]Tsai P P, Schreuder-Gibson H, Gibson P. Different electrostatic methods for making electret filters. Journal of Electrostatics.2002,54 (3):333-341.
    [90]Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Applied Materials & Interfaces.2012,4 (6): 3207-3212.
    [91]Stasiak M, Studer A, Greiner A, Wendorff J H. Polymer fibers as carriers for homogeneous catalysts. Chemistry-a European Journal.2007,13 (21):6150-6156.
    [92]Chen L P, Hong S G, Zhou X P, Zhou Z P, Hou H Q. Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for sonogashira coupling reaction. Catalysis Communications.2008,9 (13):2221-2225.
    [93]Stasiak M, Roben C, Rosenberger N, Schleth F, Studer A, Greiner A, Wendorff J H. Design of polymer nanofiber systems for the immobilization of homogeneous catalysts-Preparation and leaching studies. Polymer.2007,48 (18):5208-5218.
    [94]Chen L, Bromberg L, Hatton T A, Rutledge G C. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer.2007,48 (16):4675-4682.
    [95]Patel A C, Li S X, Wang C, Zhang W J, Wei Y. Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chemistry of Materials.2007,19 (6):1231-1238.
    [96]Formo E, Peng Z M, Lee E, Lu X M, Yang H, Xia Y N. Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase. Journal of Physical Chemistry C.2008,112 (27):9970-9975.
    [97]Formo E, Lee E, Campbell D, Xia Y N. Functionalization of electrospun T1O2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Letters.2008,8 (2): 668-672.
    [98]Li M Y, Han G Y, Yang B S. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochemistry Communications.2008, 10 (6):880-883.
    [99]Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science.2008,1 (2):205-221.
    [100]Zhu R, Jiang C Y, Liu X Z, Liu B, Kumar A, Ramakrishna S. Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters.2008,93 (1).
    [101]Jose R, Kumar A, Thavasi V, Ramakrishna S. Conversion efficiency versus sensitizer for electrospun TiO2 nanorod electrodes in dye-sensitized solar cells. Nanotechnology.2008,19 (42).
    [102]Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology.2007,18 (36).
    [103]Ji L W, Medford A J, Zhang X W. Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(L-lactide) blends. Journal of Polymer Science Part B-Polymer Physics.2009,47 (5):493-503.
    [104]Liu J, Yue Z R, Fong H. Continuous nanoscale carbon fibers with superior mechanical strength. Small.2009,5 (5):536-542.
    [105]Kim C, Yang K S, Kojima M, Yoshida K, Kim Y J, Kim Y A, Endo M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Advanced Functional Materials.2006,16 (18):2393-2397.
    [106]Wang L, Yu Y, Chen P C, Chen C H. Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Materialia.2008,58 (5):405-408.
    [107]Lu H W, Li D, Sun K, Li Y S, Fu Z W. Carbon nanotube reinforced NiO fibers for rechargeable lithium batteries. Solid State Sciences.2009,11 (5):982-987.
    [108]Chen M, Gao S, Dong M, Song J, Yang C, Howard K A, Kjems J, Besenbacher F. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. Acs Nano.2012,6 (6):4835-4844.
    [109]He C L, Huang Z M, Han X J, Liu L, Zhang H S, Chen L S. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. Journal of Macromolecular Science Part B--Physics.2006,45 (4):515-524.
    [110]Valasek J. Piezo-electric and allied phenomena in rochelle salt. Physical Review.1921,17 (4):475-481.
    [111]Von Hippel A, Breckenridge R G, Chesley F G, Tisza L. High dielectric constant ceramics. Industrial & Engineering Chemistry.1946,38 (11):1097-1109.
    [112]Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature.1992,358 (6382): 136-138.
    [113]Hill N A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B.2000,104 (29):6694-6709.
    [114]Pena M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews.2001,101 (7):1981-2018.
    [115]Jaffe B, Cook W R, Jr., Jaffe H. Piezoelectric ceramics. London,1971.
    [116]Noheda B, Cox D, Shirane G, Gonzalo J, Cross L, Park S-E. A monoclinic ferroelectric phase in the Pb (Zr1-xTix)O3 solid solution. Applied Physics Letters.1999,74 (14): 2059-2061.
