用户名: 密码: 验证码:
涡流检测裂纹的反演模型优化及深层缺陷检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业科技以及经济高速发展的当今社会,大量导电结构设备被用于各种工业领域,如航空航天,核能发电等。随服役时间的增加,环境影响使某些缺陷形成于这些导电结构设备中,如腐蚀性裂纹。为了确保这些设备的安全性和使用高效性,有必要定期对其实施无损检测。涡流检测是一种非接触的无损检测方法,具有操作简单、快速等优点。本文在分析了国内外涡流检测缺陷技术研究现状的基础上,针对涡流检测应用中有关裂纹的反演模型优化和金属板深层缺陷检测方法的问题,进行了研究。
     以SUS316不锈钢板上的应力腐蚀裂纹为试样,讨论了应力腐蚀裂纹的反演模型优化。提出了两种新的模型:基于各向异性导电性应力腐蚀裂纹模型和基于分布导电性的应力腐蚀裂纹模型。连同基于均匀导电性应力腐蚀裂纹模型,有限元分析得出三种模型的模拟信号,将这些模拟信号与实验信号比较。实验信号由十字型差动探头在50kHz和100kHz时收集。研究表明:尽管应力腐蚀裂纹的等效宽度和等效电导率随频率改变,等效电阻基本不随频率变化。应力腐蚀裂纹具有一定导电性,甚至可达4%的不锈钢板电导率。基于分布导电性的裂纹模型能最有效表达应力腐蚀裂纹的特性。分布导电性裂纹模型的裂纹本体电导率应小于等效电导率,而裂纹边缘电导率应大于等效电导率。裂纹尺寸大则导电性边缘深度也大。
     以三组分别位于SUS304、SUS316L和Incone1600金属板的热疲劳裂纹为试样,讨论了热疲劳裂纹的反演模型优化。提出了基于均匀导电性的热疲劳裂纹模型和基于带扰动性电磁性能边缘的热疲劳裂纹模型。分别将两种裂纹模型得出的模拟信号和实验信号比较。实验信号由十字型差动探头在三种检测频率下收集。研究发现:热疲劳裂纹的等效电导率很小,具有强烈的非导电性。对于位于SUS304金属板上的热疲劳裂纹,利用带扰动性电磁性能边缘的裂纹模型得出的模拟信号,比基于均匀导电性的裂纹模型得到的模拟信号,更接近于实验信号。尺寸大的热疲劳裂纹其最佳磁性层宽度也大。
     研究了金属板深层缺陷的远场涡流检测方法。提出了新的评估方法,即以金属板表层缺陷为参考对象,对远场涡流检测金属板深层缺陷的应用进行讨论。从实验和仿真两方面,具体分析了线圈放置方向、检测频率、线圈间距以及金属屏蔽物几个因素对远场涡流检测金属板深层缺陷的能力的影响。同时评价了背景噪音对信号的影响。结果表明:相比立式线圈,采用卧式线圈更有利于远场涡流检测金属板深层缺陷的检出率的提高。使用低频率以及采用大线圈间距可以提高远场涡流检测金属板深层缺陷的能力。最后从电磁场作用原理出发,揭示了线圈放置方向、检测频率、线圈间距影响远场涡流检测金属板深层缺陷能力的原因。
Conductive materials are widely used in kinds of industry, like aerospace, nuclear power fields and so on. It is important to guarantee the safe running of conductive structures. Therefore carrying out periodical non-destructive testing is necessary for these conductive components. Eddy current testing distinguishes itself by fast scanning, no need for couplant and so on. This study focuses on numerical modeling of nature cracks (stress corrosion crack, thermal fatigue crack) based on eddy current signal and detection of back-side flaw of plate by remote field eddy current testing.
     Firstly, numerical modeling of stress corrosion crack (SCC) is discussed. SCCs artificially introduced into a SUS316plate are prepared for the research. We gather the eddy current signals by a plus point probe with50kHz and100kHz. The profiles of SCCs are revealed by destructive tests. Two kinds of model of SCC are proposed, model with anisotropic conductivity and model with distributed conductivity. The simulated eddy current signals by these two models and those by model with uniform conductivity are analyzed based on experimental eddy current signals. The results show that the equivalent resistance of a crack is almost unchanged even though the equivalent conductivity and equivalent width depend on the exciting frequency. SCC is conductive, even in some cases equivalent conductivity of SCC could be4%base materials'conductivity. Model with distributed conductivity is the best one showing the electromagnetic characteristics of SCC among these three models. Large cracks tend to have deeper high conductive edges.
     Secondly, numerical modeling of thermal fatigue crack (TFC) is studied from view point of eddy current simulation. Three group TFCs are respectively artificially introduced into SUS304, SUS316and Incone1600plates. Eddy current testing is carried out to gather signals by a plus point probe and destructive test is performed to confirm the true profiles of the cracks. Two kinds of model of TFC are proposed, model with uniform conductivity and model with electromagnetic variation in the vicinity of crack. We compare the simulative signals by these two models with experimental signals. The results reveals that TFC is much less conductive than SCC if they are assumed to have uniform conductivity inside. Taking consideration of magnetization induced by the thermal fatigue process enables eddy current signals to be analyzed more quantitatively. Large cracks tend to have wider magnetic layers.
