用户名: 密码: 验证码:
复杂高应力环境下矿体开采引起的地表沉陷规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:金属矿床由于成因多样化,岩体地质结构复杂,岩层的力学性质各种各样,边界条件千差万别等特殊因素,煤矿的地表变形预计理论不能直接应用于金属矿山。因此,针对复杂高应力环境下的金属矿山,地下开采引起的地表沉陷规律研究,将为矿山安全高效地回地下矿石资源提供技术保障,对矿山的安全生产具有重要的指导意义。
     结合现场监测资料,分析了地表监测点水平位移变形规律和沉陷规律,建立了龙桥铁矿数字沉陷模型,绘制了沉陷等值线图和沉陷剖面图,结合矿体回采时空对应顺序,综合挖掘了地表沉陷空间分布演化规律。结果表明:地表变形与空区顶板冒落规律存在关联,地表沉陷空间分布区域明显,在勘探线4线和1线附近存在累积沉陷中心,分别向四周扩展沉陷逐渐变小,1-3线附近地表累积沉陷发育程度比较明显,地下开采与地表沉陷空间演化态势之间的对应关系明显,建议为地表变形重点监控区域。结合钻孔监测资料和地质构造特征及岩体质量分析,解释了空区顶板覆岩冒落的机理原因,提出了空区顶板覆岩冒落状态与对应空区跨度暴露速率成正比的关系。
     针对金属矿山的关键性开采环境因素和地下开采过程的特点,采用灰色关联分析手段,对关键性开采环境因素诱发的地表沉陷进行关联分析,首次将影响程度进行定量化,弥补了过去定性分析的不足。结果表明,覆岩性质的内聚力C和内摩擦角φ是影响地表沉陷的决定因素,倾角α和采场尺寸A是沉陷的主要影响因素,弹性模量E和采深H对地表沉陷有一定的影响,但关联程度相对较小。同时,建立了影响因素的敏感度函数,深层次地分析了影响因素的变化对地表最大下沉量产生的影响程度。
     率先提出了基于PCA与BP组合模型用于金属矿山岩层移动角预测,组合预测方法对复杂的影响因素进行了简化,约简了原始输入数据同时保留了主成分信息。结果表明,BP整体预测的稳定性和精确性得到提高。结合岩层上下盘移动角预测结果,引入三维建模技术,首次绘出了龙桥铁矿东部矿区的地表移动范围,弥补了现有地表移动范围模糊性的不足。研究结果发现,地表移动范围整体位于采空区上方且大于采空区范围,主井及附属建筑物、水体和居民区在地表移动范围之外,对矿山安全生产没有影响;水塔及附属设施处于地表移动范围边界上,存在一定的安全风险性,需要加强预防措施。
     建立FLAC_3D矿区三维数值计算模型,模拟龙桥铁矿地下采矿活动,对比分析了自重应力背景下和水平构造应力背景下地表沉陷的空间演化分布规律,将地表实测资料与数值模拟结果进行验证发现,构造应力的数值模拟结果与地表变形实测结果更为吻合。选择1线和4线典型横剖面作为研究对象,模拟分析了不同跨度条件下龙桥铁矿空区顶板覆岩移动破坏特征和相邻围岩的应力响应特征,得出了空区跨度与空区顶板岩层移动破坏冒落的内在关系,揭示了顶板上覆岩层的垂直变形对应跨度的演化过程。
     针对构造应力型矿山的地下开采沉陷预计研究还处于空白的不足,明确了构造应力型矿山的概化地应力概念,引入概率积分原理,考虑了地应力的影响,将改进随机介质理论模型应用于龙桥铁矿东区地表变形预计,各地表监测点预计结果表明,自重应力下的地表变形预计结果大于改进的随机介质计算结果,水平构造应力的存在具有减缓地表下沉的影响。结合未测度聚类优化模型对地表沉陷模糊预测结果,研究结果表明:改进随机介质预计结果更接近期望值,预测的精度更高,对矿山安全生产更有指导意义。
     针对金属矿山开采沉陷管理信息系统功能存在的不足,以龙桥铁矿的地表监测数据为基础,采用MapInfo控件MapX5.0和VB6.0语言工具,设计开发了基于GIS的龙桥铁矿开采沉陷管理信息系统,首次将开采沉陷专业模型与GIS平台耦合于系统,系统通过分析、研究、开发和运行,实现了地表移动变形量的曲线自动绘制,沉陷等值线和剖面图、地表沉陷预测预警、沉陷3维可视化等具体功能,为矿区安全生产提供了非常高效的工作手段。
ABSTRACT:Because of the variety cause of metal deposits, complex geological structure of the rock mass, rock mechanical properties of various and different boundary conditions, the surface deformation theory of the coal mine can not be applied directly to metal mine. Therefore, in the complex and high stress environment of metal mine, the research of surface subsidence caused by mining will provide technical support on recovery ore resources safety and efficiently, and has important guiding significance for production safety.