    [117]Noheda B, Cox D, Shirane G, Guo R, Jones B, Cross L. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Physical Review B.2000,63 (1):014103.
    [118]Woodward D I, Knudsen J, Reaney I M. Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Physical Review B.2005,72 (10):104110.
    [119]Cho S B, Oledzka M, Riman R E. Hydrothermal synthesis of acicular lead zirconate titanate (PZT). Journal of Crystal Growth.2001,226 (2-3):313-326.
    [120]Xu G, Ren Z H, Du P Y, Weng W J, Shen G, Han G R. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires. Advanced Materials.2005,17 (7):907-910.
    [121]Ren Z, Xu G, Wei X, Liu Y, Shen G, Han G. Shape evolution of Pb(Zr,Ti)O3 nanocrystals under hydrothermal conditions. Journal of the American Ceramic Society.2007,90 (8): 2645-2648.
    [122]Lin Y, Liu Y, Sodano H A. Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Applied Physics Letters.2009,95 (12):122901.
    [123]Xu S, Hansen B J, Wang Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications.2010,1.
    [124]Cung K, Han B J, Nguyen T D, Mao S, Yeh Y-W, Xu S, Naik R R, Poirier G, Yao N, Purohit P K, McAlpine M C. Biotemplated synthesis of PZT nanowires. Nano Letters.2013,13 (12): 6197-6202.
    [125]Kim J, Yang S A, Choi Y C, Han J K, Jeong K O, Yun Y J, Kim D J, Yang S M, Yoon D, Cheong H, Chang K S, Noh T W, Bu S D. Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallites. Nano Letters.2008,8 (7):1813-1818.
    [126]Gruverman A, Kholkin A. Nanoscale ferroelectrics:Processing, characterization and future trends. Reports on Progress in Physics.2006,69 (8):2443-2474.
    [127]Xu S, Shi Y. Power generation from piezoelectric lead zirconate titanate nanotubes. Journal of Physics D-Applied Physics.2009,42 (8).
    [128]Hernandez-Sanchez B A, Chang K S, Scancella M T, Burris J L, Kohli S, Fisher E R, Dorhout P K. Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers. Chemistry of Materials.2005,17 (24): 5909-5919.
    [129]Nourmohammadi A, Bahrevar M A, Schulze S, Hietschold M. Electrodeposition of lead zirconate titanate nanotubes. Journal of Materials Science.2008,43 (14):4753-4759.
    [130]Rorvik P M, Tadanaga K, Tatsumisago M, Grande T, Einarsrud M A. Template-assisted synthesis of PbTiO3 nanotubes. Journal of the European Ceramic Society.2009,29 (12): 2575-2579.
    [131]Zhang X Y, Zhao X, Lai C W, Wang J, Tang X G, Dai J Y. Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Applied Physics Letters.2004,85 (18): 4190-4192.
    [132]Hsu M C, Leu IC, Sun Y M, Hon M H. Template synthesis and characterization of PbTiO3 nanowire arrays from aqueous solution. Journal of Solid State Chemistry.2006,179 (5): 1421-1425.
    [133]Limmer S J, Seraji S, Forbess M J, Wu Y, Chou T P, Nguyen C, Cao G Z. Electrophoretic growth of lead zirconate titanate nanorods. Advanced Materials.2001,13 (16):1269-1272.
    [134]Limmer S J, Seraji S, Wu Y, Chou T P, Nguyen C, Cao G Z. Template-based growth of various oxide nanorods by sol-gel electrophoresis. Advanced Functional Materials.2002, 12 (1):59-64.
    [135]Wang Y, Furlan R, Ramos I, Santiago-Aviles J J. Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning. Applied Physics A-Materials Science & Processing.2004,78 (7):1043-1047.
    [136]Wang Y, Santiago-Aviles J J. Synthesis of lead zirconate titanate nanofibres and the fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology.2004,15 (1):32-36.
    [137]Shi Y, Xu S Y, Kim S G. Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology.2006,17 (17):4497-4501.
    [138]Zhou Z H, Gao X S, Wang J, Fujihara K, Ramakrishna S, Nagarajan V. Giant strain in PbZr0.2Ti0.8O3 nanowires. Applied Physics Letters.2007,90 (5):052902-052902-052903.