     Thirdly, Detection of back-side flaw of plate is discussed by remote field eddy current testing. Effects of several factors, including orientation of coils, exciting frequency, coil interval, shields on ability of detection of back-side flaw of plate are analyzed by simulations and experiments. The results show that utilization of coils whose axes are parallel to surface of the plate, enhance the ability of detection on the back-side flaw of plate, comparing with use of coils whose axes are perpendicular to surface of the plate. Ability of detection on the back-side flaw of plate could be compared to ability of detection on near-side flaw of plate as long as the relative low frequency and relative far coil interval are used at the same time even no shield is involved. Numerical investigations are conducted to reveal the fundament from view point of magnetic flux density.
引文
[1]李家伟,陈积懋.无损检测手册[M].机械工业出版社.2002:2-4.
    [2]《美国无损检测手册》评审委员会译.美国无损检测手册:电磁卷[M].1999:21-22.
    [3]任吉林,林俊明.电磁无损检测[M].科学出版社.2008:64-66.
    [4]徐可北,周俊华.涡流检测[M].机械工业出版社.2009:114-116.
    [5]林俊明.电磁(涡流)检测技术在中国—庆祝中国机械工程学会无损检测分会成立三十周年[J].无损检测.2008,30(5):261-266.
    [6]H. L. Libby. Introduction to electromagnetic nondestructive test methods[M]. Wiley. 1971:214-256.
    [7]A. Sophia, G. Y. Tian, D. Taylor, et al. Electromagnetic and eddy current NDT:a review[J]. Insight.2001,43(5):302-306.
    [8]林俊明.多频涡流检测原理及应用[J].无损检测.1996,18(1):23-26.
    [9]林俊明.声脉冲/多频涡流检测仪的研制[J].华北电力技术.2000,(5):23-24.
    [10]D. L. Waidelich. Pulsed eddy currents gauge plating thickness[J]. Electronics.1955, 28:146-147.
    [11]D. L. Waidelich, J. A. Deshong, W. J. McGonnagle. A pulsed eddy current technique for measuring clad thickness[R]. ANL-5614 Metallurgy & Cermaics AEC Research & Development Report,1958.
    [12]J. L. Fisher, R. E. Beissner. Pulsed eddy current crack characterization experiments[C]. Review of progress in QNDE,1985,5A:199-206.
    [13]R. E. Beissner, J. L. Fisher. Use of a chirp waveform in pulsed eddy current crack detection[C]. Review of progress in QNDE,1986,6A:467-472.
    [14]C. V. Dood, W. E. Deeds. Multiparameter methods with pulsed eddy currents[C]. Review of progress in QNDE,1986,6A:849-854.
    [15]J. E. Doherty, R. E. Beissner, W. D. Jolly. Pulsed eddy current flaw detection and characterization[C]. Review of progress in QNDE,1983,3B:1349-1357.
    [16]R. E. Beissner, M. J. Sablik, K. J. Krzywosz, et al. Optimization of pulsed eddy current probes[C]. Review of progress in QNDE,1982,2B:1159-1172.
    [17]B.A. Lepine, B. P. Wallace, D. S. Forsyth, et al. Pulsed eddy current method developments for hidden corrosion detection in aircraft structures[C]. PACNDT'98 Table of Contents. 1999,4(1).
    [18]S.G. Marnov. Theoretical and experimental investigation of eddy current inspection of pipes with arbitrary position of sensor coils[C]. Review of Progress in Quantitative NDE. 1986,5:225-232.
    [19]D. Johnson, S. Mateo, Y. Krampfer, et al. Flexible coil assembly for reffectance-mode nondestructive eddy current examination[P]. U.A. Patent Number:5057719,1991-9-10.
    [20]M. C. Lugg. Rapid scanning with non-contacting ACFM array probes[C]. Review of Progress in Quantitative NDE.1991,10A:1003-1010.
    [21]G. Geithman. An eddy current array imaging system[C]. Review of Progress in Quantitative NDE.1992,11:1025-1029.
    [22]J.C. Treece, L.D. Sabbagh, H. A. Sabbagh. A phased array for focused eddy-current excitation[C]. Review of Progress in Quantitative NDE.1991,10:987-993.
    [23]L. Hardy, A. Billat, G. Villermain-Lecolier. Flat eddy-current matrix sensor for detecting metallic objects[J]. Sensor and Actuators A.1991,29(1):13-19.
    [24]H. Y. Sun, R. Ali, M. Johnson, et al. Enhanced flaw detection using an eddy current probe with a linear array of hall sensors[C]. Review of Progress in Quantitative NDE.2004, 23:516-522.
    [25]J. B. Nestleroth, R. J. Davis. Application of eddy currents induced by permanent magnets for pipeline inspection [J]. NDT&E International.2007,40:77-84.
    [26]J. Jun, J. Hwang, J. Lee. Quantitative nondestructive evaluation of the crack on the austenite stainless steel using the induced eddy current and the hall sensor array [C]. Instrumentation and Measurement Technology Conference.2007:1-6.
    [27]R. M. Chen, L. M. Li. Study on the method of detection of the marks of ferromagnetic material based on the array of hall element[C].17th World Conference on Nondestructive Testing.2008:1-5.
    [28]C. H. Smith, R. W. Schneider, T. Dogaru, et al. Eddy-current testing with GME magnetic sensor arrays[C]. Review of Progress in Quantitative NDE.2003,22:406-413.
    [29]S. Yamada, K. Chomsuwan, T. Hagino, et al. Conductive micorbead array detection by high-frequency eddy current testing technique with SV-GMR sensor[J]. IEEE Transaction on Magnetics.2005,41(10):3622-3624.