     It analyzes the horizontal deformation rule and subsidence rule of monitoring sites based on the monitoring data of Long Qiao mine, and establishes the digital subsidence model, and maps the surface subsidence contours and subsidence sections. With the help of the mining space-time order, it mines surface subsidence evolutionary rule of spatial distribution comprehensively. The results show that the surface deformation is association with roof caving rules, and the spatial distribution of surface subsidence areas are obviously, and cumulative subsidence centers are exist in4#exploration line and1#exploration line, which extend to the surrounding and became smaller. The area of accumulated subsidence obvious is1-3#exploration line, in which the correspondence between underground mining and surface subsidence spatial evolution is obvious, it is recommended to focus on surface deformation monitoring area. Based on drilling monitoring data and geological tectonic characteristics and analysis of rock mass quality, it explained caving mechanism reason of goaf roof strata, put forward that the caving state of goaf roof strata is proportional to the corresponding goaf span exposure rate.
     According to the key mining environmental factors and the characteristics of underground mining process of metal mine. The grey correlation analysis method is used for the correlation analysis of surface subsidence due to the key mining environmental factors, and it makes influence degree of factors quantified for the first time, which makes up the inadequacy of qualitative analysis of the past. The results show that cohesion C and friction angleφ is the determining factor affecting surface subsidence, tilt a and stope dimensions A are the main factors affecting surface subsidence, the elastic modulus E and mining depth H are some effect on surface subsidence, but the relative degree of association are small. At the same time, the sensitivity function of the influencing factors is established, and the effect degree of various factors on the surface subsidence is deeply analyzed.
     Based on PCA and BP, combined forecasting method is put forward first and applied in rock movement angle prediction of metal mine. The method simplifies the complex influence factors and raw input data, retaining the main component information, improving the whole stability and accuracy of BP prediction. With the prediction result of rock up and footwall movement angle, introduced3D modeling technology, it map out the range of surface movement of Long Qiao mine in the eastern area for the first time, which makes up the deficiency of ambiguity of the existing surface movement range. The results show that the overall range of ground movement is at the top and greater than goaf range, and the main shaft and ancillary buildings, water, and residential are beyond the surface movement, which is no impact on mine safety production, and towers and ancillary facilities are on the boundary range of surface movement, which exist some security risks, and need to strengthen preventive measures.
     Three-dimensional numerical calculation models based on FLAC3D software are established, and underground mining activities of Long Qiao mine are simulated, and a comparative analysis of the spatial evolution distribution rules of surface subsidence is made on the background of horizontal tectonic stress and gravity stress. The verification results of the surface measured data and the numerical simulation calculation results show that the simulation of tectonic stress is more consistent with the measured data of the surface deformation. Taking the typical cross section of1#and4#exploration lines as the research objects, the movement and destruction characteristics of goaf roof strata and the stress response characteristics of around rock under the condition of different span are simulated and analyzed, which gets inner relationship of the goaf span and the movement damage and cavity of goaf roof strata, and reveals the evolution process of the vertical deformation of overlying rock strata to goaf span.
     According to the lack of study on underground mining subsidence prediction of tectonic stress mine, the generalized ground stress concept of tectonic stress mine is defined, and by introducing probability integral principle and the influence of ground stress, and the improved random medium theory is applied to surface deformation prediction in the eastern of Longqiao mine. The results of monitoring points show that the calculation result of the surface deformation under weight stress are more than calculation results under the improved random medium, and the existence of tectonic stress can slow the impact of surface subsidence.Based on the unascertained theory of clustering optimization, it verified the calculation accuracy of the improved random medium theory. The results show that the prediction results of the improved random medium is closer to expectations, and higher prediction accuracy, and more instructive on mine safety production.