    [139]Chen X, Xu S Y, Yao N, Xu W H, Shi Y. Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Applied Physics Letters.2009,94 (25).
    [140]Xu S, Shi Y. Mechanical and piezoelectric properties of PZT nanofibers. ASME Conference Proceedings.2009,2009 (49033):363-366.
    [141]Alkoy E M, Dagdeviren C, Papila M. Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite. Journal of the American Ceramic Society.2009,92 (11): 2566-2570.
    [142]Khajelakzay M, Taheri-Nassaj E. Synthesis and characterization of Pb(Zr0.52Ti0.48)O3 nanofibers by electrospinning, and dielectric properties of PZT-resin composite. Materials Letters.2012,75 (0):61-64.
    [143]Chen X, Xu S Y, Yao N, Shi Y.1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Letters.2010,10 (6):2133-2137.
    [144]Chen X, Shi Y. A pzt nanofiber composites sensor for structure health monitoring. In:SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring: International Society for Optics and Photonics,2011:798135-798135-798137.
    [145]Guo Y, Chen X, Shi Y. PZT nano active fiber composites-based acoustic emission sensor. In: Selected topics in micro/nano-robotics for biomedical applications:Springer New York, 2013:9-22.
    [146]Kim A, Hossain M. The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning. Materials Letters.2009,63 (9-10):789-792.
    [147]Alkoy E M, Dagdeviren C, Papila M. Pb(Zr,Ti)O3 nanofibers produced by electrospinning process. In:Mrs proceedings,2008:1129-V1107-1108.
    [148]Lee D Y, Park J Y, Lee K H, Kang J H, Oh Y J, Cho N I. Synthesis and characterization of Pb(Zr0.5Ti0.5)O3 nanofibers. Current Applied Physics.2011,11 (5):1139-1143.
    [149]Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science.2006,312 (5771):242-246.
    [150]Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature.2008,451 (7180):809-U805.
    [151]Davies A G, Burnett A D, Fan W H, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today.2008,11 (3):18-26.
    [152]Scott J F, Fan H J, Kawasaki S, Banys J, Ivanov M, Krotkus A, Macutkevic J, Blinc R, Laguta V V, Cevc P, Liu J S, Kholkin A L. Terahertz emission from tubular Pb(Zr,Ti)O3 nanostructures. Nano Letters.2008,8 (12):4404-4409.
    [153]Morrish A. The physical principles of magnetism,1965:Wiley, New York,1968.
    [154]Mathew D S, Juang R S. An overview of the structure.and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal.2007, 129 (1-3):51-65.
    [155]Liu C, Guo L, Wang R, Deng Y, Xu H, Yang S. Magnetic nanochains of metal formed by assembly of small nanoparticles. Chemical Communications.2004 (23):2726-2727.
    [156]Wu H, Zhang R, Liu X, Lin D, Pan W. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties. Chemistry of Materials.2007,19 (14): 3506-3511.
    [157]Zhang J, Fu J, Tan G, Li F, Luo C, Zhao J, Xie E, Xue D, Zhang H, Mellors N J, Peng Y. Nanoscale characterization and magnetic reversal mechanism investigation of electrospun NiFe2O4 multi-particle-chain nanofibres. Nanoscale.2012,4 (8):2754-2759.
    [158]Zhang J, Fu J, Li F, Xie E, Xue D, Mellors N J, Peng Y. BaFe12O19 single-particle-chain nanofibers:Preparation, characterization, formation principle, and magnetization reversal mechanism. Acs Nano.2012,6 (3):2273-2280.
    [159]Rao P M, Zheng X. Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition. Nano Letters.2011,11 (6):2390-2395.
    [160]Zheng M, Skomski R, Liu Y, Sellmyer D J. Magnetic hysteresis of Ni nanowires. Journal of Physics-Condensed Matter.2000,12 (30):L497-L503.
    [161]Han G C, Zong B Y, Luo P, Wu Y H. Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays. Journal of Applied Physics.2003,93 (11):9202-9207.