    [30]L. Butin, G. Wache, L. Perez, et al. New NDE perspectives with magnetoresistance array technologies-from research to industrial applications[J]. Insight.2005,47(5):280-284.
    [31]M. Kreutzbruck. High resolution eddy current testing of superconducting wires using GMR-sensors[C].17th World Conference on Nondestructive Testing.2008:1-6.
    [32]陈铁群,谢宝忠,刘桂雄.基于巨磁阻元件的涡流、磁一体化阵列传感器[J].科学技术与工程.2007,7(13):3096-3100.
    [33]B. A. Auld. Probe-Flaw interactions with eddy current array probes[C]. Review of Progress in Quantitative NDE.1991,10:951-955.
    [34]A. E. Michelle, N. M. Andrei, C. M. John, et al. Nondestructive evaluation with a linear array of 11 HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity.2001, 11(1):1303-1306.
    [35]T. Hato, S. Adachi, Y. Sutoh, et al. NDE of coated-conductor using HTS SQUID array[C]. Physica C.2009,469:1630-1633.
    [36]N. J. Goldfine, J. R. Melcher. Magnetometer having periodic winding structure and material property estimator[P]. US Patent number:5453689; 1995-9-26.
    [37]N. Goldfine, Z. Vladimir, J. Steve. Meandering winding magnetometer array eddy current sensors for detection of cracks in regions with fretting damage[J]. Materials Evaluation. 2002,60(7):870-877.
    [38]Z. Vladimir, W. Karen, G. Dave, et al. MWM eddy current arrays for crack initiation and growth monitoring[J]. International Journal of Fatigue.2003,25:1147-1155.
    [39]V. Lunin, A. Zhdanov. Automated data analysis in eddy current inspection of steam generator tubes[C].9th European conference on non-destructive testing.2006, We.2.3.4:1-7.
    [40]A. Mcnab, J. Thomson. An eddy current array instrument for application on ferritic welds[J]. NDT&E International.1995,28(2):103-112.
    [41]N. Goldfine, V. Zilberstein, A. Washabaugh, et al. Eddy current sensor networks for aircraft fatigue monitoring [J]. Materials Evaluation.2003,61(7):852-859.
    [42]R. Leclerc. Eddy current arrays for wheel inspection[C]. Review of Progress in Quantitative NDE.2001,20:949-952.
    [43]J. D. Siegel. Array coil probes versus single rotating coil probes for the inspection of steam generator tubes[C], Insight.1999,41(9):592-595.
    [44]Z. Vladimir, T. Lovett, W. Andrew. Applications for conformable eddy current manufacturing and power generation[J]. American Society of Mechanical Engineers NDE. 2001,20:179-186.
    [45]陈建忠,史耀武.无损检测交变磁场测量法[J].无损检测.2001,23(3):96-99.
    [46]Raine A, Lugg M. A review of the alternating current field measurement inspection technique[J]. Sensor Review.1999,19(3):207-213.
    [47]康中尉.基于场量测量和频率扫描技术的电磁无损检测技术研究[D].博士学位论文.国防科学技术大学.2005.
    [48]G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, et al. Magneto-optic/eddy current imaging of aging aircraft:a new NDI technique[J]. Materials Evaluation,1993,51(12):1402-1407.
    [49]邬冠华,任吉林,吴彦.磁光/涡流成像技术中的法拉第磁光效应的研究[J].无损检测.2001,23(10):415-420.
    [50]程玉华,周肇飞,蔡鹏.法拉第磁光效应在可视化涡流检测中的应用[J].激光技术.2007,31(1):22-24,28.
    [51]P. Novotny, P. Sajdl, P. Machac. A Magneto-Optic imager for NDT applications[J]. NDT&E International.2004, (37):645-649.
    [52]U. Radtke, R. Zielke, H. G. Rademacher. Application of magneto-optical method for real-time visualization of eddy currents with high spatial resolution for nondestructive testing[J]. Optics and Lasers in Engineering.2001, (36):251-268.
    [53]程玉华,周肇飞,尹伯彪.磁光/涡流实时成像检测系统的研究[J].光学精密工程.2006,14(5):798-801.
    [54]王雅萍,朱目成.磁光/涡流成像无损检测技术的研究[J].激光与红外.2005,35(7):515-517.
    [55]任吉林,吴彦,邬冠华.磁光成像技术在航空构件涡流检测中的应用[J].仪表技术与 传感器.2001,(12):36-38.
    [56]S. Udpa, L. Upda. Eddy current testing-are we at the limits?[C]. Proceedings of 16th WCNDT. Canada, Montreal,31st August-3rd September,2004.
    [57]H. L. Libby. Broadband Electromagnetic Testing Methods[R], Hanford Atomic Products Operation. HW-59614.1959.
    [58]C. V. Dodd, W. E. Deeds. Analytical Solutions to eddy current probe-coil problems[J]. Journal of Applied Physics.1968,39(6):2829-2838.
    [59]J. W. Luquire, W. E. Deeds, C. D. Dodd. Alternating current distribution between planar conductors[J]. Journal of Applied Physics.1970,41(10):3983-3991.
    [60]C. C. Cheng, C. V. Dodd, W. E. Deeds. General analysis of probe coils near stratified conductors[J]. International Journal of Nondestructive Testing.1971, (3):109-130.