     According to the function defects of mining subsidence management information system applying in metal mine, and taking the surface monitoring data of Long Qiao mine as basis, and the MapX5.0control of MapInfo and VB6.0language tools used, it designed and developed Long Qiao mining subsidence management information system based on GIS, which couple the mining subsidence professional models to GIS platform in it for the first time. By means of analysis, research, development and run, the system realizes the drawing function of deformation curve of surface movement and subsidence contours and profiles automatically, and the forecast and early warning function of surface subsidence, and the3D visualization function of subsidence, which provides a very efficient method for the safety production of Long Qiao mine.
引文
[1]邓喀中.采沉陷中的岩体结构效应[M].中国矿业大学出版社,1998.11
    [2]王金庄,邢安仕.矿山开采沉陷及其损害防治[M].煤炭工业出版社,1995,12
    [3]张玉卓,煤矿地表沉陷的预测与控制一世纪之交的回顾与展望,煤炭学会第五届青年科技学术研讨会论文集,煤炭工业出版社,1998.11
    [4]克诺特,李特维尼申.矿区地面采动损害保护[M].北京:煤炭工业出版社,1980.
    [5]Kratesch, H, Mining Subsidence Engineering Springer Verlag, Berlin,1983.
    [6]王有俊.矸石直接充填及其效益分析[J].辽宁工程大学学报:自然科学版,2003(增刊):70-72.
    [7]M.鲍来茨基,M.胡戴克.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [8]B.A.布克林斯基.矿山岩层与地表移动[M].北京:煤炭工业出版社,1989.
    [9]Brauner,Subsidence due to underground mining,Bureau of Mines,USA,1973
    [10]Ramesh P.Singh,Ram N.Yadav,Prediction of subsidence due to coal mining..in Raniganj coalfield,West Bengal,India[J]Engineering Geology,1995 (39):103.111.
    [11]L.J.Donnelly,H.De La Cruz,I.Asmar, The monitoring and prediction of mining subsidence in the Amaga,Angelopolis, Venecia and Bolombolo Regions,Antioquia, Colombia[J]. Engineering Geology,2001 (59):103-114.
    [12]KALENDRA B.SINGH and BHARAT B.DHAR,Sinkhole subsidence due to mining[J].Geotechnical and Geological Engineering,1997 (15):327-341.
    [13]Tomam AmbromiW,Goran Turk,Prediction of subsidence due to underground mining by artificialneural networks[J]Computers&Geosciences,2003 (29) 627-637.
    [14]C.Carnec,C.Delacourt, Three years of mining subsidence monitored by SAR interferometry, near Gardanne France[J]Journal of Applied Geophysics,2000(43): 43-54.
    [15]A.Chrzanowsk,C.Monahan,B-Roulston,Integrated monintoring and modeling of ground subsidence in potash mines[J]International Journal of Rock Mechanics&Mining Sciences,1997(34).
    [16]M.I.A'lvarez-Ferna'ndez,C.Gonzalez-Nicieza,A.Mene'ndez-De'az,Generalization of the n-k influence function to predict mining subsidence[J]Engineering Geology,2005(80):1-36.
    [17]A.K.Soni,K.K.K Singh,A-Prakash.K.B.Singh,A.K.Chakraboraty,Shallow cover over coal mining:a case study of subsidence at Kamptee Colliery,Nagpur,India[J]Bull Eng Geol Environ,2007 (66):311-318.
    [18]RAJENDRA SINGH and T.N.SINGH,Investigation into the behaviour of a support system and roof strata during sublevel caving of a thick coal seam[J]Geotechnical and Geological Engineering 17:21-35,1999.
    [19]Srivastrava AMC,Bahuguna PP(1991)Critical review of mine subsidence prediction methods.Min Sci Technol 13(3):369-382 Stacey TR,Bell FG(1999)The influence of subsidence on planning and development in Johannesburg,South Africa[J]Environ Eng Geosci 5(4):373-388.
    [20]Van der Kooij,M.,1997.Land subsidence measurements at the Belridge oil fields from ERSInSAR data.[M]Proc.3rd ERS Symposium.ESA,Florence,Italy.
    [21]Scharroo,R.,Visser,P.N.A.M.,Mets,J.G,1998.Precise orbit determination and gravity field improvement for the ERS satellites[J].Geophys.Res.l03-C4.,8113-8127.