    [162]Xu Y, Wei J, Yao J, Fu J, Xue D. Synthesis of CoFe2O4 nanotube arrays through an improved sol-gel template approach. Materials Letters.2008,62 (8-9):1403-1405.
    [163]Malkinski L, Lim J-H, Chae W-S, Lee H-O, Kim E-M, Jung J-S. Fabrication and magnetic properties of MnFe2O4 nanowire arrays. Electronic Materials Letters.2009,5 (2):87-90.
    [164]Jung J-S, Jung Y-K, Kim E-M, Min S-H, Jun J-H, Malkinski L M, Barnakov Y, Spinu L, Stokes K. Synthesis and magnetic characterization of ZnFe2O4 nanostructure in AAO template. Magnetics, IEEE Transactions on.2005,41 (10):3403-3405.
    [165]Yu D L, Du Y W. Fabrication of NiFe2O4 nanowire arrays and its magnetic properties. Acta Physica Sinica.2005,54 (2):930-934.
    [166]Li F, Song L, Zhou D, Wang T, Wang Y, Wang H. Fabrication and magnetic properties of NiFe2O4 nanocrystalline nanotubes. Journal of Materials Science.2007,42 (17):7214-7219.
    [167]Xu Y, Xue D, Gao D, Fu J, Fan X, Guo D, Gao B, Sui W. Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy. Electrochimica Acta.2009,54 (24):5684-5687.
    [168]Li Y, Huang Y, Yan L, Qi S, Miao L, Wang Y, Wang Q. Synthesis and magnetic properties of ordered barium ferrite nanowire arrays in AAO template. Applied Surface Science.2011, 257 (21):8974-8980.
    [169]Sung Y K, Ahn B W, Kang T J. Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. Journal of Magnetism and Magnetic Materials.2012,324 (6):916-922.
    [170]Zhu J, Wei S, Rutman D, Haldolaarachchige N, Young D P, Guo Z. Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers-electrospinning, stabilization and carbonization. Polymer.2011,52 (13):2947-2955.
    [171]Miyauchi M, Simmons T J, Miao J, Gagner J E, Shriver Z H, Aich U, Dordick J S, Linhardt R J. Electrospun polyvinylpyrrolidone fibers with high concentrations of ferromagnetic and superparamagnetic nanoparticles. ACS Applied Materials & Interfaces.2011,3 (6): 1958-1964.
    [172]Graeser M, Bognitzki M, Massa W, Pietzonka C, Greiner A, Wendorff J H. Magnetically anisotropic cobalt and iron nanofibers via electrospinning. Advanced Materials.2007,19 (23):4244-4247.
    [173]Sangmanee M, Maensiri S. Nanostractures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Applied Physics A-Materials Science & Processing.2009,97 (1):167-177.
    [174]Fu J, Zhang J, Peng Y, Zhao J, Tan G, Mellors N J, Xie E, Han W. Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale.2012,4 (13):3932-3936.
    [175]Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J. Preparation of ferrite MFe2O4 (M=Co, Ni) ribbons with nanoporous structure and their magnetic properties. Journal of Physical Chemistry B.2008,112 (36):11292-11297.
    [176]Liu L, Kou H-Z, Mo W, Liu H, Wang Y. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. Journal of Physical Chemistry B. 2006,110 (31):15218-15223.
    [177]Shen X Q, Xiang J, Song F Z, Liu M Q. Characterization and magnetic properties of electrospun Co1-xZnxFe2O4 nanofibers. Applied Physics A-Materials Science & Processing. 2009,99(1):189-195.
    [178]Arias M, Pantojas V, Perales O, Otano W. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers. Journal of Magnetism and Magnetic Materials. 2011,323 (16):2109-2114.
    [179]Wang Z, Liu X, Lv M, Chai P, Liu Y, Zhou X, Meng J. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. Journal of Physical Chemistry C. 2008,112(39):15171-15175.
    [180]Cheng Y, Zou B, Yang J, Wang C, Liu Y, Fan X, Zhu L, Wang Y, Ma H, Cao X. Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties. CrystEngComm.2011,13 (7):2268-2272.
    [181]Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Compound core-shell polymer nanofibers by co-electrospinning. Advanced Materials.2003,15 (22):1929-1932.