    [61]E. Uzal, J. H. Rose. The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously [J]. IEEE Transactions on Magnetics. 1993,29(2):1869-1873.
    [62]T. P. Theodoulidis. Analytical solutions in eddy current testing of layered metals with continuous conductivity profiles[J]. IEEE Transactions on Magnetics.1995, 31(3):2461-2472.
    [63]A. A. Kolyshkin, R. Vaillancourt. Analytical solutions to eddy-current testing problems for a layered medium with varying properties [J]. IEEE Transactions on Magnetics.1997, 33(4):2473-2477.
    [64]A. A. Kolyshkin, R. Vaillancourt. Series solution of an eddy-current problem for a sphere with vary conductivity and permeability profiles[J]. IEEE Transactions on Magnetics. 1999,35(6):4445-4451.
    [65]T. P. Theodoulidis, E. E. Kriezis. Coil impedance due to a sphere of arbitrary radial conductivity and permeability profiles[J]. IEEE Transactions on Magnetics.2002, 38(3):1452-1460.
    [66]J. R. Bowler. Eddy current calculations using half-space green's functions[J]. Journal of Applied Physics.1987,61(3):833-839.
    [67]J. R. Bowler, S. A. Jenkins. Eddy-current probe impedance due to a volumetric flaw[J]. Journal of Applied Physics.1990,70(3):1107-1114.
    [68]J. R. Bowler. Eddy-current interaction with an ideal crack. I. The forward problem[J]. Journal of Applied Physics.1994,75(12):8138-8144.
    [69]N. Hatfielda, J. R. Bowler. Analysis of eddy-current interaction with a surface breaking crack[J]. Journal of Applied Physics.1994,76(8):4853-4856.
    [70]N. Hatfielda, J. R. Bowler. Theory of thin-skin eddy-current interaction with surface cracks[J]. Journal of Applied Physics.1997,82(9):4590-4603.
    [71]J. R. Bowler, N. Harfield. Evaluation of probe impedance due to thin-skin eddy-current interaction with surface cracks[J]. IEEE Transactions on Magnetics.1998,34(2):515-523.
    [72]J. R. Bowler, Member IEEE, N. Harfield. Thin-skin eddy-current interaction with semi-elliptical and epicyclic cracks[J]. IEEE Transactions on Magnetics.2000, 36(1):281-291.
    [73]N. Harfield, Y. Yoshida, J.R. Bowler. Low-frequency perturbation theory in eddy-current non-destructive evaluation[J]. Journal of Applied Physics.1996,80(7):4090-4100.
    [74]T. P. Theodoulidis, E. E. Kriezis. Series expansions in eddy current nondestructive evaluation models[J]. Journal of Materials Processing Technology.2005, 161(1-2):343-347.
    [75]T. P. Theodoulidis, J. R. Bowler. The truncated region eigenfunction expansion method for the solution of boundary value problems in eddy current nondestructive evaluation[C]. Review of Quantitative Nondestructive Evaluation.2005,24:403-408.
    [76]T. P. Theodoulidis, E. E. Kirezis. Eddy current canonical problems (with applications to nondestructive evaluation)[M]. USA:Tech Science Press.2006:78-79.
    [77]T. P. Theodoulidis, E. E. Kriezis. Impedance evaluation of rectangular coils for eddy current testing of planar media[J]. NDT&E International.2002,35:407-414.
    [78]H. J. Tsaknakis, E. E. Kriezis. Field distribution due to a circular current loop placed in an arbitrary position above a conducting plate[J]. IEEE Transactions on Geoscience and Remote Sensing.1985, GRS-23:834-840.
    [79]R. E. Beissner, M. J. Sablik. Theory of eddy currents induced by a nonsymmetric coil above a conducting half-space [J]. Journal of Applied Physics.1984,56(2):448-454.
    [80]T. P. Theodoulidis. Analytical model for tilted coils in eddy-current nondestructive inspection[J]. IEEE Transactions on Magnetics.2005,41(9):2447-2454.
    [81]S. K. Burke, M. E. Ibrahim. Mutual impedance of air-cored coils above a conducting plate[J]. Journal of Physics D:Applied Physics.2004,37:1857-1868.
    [82]Y. L. Bihan. Analytical model of a shielded U-core sensor[J]. International Journal of Applied Electromagnetics and Mechanics.2004,19(1-4):99-102.
    [83]H. Sun, J. R. Bowler, T. P. Theodoulidis. Eddy currents induced in a finite length layered rod by a coaxial coil[J]. IEEE Transactions on Magnetics.2005,41(9):2455-2461.
    [84]雷银照,马信山.三维探伤涡流场的研究与线圈阻抗的计算[J].中国电机工程学报.1996,5:289-294.
    [85]幸玲玲,席保峰,盛剑霓.求解非线性铁磁材料中磁场和涡流的一种新方法[J].应用科学学报.2000,18(1):1-5.
    [86]幸玲玲,盛剑霓.涡流检测汇中平板导体的理想裂缝模型[J].中国电机工程学报.2002,22(2):41-46.
    [87]黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究[D].博士学位论文.浙江大学.2004:15-31.
    [88]F. Matsuoka, A. Kameari. Calculation of three dimensional eddy current by FEM-BEM coupling method[J]. IEEE Transactions on Magnetics.1988,24(1):182-185.