    [22]Finnie,G.J.,1999.Using neuralnetworks to discriminate between genuine and spurious seismic events in mines[J]Pureand Applied Geophysics 154(1),41-56.
    [23]刘宝琛,廖国华.煤矿地表移动与基本规律[M].北京:中国工业出版社,1965.119
    [24]Wu Jian, Li Fanhua.Prediction of oil-bearing single sandbody by 3D geological modeling combined with seismic inversion[J].Petroleum Exploration and Development,2009,36(5):P623-627.
    [25]北京开采所,煤矿地表移动与覆岩破坏规律及其应用,煤炭工业出版社,1981
    [26]何国清、马伟民、王金庄,威布尔型影响函数在地表移动的计算中的应用,中国矿业学院学报,1982.1
    [27]周国拴、崔继宪等,建筑物下采煤,煤炭工业出版社,1983
    [28]何万龙,山区地表移动规律及变形预计,山西矿业学院学报,1985.2
    [29]李增琪,使用富氏积分变换计算开挖引起的地表移动,煤炭学报,1983.2
    [30]张玉卓、仲惟林等,岩层移动的错位理论解与边界元法计算,煤炭学报,1987.2
    [31]张玉卓、仲惟林等,断层影响下地表移动的统计和数值模拟研究,煤炭学报,1987.1
    [32]谢和平、陈至达,非线性大变形有限元分析及在岩层移动中应用,中国矿业大学学报,1988.2
    [33]何满潮,中国矿业大学北京研究生部博士后研究报告,1994
    [34]杨伦、于广明,采矿下沉的再认识,第七届国际矿测学术会议文集,1987
    [35]刘文生,条带法开采采留宽度合理尺寸研究,阜新矿业学院硕士论文,1988
    [36]杨硕等,水平移动曲面的力学预测法,煤炭学报,1995.2
    [37]王泳嘉,离散元法及其在岩石力学中的应用,金属矿山,1992.3
    [38]邓喀中,开采沉陷中的岩体结构效应研究,中国矿业大学博士学位论文,1993
    [39]吴立新.部分开采地表沉陷机理研究—厚岩层托板假说的建立与应用[D].硕士学位论文.北京:中国矿业大学北京研究生部,1990.
    [40]吴立新,王金庄,刘延安等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中 国矿业大学出版社,1994.
    [41]崔希民,缪协兴,赵英利等.论地表移动过程的时间函数[J].煤炭学报:1999,24(5):543-545.
    [42]李云鹏,王芝银.开采沉陷粘弹塑性损伤模拟分析[J].西安矿业学院学报:1999,19(增):35-48.
    [43]王建学.开采沉陷塑性损伤结构理论与冒矸空隙注浆充填技术的研究[D].博士学位论文.北京:煤炭科学研究总院,2001.
    [44]麻凤海,岩层移动的时空过程,东北大学博士学位论文,1996
    [45]李新强,高延法,张庆松.开采沉陷动态数值仿真研究[J].岩石力学与工程学报,2004,23(1):86-90.
    [46]蓝航,姚建国,张华兴,等.基于FLAC3D的节理岩体采动损伤本构模型的开发应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [47]侯恩科,吴立新,李建民等.三维地学模拟与数值模拟的耦合方法研究[J].煤炭学报,2002,27(4):388-392.
    [48]高明中,余忠林.急倾斜煤层开采对地表沉陷影响的数值模拟[J].煤炭学报,2003,28(6):578-582.
    [49]高保斌,李德海,王东攀FLAC3D在深部宽条带开采沉陷预计中的应用[J].能源技术与管理,2005年第5期:1-3.
    [50]唐又弛,曹再学,朱建军.有限元法在开采沉陷中的应用[J].辽宁工程技术大学学报,2003,22(2):196-198.
    [51]杜国栋,李晓,丁恩保.矿体倾角对地表沉陷的影响研究[J].金属矿山,2006年第2期:9-11.
    [52]郑百生,谢文兵,窦林名等.不规制煤柱作用下工作面开采的三维数值模拟[J],煤炭学报,2006,31(2):137-140.
    [53]袁志刚,王宏图,胡国忠等.急倾斜多煤层上保护层保护范围的数值模拟[J].煤炭学报,2009,34(5):594-598.