    [182]Yu J H, Fridrikh S V, Rutledge G C. Production of submicrometer diameter fibers by two-fluid electrospinning. Advanced Materials.2004,16 (17):1562-1566.
    [183]Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters.2004,4 (5):933-938.
    [184]Jacob J, Khadar M A. Investigation of mixed spinel structure of nanostructured nickel ferrite. Journal of Applied Physics.2010,107(11):114310-114310.
    [185]Smit J, Wijin H P. Ferrites. Eindhoven:Philips Technical Library,1959.
    [186]Yelenich O V, Solopan S O, Kolodiazhnyi T V, Dzyublyuk V V, Tovstolytkin A I, Belous A G. Superparamagnetic behavior and AC-losses in NiFe2O4 nanoparticles. Solid State Sciences.2013,20 (0):115-119.
    [187]Aliahmad M, Noori M. Synthesis and characterization of nickel ferrite nanoparticles by chemical method. Indian Journal of Physics.2013,87 (5):431-434.
    [188]Li X, Tan G, Chen W, Zhou B, Xue D, Peng Y, Li F, Mellors N J. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid-solid-solution assisted hydrothermal route. Journal of Nanoparticle Research.2012, 14 (3):1-9.
    [189]Wu Y, Shi C, Yang W. Fabrication and magnetic properties of NiFe2O4 nanorods. Rare Metals.2010,29 (4):385-389.
    [190]Zhang D, Tong Z, Xu G, Li S, Ma J. Templated fabrication of NiFe2O4 nanorods: Characterization, magnetic and electrochemical properties. Solid State Sciences.2009,11 (1):113-117.
    [191]Gu M, Yue B, Bao R, He H. Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M=Ni, Mg, Co). Materials Research Bulletin.2009,44 (6): 1422-1427.
    [192]Dong C, Wang G, Guo D, Jiang C, Xue D. Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Research Letters.2013,8 (1):1-5.
    [193]Peddis D, Cannas C, Musinu A, Piccaluga G. Coexistence of superparmagnetism and spin-glass like magnetic ordering phenomena in a CoFe2O4-SiO2 nanocomposite. Journal of Physical Chemistry C.2008,112 (13):5141-5147.
    [194]Skomski R, Zeng H, Zheng M, Sellmyer D J. Magnetic localization in transition-metal nanowires. Physical Review B.2000,62 (6):3900-3904.
    [195]Fang J, Shama N, Tung L D, Shin E Y, O'Connor C J, Stokes K L, Caruntu G, Wiley J B, Spinu L, Tang J. Ultrafine NiFe2O4 powder fabricated from reverse microemulsion process. Journal of Applied Physics.2003,93 (10):7483-7485.
    [196]Shafi K V P M, Koltypin Y, Gedanken A, Prozorov R, Balogh J, Lendvai J, Felner I. Sonochemical preparation of nanosized amorphous NiFe2O4 particles. Journal of Physical Chemistry B.1997,101 (33):6409-6414.
    [197]Barakat N A M, Kim B, Yi C, Jo Y, Jung M-H, Chu K H, Kim H Y. Influence of cobalt nanoparticles' incorporation on the magnetic properties of the nickel nanofibers: Cobalt-doped nickel nanofibers prepared by electrospinning. Journal of Physical Chemistry C.2009,113 (45):19452-19457.
    [198]George M, Mary John A, Nair S S, Joy P A, Anantharaman M R. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials.2006,302 (1):190-195.
    [199]Fukunaga H, Inoue H. Effect of intergrain exchange interaction on magnetic properties in isotropic Nd-Fe-B magnets. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.1992,31 (5A):1347-1352.
    [200]Xiang J, Shen X Q, Chu Y Q, Zhou G Z, Guo Y T. Effect of calcination temperature on microstructure and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanofibers. Acta Chimica Sinica.2010,68 (16):1609-1615.
    [201]Skomski R. Nanomagnetics. Journal of Physics-Condensed Matter.2003,15 (20): R841-R896.
    [202]Guyot M, Globus A. Determination of the domain wall energy and the exchange constant from hysteresis in ferrimagnetic polycrystals. Journal de Physique.1977,38 (C1): C1-157-C151-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700