    [89]W. S. Dunbar. The volume integral method of eddy current modeling[J]. Journal of Nondestructive Evaluation.1985,5(1):9-14.
    [90]Z. Badics, Y. Matsumoto, K. Aoki, et al. Accurate probe-response calculation in eddy current NDE by finite element method[J]. Journal of Nondestructive Evaluation.1995, 14(4):181-192.
    [91]K. R. Davey, M. B. Nair. A monte carlo technique for solving eddy current problems[J]. IEEE Transactions on Magnetics.1993,29(2):1376-1379.
    [92]M. Isobe, R. Iwata, M. Nishikawa. High sensitive remote field eddy current testing by using dual exciting coils[J]. Nondestructive Testing of Materials.1995,145-152.
    [93]J. Pavo, K. Miya. Optimal design of eddy current testing probe using fluxset magnetic field sensors[J]. IEEE Transaction on Magnetics.1996,32(3):1597-1600.
    [94]J. Pav6, A. Gasparics. Numerical calibration of fluxset probe for quantitative eddy current testing[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.1999,18(3):436-444.
    [95]M. Kurokawa, R. Miyauchi, K. Enami. New eddy current probe for NDE of steam generator tubes[M]. Electromagnetic Nondestructive Eveluation(Ⅲ).1999,57-64.
    [96]H. Hoshikawa, K. Koyama, H. Karasawa. A new ECT surface probe without lift-off noise and with phase information on flaw depth[C]. Review of Progress in Quantitative Nondestructive Evaluation.2001,20:969-976.
    [97]H. Hoshikawa, K. Koyama, M. Maeda. Signal phase indication of flaw depth by a lift-off noise free eddy current probe[C]. Review of Progress in Quantitative Nondestructive Evaluation.2002,21:430-437.
    [98]H. Hoshikawa, K. Koyama, M. Maeda. A new eddy current surface probe for short flaws with minimal lift-off noise[C]. Review of Progress in Quantitative Nondestructive Evaluation.2003,22:413-418.
    [99]H. Hoshikawa, K. Koyama, K. Mizoguchi. Surface flaw testing of weld zone by a new eddy current probe[C]. Review of Progress in Quantitative Nondestructive Evaluation. 2006,25:353-360.
    [100]H. Hoshikawa, K. Koyama, Y. Kawate. Electromagnetic surface testing of weld over painting by uniform eddy current probe[C]. Review of Progress in Quantitative Nondestructive Evaluation.2007,26:1103-1110.
    [101]H. Y. Huang, T. Takagi. Inverse analyses for natural and multicracks using signals from a differential transmit-receive ECT probe[J]. IEEE Transactions on Magentics.2002, 38(2):1009-1012.
    [102]N. Yusa, E. Machida, L. Janousek, et al. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces[J]. Nuclear Engineering and Design.2005,235:1469-1480.
    [103]L. Janousek, Z. M. Chen. N. Yusa, et al. Excitation with phase shifted fields-enhancing evaluation of deep cracks in eddy-current testing[J]. NDT&E International.2005, 38:508-515.
    [104]L. Janousek, N. Yusa, K. Miya. Utilization of two-directional AC current distribution for enhancing sizing ability of electromagnetic nondestructive testing methods[J]. NDT&E International.2006,39:542-546.
    [105]T. Chady, P. Baniukiewicz, R. Sikora. Analysis of complex differential eddy current transducer for deep flaws evaluation[J]. Nondestructive Testing and Evaluation.2009, 24(1-2):61-68.
    [106]T. Dogaru, S. T. Smith. Edge crack detection using a giant magnetor resistance based eddy current sensor[J]. Nondestructive Testing and Evaluation.2000,16:31-53.
    [107]B. Wincheski, J. Simpson, M. Namkung, et al. Development and testing of prototype giant magntoresistive (GMR) rotating probe system[C]. Review of Quantitative Nondestructive Evaluation.2003,22:947-953.
    [108]V. Zilberstein, D. Grundy, V. Weiss, et al. Early detection and monitoring of fatigue in high strength steels with MWM-Arrays[J]. International Journal of Fatigue.2005, 27:1644-1652.
    [109]R. Grimberg, L. Udpa, A. Savin, et al. Remote filed eddy current control using rotating magnetic field transducer:application to pressure tubes examination[J]. Research in Nondestructive Evaluation.2008,19:202-218.
    [110]G. Yang, A. Tamburrino, L. Udpa, et al. Pulsed eddy-current based giant magnetoresistive system for the inspection of aircraft structures [J]. IEEE Transactions on Magnetics.2010, 46(3):910-917.
    [111]Y. S. Sun, S. Udpa, W. Lord, et al. A remote field eddy current NDT probe for the inspection of metallic plates[J]. Materials Evaluation.1996,54(4):510-512.
    [112]Y. S. Sun, L. Udpa, S. Udpa, et al. A novel remote field eddy current technique for inspection of thick-walled aluminum plates[J]. Materials Evaluation.1998,56(1):94-97.
    [113]S. Sharma, Y. Sun, L. Udpa. Finite element modeling for simulating remote field flaw detection in aircraft frame[J]. IEEE Transactions on Magnetics.1999,35(3):1750-1753.
    [114]Y. Sun, J. Si, D. Cooley, et al. Efforts towards gaining a better understanding of the remote field eddy current phenomenon and expanding its applications [J]. IEEE Transactions on Magnetics.1996,32(3):1589-1592.