    [54]钱鸣高,缪协兴,许家林,岩层控制中的关键层理论研究,煤炭学报,1996,21(3),225-23021(3)
    [55]许家林,钱鸣高,关键层运动对覆岩及地表移动影响的研究,煤炭学报,2000,25(2),10-14
    [56]于广明,分形及损伤力学在开采沉陷中的应用研究,中国矿业大学北京研究生部博士学位论文,1997
    [57]朱自强,张四全,彭云涌.地表沉陷空间预报及其有理分式解法的应用[J].地球物理学进展,2007,22(2):593-597
    [58]李永树.不规则形状地下空间开挖条件下地表沉陷预计方法研究[J].测绘工程,2001,10(3):13-16
    [59]郝延锦,吴立新,戴华阳.用弹性板理论建立地表沉陷预计模型[J].岩石力学与工程学报,2006,25(增1):2958-2961
    [60]王金安,纪洪广,张燕.不整合地层下开采覆岩移动变异性研究[J].煤炭学报,2010,35(8):1235-1241
    [61]刘光庆,谭志祥,岳尊彩等.超长综放面开采地表移动变形规律的实测研究[J].矿业安全与环保,2007,34(2):7-9
    [62]黄乐亭,王金庄.地表动态沉陷变形的3个阶段与变形速度的研究[J].煤炭学报,2006,31(4):420-424
    [63]麻凤海.采矿地表沉陷的神经网络预测[J].中国地质灾害与防治学报,2001,12(3):84-87.
    [64]李文秀.急倾斜厚大矿体地下与露天联合开采岩体移动分析的模糊数学模型[J].岩石力学与工程学报,2004,23(4):572-577
    [65]翟淑花,,高谦.遗传规划在最大下沉值预测中的应用[J].煤炭学报,2007,32(3):239-242.
    [66]唐春安等,岩层移动过程的数值模拟新方法,阜新矿业学院学报,1997.3
    [67]戴华阳,基于倾角变化的开采沉陷模型及其GIS可视化应用研究,中国矿业大学北京研究生部博士学位论文,2000
    [68]苏仲杰,采动覆岩离层变形机理研究,辽宁工程技术大学博士学位论文,2001
    [69]李德海,王文华,地表移动过程时间影响参数与覆岩岩性关系,矿山压力与顶板管理,2001
    [70]刘姜岩、田茂义,矿山开采地表下沉与变形预计新方法,矿山压力与顶板管理,2003.3
    [71]王华生、孙晋亮等,地表移动趋势项预测模型的研究,有色金属,2003.7
    [72]杨帆,急倾斜煤层采动覆岩移动模式及机理研究[D],阜新:辽宁工程技术大学博士论文,2006
    [73]徐乃忠,王斌,祁永川.深部开采的地表沉陷预测研究[J].采矿与安全工程学报,2006,23(1):66-69
    [74]朱刘娟,邹友峰,郭增长,陈俊杰.深部开采地表沉陷预测与控制存在的问题及对策探讨[J].中国矿业,2007,16(12):61-64
    [75]腾永海,杨洪鹏,张荣亮.夹河煤矿深部开采地表移动规律研究[J].矿山测量,1998,(4):15-17
    [76]傅佩河,祝仰民,项顺怀,等.村庄下深部煤层开采地表移动规律分析[J].煤炭工程,2006,(7):48-50
    [77]罗俊财.深部开采引起的地表沉降规律研究[D].重庆:重庆大学,2009
    [78]李军民,高保彬,武治普.深部极不充分采动条件下地表移动特征观测分析[J].煤矿开采,2007,12(6):60-63
    [79]郭惟嘉,阎卫熙.矿区地表沉陷规律及建(构)筑物下综合开采技术[M].北京:煤炭工业出版社,2006
    [80]朱维毅,马伟民,洪渡,用相似材料模型研究岩层移动规律的可信性分析[J].矿山测量,1984年03期:10-18.
    [81]戴华阳,翟厥成,胡友健.山区地表移动的相似模拟实验研究[J].岩石力学与工程学报,2000,19(4):501-504.
    [82]胡友健,吴北平,戴华阳.山区地下开采影响下地表移动规律[J].焦作工学院学报,1999,18(4):244-247.
    [83]王悦汉,邓喀中,张冬至等.重复采动条件下覆岩下沉特性的研究[J].煤炭学报,1998,23(5):470-475.
    [84]吴侃,靳建明,戴仔强等.开采沉陷在土体中传递的实验研究[J].煤炭学报,2002,27(6):601-603.