    [115]N. Kasai, Y. Fujiwara, K. Sekine, et al. Evaluation of back-side flaws of the bottom plates of an oil-storage tank by the RFECT[J]. NDT&E International.2008,41:525-529.
    [116]N. Kasai, S. Matsuzaki, T. Sakamoto. Experimental and analytical study for detectability of the back-side flaws of flat ferromagnetic plates by RFECT[J]. NDT&E International. 2011,44:703-707.
    [117]H. T. Wang, Q. F. Luo, X. Wang, et al. Simulation and experimental study of remote field eddy current testing on flat conductive plate[J]. International Journal of Applied Electromagnetics and Mechanics.2010,33:1261-1266.
    [118]R. S. Edwards, A. Sophian, S. Dixon, et al. Dual EMAT and PEC non-contact probe: applications to defect testing[J]. NDT&E International.2006,39:45-52.
    [119]R. S. Edwards, A. Sophian, S. Dixon, et al. Data fusion for defect characterization using a dual probe system[J]. Sensors and Actuators A.2008,144:222-228.
    [120]G. Zenzinger, J. Bamberg, W. Satzger, et al. Thermographic crack detection by eddy current excitation[J]. Nondestructive Testing and Evaluation.2007,22(2-3):101-111.
    [121]S. Li, S. L. Huang, W. Zhao, et al. Study of pulse eddy current probes detecting cracks extending in all directions[J]. Sensors and Actuators A.2008,141:13-19.
    [122]张玉华,孙慧贤,罗飞路等.一种用于盘孔裂纹检测的差动式涡流探头的设计与实现[J].传感技术学报.2008,21(6):1079-1083.
    [123]邢丽冬,于盛林,曲民兴.三维远场涡流探头的设计与实验研究[J].仪器仪表学报.2006,27(11):1529-1534.
    [124]S. Giguere, S. J. M. Dubois. Pulsed eddy current:Finding corrosion independently of transducer lift-off[C]. Review of Progress in Quantitative Nondestructive Evaluation. 2000:449-456.
    [125]D. Kim, L. Udpa, S. Udpa. Lift-off invariance transformations for eddy current nondestructive evaluation signals[C]. Review of Quantitative Nondestructive Evaluation. 2001,21:615-622.
    [126]M. S. Safizadeh, B. A. Lepine, D. S. Forsyth, et al. Time-frequency analysis of pulsed eddy current signals[J]. Journal of Nondestructive Evaluation.2001,20(2):73-86.
    [127]L. Q. Li, K. Tsukada, K. Hanasaki, et al. Fusion of multi-frequency eddy current signals by using wavelet analysis method[C]. Proceedings of the 5th International Conference on Information Fusion.2002,1:108-113.
    [128]B. H. Shin, P. Ramuhalli, L. Udpa, et al. Independent component analysis for enhanced feature extraction from non-destructive evaluation[C]. AIP Conference Proceedings, Volume 700.2003:597-604.
    [129]G. Y. Tian, A. Spohian. Reduction of lift-off effects for pulsed eddy current NDT[J]. NDT&E International.2005,38(4):319-324.
    [130]N. H. Jo, H. Lee. A novel feature extraction for eddy current testing of steam generator tubes. NDT&E International.2009,42:658-663.
    [131]P. Horan, P. R. Underhill, T. W. Krause. Plused eddy current detection of cracks in F/A-18 inner wing spar withour wing skin removal using modified principal Component. NDT&E International.2013,55:21-27.
    [132]杨宾峰,罗飞路,潘孟春.脉冲涡流无损检测中腐蚀缺陷边缘的识别[J].机械工程学报.2008,44(12):75-79.
    [133]张玉华,罗飞路,孙慧贤.飞机轮毂涡流检测中探头提离效应的分析与抑制[J].仪器仪表学报.2009,30(4):786-790.
    [134]张思全,胡盛斌,陆文化.涡流检测信号的独立分量分析预处理[J].科学技术与工程.2011,11(31):7635-7639.
    [135]J. Grman, R. Ravas, L. Syrova. Application of neural networks in multifrequency eddy-current testing[J]. Measurement Science Review.2001, 1(1):25-28.
    [136]G. Y. Tian, A. Sophian, D. Taylor, et al. Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J]. IEE Proceedings-Science Measurement Technology.2005,152(4):141-148.
    [137]T. Kiwa, T. Kawata, H. Yamada, et al. Fourier-transformed eddy current technique to visualize cross-sections of conductive materials. NDT&E International.2007,40:363-367.
    [138]J. Kim, G. Yang, L. Udpa, et al. Classification of pulsed eddy current GMR data on aircraft structures. NDT&E International.2010,43:141-144.
    [139]J. Bosse, P. Joubert, P. Larzabal, et al. High resolution approach for the localization of buried defects in the multi-frequency eddy current imaging of metallic structures. NDT&E International.2010,43:250-257.
    [140]S. Hosseini, A. A. Lakis. Application of time-frequency analysis for automatic hidden corrosion detection in a multilayer aluminum structure using plused eddy current. NDT&E International.2012,47:70-79.
    [141]叶波.多层导电结构深层缺陷电涡流检测和定量化评估研究[D].博士学位论文.浙江大学.2009:63-73.
    [142]刘波,罗飞路,候良洁.涡流阵列检测裂纹特征提取方法的研究[J].仪器仪表学报.2011,32(3):654-659.
    [143]J. R. Bowler. Review of eddy current inversion with application to nondestructive evaluation[J]. International Journal of Applied Eletromagnetics and Mechanics.1997, 8:3-16.
    [144]B. A. Auld, J. C. Moulder. Review of advances in quantitative eddy current nondestructive evaluation[J]. Journal of Nondestructive Evaluation.1999,18(1):3-36.
    [145]倪光正,杨仕友,邱捷.工程电磁场数值计算[M].机械工业出版社.2010:277-291.
    [146]J. Bowler. Eddy current inversion using gradient methods[J]. Nondestructive Testing of Material.1995:31-40.
    [147]W. Y. Cheng, K. Miya, Z. M. Chen. Reconstruction of cracks with multiple eddy current coils using a database approach[J]. Journal of Nondestructive Evaluation.1999, 18(4):149-160.
    [148]Y. Shiaki, T. Takagi, T. Uchimoto, et al. Identification of multiple cracks from eddy-current testing signals with noise sources by image processing and inverse analysis[J]. IEEE Transactions on Magentics.2004,40(2):1112-1115.
    [149]Y. Li, L. Udpa, S. Udpa. Three-dimensional defect reconstruction from eddy-current NDE signals using a genetic local search algorithm[J]. IEEE Transactions on Magentics. 2004,40(2):410-417.
    [150]R. C. Popa, K. Miya. Approximate inverse mapping in ECT, based on aperture shifting and neural network regression [J]. Journal of Nondestructive Evaluation.1998, 17(4):209-221.
    [151]N. Yusa, Z. M. Chen, K. Miya. Quantitative profile evaluation of natural cracks in a steam generator tube from eddy current signals[J]. International Journal of Applied Electromagnetics and Mechanics.2000,12:139-150.
    [152]N. Yusa, W. Y. Cheng, Z. M. Chen, et al. Generalized neural network approach to eddy current inversion for real cracks[J]. NDT&E International.2002,35:609-614.
    [153]W. Y. Cheng, S. Kanemoto, I. Komura, et al. Depth sizing of partial-contact stress corrosion cracks from ECT signals[J]. NDT&E International.2006,39(5):374-383.
    [154]R. Sikora, T. Chady, J. Sikora. Neural network approach to crack identification[J]. International Journal of Applied Electromagentics.1997,9:391-398.
    [155]N. Yusa, M. Rebican, Z. M. Chen, et al. Three-dimensional of volumetric defects profiles from electromagnetic nondestructive testing signals by means of stochastic methods with the aid of parallel computation[J]. Inverse Problem in Science and Engineering. 2005,13(1):47-63.
    [156]N. Yusa, Z. M. Chen, K Miya, et al. Large-scale parallel computation for the reconstruction of natural stress corrosion cracks from eddy current testing signals[J]. NDT&E International.2003,36:449-459.
    [157]M. Rebican, Z. M. Chen, N. Yusa, et al. Shape reconstruction of multiple cracks from ECT signals by means of a stochastic method[J]. IEEE Transactions on Magentics.2006, 42(4):1079-1082.
    [158]N. Yusa. Development of computational inversion techniques to size cracks from eddy current signals[J]. Nondestructive Testing and Evaluation.2009,24(1-2):39-52.
    [159]Z. M. Chen, N. Yusa, K. Miya. Some advances in numerical analysis techniques for quantitative electromagnetic nondestructive evaluation[J]. Nondestructive Testing and Evaluation.2009,24(1-2):69-102.
    [160]Z. M. Chen, K. Miya. ECT inversion using a knowledge-based forward solver[J]. Journal of Nondestructive Evaluation.1998,17(3):167-175.
    [161]Z. M. Chen, K. Miya, M. Kurokawa. Rapid prediction of eddy current testing signals using A-Φ method and database[J]. NDT&E International.1999,32:29-36.
    [162]H. Y. Huang, T. Takagi, T. Uchimoto. Fast numerical calculation for crack modeling in eddy current testing of ferromagnetic materials[J]. Journal of Applied Physics.2003, 94(91):5866-5872.
    [163]Z. M. Chen, N. Yusa, M. Rebican, et al. Inversion techniques for eddy current NDE using optimization strategies and a rapid 3D forward simulator[J]. International Journal of Applied Electromagnetics and Mechanics.2004,20:179-187.
    [164]Z. M. Chen, G, Preda, O, Mihalache, et al. A fast forward analysis scheme for nonlinear static electromagnetic problems[J]. International Journal of Applied Eletromagnetics and Mechanics.2002,14:513-520.
    [165]N. Yusa, Z. M. Chen, K. Miya. Sizing of stress corrosion cracking on austenitic stainless piping in a nuclear power plant from eddy current NDT signals[J]. Nondestructive Testing and Evaluation.2005,20(2):103-114.
    [166]N. Yusa, L. Janousek, M. Rebican, et al. Detection of embedded fatigue cracks in Inconel weld overlay and evaluation of the minimum thickness of the weld overlay using eddy current signals[J]. Nuclear Engineering and Design.2006,236:1852-1859.
    [167]S. J. Xie, Z. M. Chen, T. Takagi, et al. Efficient numerical solver for simulation of pulsed eddy-current testing signals[J]. IEEE Transactions on Magentics.2011,37(11):4582-4591.
    [168]S. J. Xie, Z. M. Chen, T. Takagi, et al. Development of a very fast simulator for pulsed eddy current testing signals of local wall thinning[J]. NDT&E International.2012, 51:45-50.