    [85]高明中,余忠林.厚冲积层急倾斜煤层群开采重复采动下的开采沉陷[J].煤炭学报,2007,32(4):342-352.
    [86]滕永海,王金庄.综采放顶煤地表沉陷规律及机理[J].煤炭学报,2008,33(3):264-267.
    [87]丁德馨,张志军,毕忠伟.开采地面沉陷预测的自适应神经模糊推理方法研究[J].中国工程科学,2007,9(1):33-38.
    [88]郭广礼,张国良,张贻广.灰色系统模型在沉陷预测中的应用[J].中国矿业大学学报,1997,26(4):62-65.
    [89]张东明,尹光志,刘见中,等.急倾斜煤层开采地表沉陷的渐进灰色预测[J].中国地质灾害与防治学报,2004,15(1):82-85.
    [90]郭文兵,邓喀中,邹友峰.概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,33(3):322-366.
    [91]李培现,谭志祥,闫丽丽等.基于支持向量机的概率积分法参数计算方法[J].煤炭学报,2010,35(8):1247-1251.
    [92]吴侃.开采沉陷预计一体化和资料处理智能化方法研究[D].北京:中国矿业大学博士学位论文,1997.
    [93]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].北京:中国矿业大学博士论文,2000.
    [94]吴侃,葛家新等.开采沉陷预计综合方法[M],徐州:中国矿业大学出版社,1998.
    [95]吴侃等.开采沉陷预计一体化方法[M].徐州:中国矿业大学出版社,1998.
    [96]王卷乐.矿区沉陷灾害预测预报及分析决策一体化系统研究[D].徐州:中国矿业大学硕士学位论文,2002.
    [97]李春雷,蔡美峰,李晓璐.基于GIS的开采沉陷预测系统的构架研究[J].金属矿山,2006年第10期:53-57.
    [98]王磊,谭志祥,张鲜妮等.开采沉陷预计可视化系统开发及应用[J].煤矿安全,2009年第4期:34-36.
    [99]李培现,谭志祥,齐公玉等.基于MATLAB的开采沉陷预计系统[J].中国矿业,2008,17(11):72-76.
    [100]郭惟嘉,桑逢云.开采沉陷三维仿真系统研究[J].矿山测量,2006年第3期:5-7.
    [101]张庆松,高延法,李术才.开采沉陷三维数值仿真与计算模型研究[J].矿业研究与开发,2005,25(6):53-55.
    [102]刘虎,吴侃,陈冉丽.基于AutoCAD的开采沉陷预计分析系统[J].矿业安全与环保,2009,36(2):22-26.
    [103]朱广轶,王玮,刘晓群.开采与地表沉陷分析的可视化软件系统[J].煤炭工程,2006年第8期:99-100.
    [104]谢飞鸿.开采沉陷山区地表变形可视化分析系统[J].兰州铁道学院学报(自然科学版).2003,22(6):73-75
    [105]王京卫,栾红,汝续伟.顾及矿区地貌特征的开采沉陷三维可视化实现方法[J].山东科技大学学报(自然科学版),2007,26(1):8-11.
    [106]蔡来良,吴侃,裴倩等.矿区地表变形等值线的自动绘制[J].湖南科技大学学报(自然科学版),2009,24(4):91-95.
    [107]陈宜金,黄绍东.开采沉陷信息处理软件系统模块划分方法的探讨田.焦作工学院学报,1996,15(1):23-27.
    [108]蔡少华.计算机辅助沉陷数据图形处理研究[D].江苏徐州:中国矿业大学,1996.
    [109]蔡少华,王金庄.地理信息系统(GIS)在开采沉陷中的应用[J].测绘工程,1996,5(2):49-53.
    [110]姜仕义,王金庄等.利用面向对象技术开发矿山开采沉陷处理软件[J].测绘工程,1998,7(3):44-49.
    [111]靳建明,吴侃,王卷乐等.GIS在开采沉陷中的应用探讨[J].地矿测绘,2000(4):3-5.
    [112]王卷乐,吴侃,戴仔强.空间数据可视化仔开采沉陷防治中的应用[J].江苏测绘,2001,24(1):8-10.
    [113]刘增良,刘作才,毛善君.地理信息系统在矿区开采沉陷中的应用[J].地矿测绘,2002,18(2):10-11
    [114]刘增良,刘作才等.基于VB的矿山沉陷数据处理系统的研究[J].煤炭科技,2002,(2):9-10.