    [169]N. Yusa, L. Janousek, M. Rebican, et al. Caution when applying eddy current inversion to stress corrosion cracking[J]. Nuclear Engineering and Design.2006,236:211-221.
    [170]N. Yusa, S. Perrin, K. Mizumo, et al. Numerical modeling of general cracks from the viewpoint of eddy current simulations[J]. NDT&E International.2007,40:577-583.
    [171]Z. Badics, Y. Matsumoto, K. Aoki, et al. Finite element models of stress corrosion cracks(SCC) in 3-D eddy current NDE problems[M]. Nondestructive Testing of Materials. 1995:21-29.
    [172]Z. M. Chen, K. Aoto, K. Miya. Reconstruction of cracks with physical closure from signals of eddy current testing[J]. IEEE Transactions on Magentics.2000, 36(4):1018-1022.
    [173]M. Tanaka, H. Tsuboi. Finite element model of natural crack in eddy current testing problem[J]. IEEE Transactions on Magentics.2001,37(5):3125-3128.
    [174]N. Yusa, K. Miya. Discussion on the equivalent conductivity and resistance of stress corrosion cracks in eddy current simulations [J]. NDT&E International.2009,42:9-15.
    [175]N. Yusa, H. Hashizume. Evaluation of stress corrosion cracking as a function of its resistance to eddy currents[J]. Nuclear Engineering and Design.2009,239:2713-2718.
    [176]N. Yusa, H. Hashizume. Four-terminal measurement of the distribution of electrical resistance across stress corrosion cracking[J]. NDT&E International.2001,44:544-546.
    [177]H. Y. Huang, N. Yusa, K. Miya, et al. Electromagnetic modeling of stress corrosion cracks in Inconel welds[J]. E-Journal of Advanced Maintenance.2011,2:168-180.
    [178]张思全,陈铁群,刘桂雄等.基于神经网络正向模型和蚁群算法的涡流检测自然裂纹形状重构[J].科学技术与工程.2008,8(6):1545-1549.
    [179]黄太回,张东利,陈振茂.基于涡流信号的应力腐蚀裂纹区域电导率特性研究[J].测试技术学报.2010,24(1):58-61.
    [180]K. Miya. Recent advancement of electromagnetic nondestructive inspection technology in Japan. IEEE Transactions on Magnetics.2002,38(2):321-326.
    [181]S. J. Norton, J. R. Bowler. Theory of eddy current inversion[J]. Journal of Applied Physics.1993,73(2):501-512.
    [182]T. R. Schmidt. The remote field eddy current inspection technique[J]. Materials Evaluation.1984,42:225-230.
    [183]陈德智,赵玉清,盛剑霓等.基于场量分析的涡流检测技术[J].无损检测.1999,21(6):241-244.
    [184]谢德馨.三维涡流场的有限元分析[M].机械工业出版社.2008:41-99.
    [185]http://www.corrosion.org/images_index/nowisthetime.pdf.
    [186]车立新,段常贵.埋地钢质管道应力腐蚀开裂及其预防.煤气与热力.2006,26(10):1-4.
    [187]N. Yusa, S. Perrin, K. Miya. Eddy current data for characterizing less volumetric stress corrosion cracking in nonmagnetic materials[J]. Material Letters.2007,61:827-829.
    [188]Stainless steel grade datasheets, http://www.atlassteels.co.nz.
    [189]K. Mika. Realistic artificial flaws for NDE qualification-a novel manufacturing method based on thermal fatigue[D]. Doctoral dissertation. Helsinki University of Technology. 2006:65-72.
    [190]K. Mika, V. Iikka, P. Jorma, et al. Advanced flaw production method for in-service inspection qualification mock-ups[J]. Nuclear Engineering and Design.2003, 224:105-117.
    [191]K. Mika, V. Iikka. Crack characteristics and their importance to NDE[J]. Journal of Nondestructive Evaluation.2011,30(3):143-157.
    [192]N. Yusa, H. Huang, K. Miya. Numerical evaluation of the ill-posedness of eddy current problems to size real cracks[J]. NDT&E International.2007,40(3):185-191.
    [193]NDT database project, http://jsm.or.jp/jsm/at/scc/index_eng.htm.
    [194]http://www.espimetals.com/index.php/technical-data/86-inconel-600.
    [195]H. M. Li, Z. M. Chen, Y. Li, et al. Dependence of deformation-induced magnetic field on plastic deformation for SUS304 stainless steel[J]. International Journal of Applied Electromagnetics and Mechanics.2012,38(1):17-26.
    [196]T. R. Schmidt. History of the remote-field eddy current inspection technique[J]. Materials Evaluation.1989,47(1):14-22.
    [197]W. Lord. Final report on finite element modeling of the remote field eddy current effect[R]. American Gas Association Project PR 179-520, Colorado State University. 1986.
    [198]T. R. Schmidt, D. L. Atherton. Understanding remote field logs[J]. Material Evaluation. 1998,56(11):1276-1362.
    [199]W. Reimche, R. Duhm, S. Zwoch, et al. Development and qualification of a process oriented nondestructive test method for weld joints to operate with remote field eddy current technique[C].9th European NDT Conference. Berlin. September,25-29,2006.
    [200]张丹,刘新华,张家亮.一种适用于微弱传感信号检测的锁相放大电路[J].计算机工程与应用.2013,49(15):210-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700