    [115]杜培军,郭达志等.GIS在开采沉陷领域应用及与专业模型的结合田.武汉大学学报(信息科学版),2003,28(4):463-467.
    [116]贾新果,郭广礼等MATLAB在开采沉陷数据处理中的应用田.矿业快报,2002,(11):14-16.
    [117]栗元重,吕法奎,班训海.动态变形观测与预报[M].北京:中国农业科学技术出版社,2007.
    [118]吕伟才,秦永洋等.基于GIS的矿山开采沉陷数据处理软件包的设计[J].矿山测量,2008,(4):24-28.
    [119]王志杰,孙明前.矿区开采沉陷3维可视化研究[J].测绘与空间地理信息,2008,31(3):65-69.
    [120]贾小敏,余学祥等.基于VB与CAD的矿区地表移动变形求解及图形绘制田.测绘信息与工程,2009,34(1):38-39.
    [121]姚炜,张伟等.开采沉陷数据的可视化研究田.安徽理工大学学报(自然科学版),2009,29(3):11-15.
    [122]赵晓冬,陈鹏.基于GIS的开采沉陷空间建模及计算研究[J].测绘科学,2009,34(5):152-153,185.
    [123]尹德潜,曾卓乔,寇新建,金属矿山岩移预计的损伤力学模型[J].中国有色金属学报,1993,3(1):12-17
    [124]贺跃光,颜荣贵,朱殿柱,构造地应力作用下的地表移动规律研究[J].矿冶工程,2000,20(3):12-14
    [125]颜荣贵、贺跃光等,崩落法开采急倾斜矿床地表变形预计新方法,矿冶,2002,11(4),5-8
    [126]贺跃光,工程开挖引起的地表移动与变形模型及监测技术研究,中南大学博士学位论文,2003,1-25
    [127]李春雷,蔡美峰,李晓璐,无底柱分段崩落法开采沉陷预测研究[J].中国矿业,2006,15(12):45-47
    [128]方建勤,彭振斌,颜荣贵,构造应力型开采地表沉陷规律及其工程处理方法[J].中南大学学报(自然科学版),2004,35(3):506-510
    [129]方建勤,地下工程开挖灾害预警系统的研究[D],中南大学博士学位论文,2004
    [130]孟中华MAPGIS在金属矿山地表岩层移动监测分析中的应用[J].矿业研究与开发,2011,31(2):18-21
    [131]蔡美峰,某金矿岩层与地表移动规律及其与地下采矿的关系,有色金属,1999(3),6-11
    [132]蔡美峰、李春雷、谢谟文、李晓璐,北洺河铁矿开采沉陷预计及地表变形监测与分析[J]. 北京科技大学学报,2008,30(2):109-114
    [133]李文秀,梅松华,翟淑花,乔金丽,赵胜涛,梁旭黎,大型金属矿体开采地应力场变化及其对采区岩体移动范围的影响分析[J].岩石力学与工程学报,2004,23(23):4047-4051
    [134]曹阳,颜荣贵,贺跃光,朱殿柱,季翱,构造应力型矿山地表移动宏观破坏特征与对策[J].矿冶工程,2002,22(2):31-33
    [135]黄敏,李夕兵,曾凌方,董陇军,张毅,基于三维建模技术的矿山移动范围圈定[J].矿冶工程,2009,29(4):5-9
    [136]赵海军,马凤山,丁德民,高建科,杨长祥,卢耀军,急倾斜矿体开采岩体移动规律与变形机理[J].中南大学学报(自然科学版),2009,40(5):1423-1429
    [137]赵兵朝,余学义,金属矿层开采地表下沉系数研究[J].金属矿山,2010(3):126-129
    [138]宋卫东,杜建华,尹小鹏,唐国友,金属矿山崩落法开采顶板围岩崩落机理与塌陷规律[J].煤炭学报,2010,35(7):1078-1083
    [139]贾强.挤压构造应力对采煤沉陷的影响分析[D],西安科技大学硕士论文,2007
    [140]江文武.金川二矿区深部矿体开采效应的研究[D],中南大学博士论文,2009
    [141]黄平路,陈从新,肖国峰,林健.复杂地质条件下矿山地下开采地表变形规律的研究[J].岩土力学,2009,30(10):3020-3024
    [142]江文武,徐国元,李国建.高构造应力下充填采矿引起的地表变形规律[J].采矿与安全工程学报,2013,30(3):0396-0400
    [143]冯兴隆,王李管,毕林,尚晓明,龚元翔.基于三维模拟技术的矿岩可崩性评价[J].煤炭学报,2008,3(9):0971-0976
    [144]Chan,W.S.,Xu,YL.,Xiong,Y.L,Dai,W.J.(2005).Dynamic displacement measurement accuracy of GPS for monitoring large civil engineering structures.Proceedings of SPIE 5765,San Diego,pp54-56.
    [145]L.J.Donnelly,H.De La Cruz,I.Asmar, The monitoring and prediction of mining subsidence in the Amaga,Angelopolis,Venecia and Bolombolo Regions,Antioquia,Colombia[J] Engineering Geology,2001 (59):103-114.
    [146]Piggot,R.J.and Eynon,P.Ground movements arising from the presence of shallow abandonedmine workings:in Geddes,J.D.,Proc.lst Conf.Large Ground Movements and Structures,Cardiff,England,1978,749-780.
    [147]Bryan,A.,J.G.Bryan,and J.Fouche.1966.Some Problems of Strata Control and Support in Pillar workings.The Mining Engineer,vol.123,pp.238-254.
    [148]Hatheway,A.W.1968..Subsidence at San.Manuel Copper Mines,Pinat County,Aust.Arizona. Enginerring geolongy case histories,Geol Soc.Am.,No.6,65-81.
    [149]郑新奇,王家耀,阎弘文,王爱萍,王筱明.数字地价模型在城市地价时空分析中的应 用[J].资源科学,2004,26(1):14-20
    [150]卢志刚,李杰平.基于空间数据挖掘的城市地价监测点的时空分析[J].江西理工大学学报,201I,32(5):75-79
    [151]KALENDRA B.SINGH and BHARAT B.DHAR.Sinkhole subsidence due to mining[J]Geotechnical and Geological Engineering,1997 (15):327-341.
    [152]X.Li,S.J.Wang,T.Y.Liu,F.S.Ma.Ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine.Engineeing Geology, (2004)76:93-107.
    [153]Sung O.Choi,So-Keul Chung. Stability analysis of jointed rock slopes using the Barton-Bandis constitutive model in UDEC[J].International Journal of Rock Mechanics&Mining Sciences,2004,41 (supp):581-586.
    [154]GUO Wen-bing.Study on Effects of Long Wall Mining on the Underground Water[J]. JOURNAL OF COAL SCIENCE&ENGINEERING(CHINA),2007,13(2):126-130.
    [155]汪桂生,矿区开采沉陷观测数据处理研究[D],西安科技大学硕士学位论文,2011
    [156]萨文T H.孔附近的应力集中[M].卢鼎霍,译.北京:科学出版社,1958.
    [157]H.Hao and R.Azzam.The plastic zones and displacements around underground openings in rock masses containing a fault[J].Tunnelling and Underground Space Technology.2005.20 (1):49-61.
    [158]Xie H.Experimental Research on Effects of Initial Joints on Surface Displacement Due to Coal Mining[J] Journal of Coal Science&Engineering,1999,1:16-23.
    [159]ZHAO De-shen,FAN Xue-1 i,LIU Wen-shen.Study and prospect of the control technology for surface subsidence and overlying strata at mining area[J].China Safety Science Journal,1998,8(3):51-54.
    [160]Crane,W.E.1931.Essential factors influencing subsidence and ground movement.US Bur.MinInf.Circ.6501.
    [161]陈建宏,邬书良,杨珊.基于PCA与Elman网络的地下矿山岩层移动[J].科技导报,2012,30(17):43-49
    [162]Tomam AmbromiW,Goran Turk, Prediction of subsidence due to underground mining by artificialneural networks[J]Computers&Geosciences,2003 (29) 627-637.
    [163]Finnie,G.J.,1999.Using neural networks to discriminate between genuine and spurious seismic events in mines[J]Pureand Applied Geophysics 154(1),41-56.
    [164]武玉霞.基于BP神经网络的金属矿开采地表移动角预测研究[D],中南大学硕士论文,2008
    [165]Rice,G.S.1934.Ground movement from mining in Brier Hill Mine,Norway,Mich.Trans Am.Inst.Min.Metall.Engrs 109,118-44.
    [166]Hoek,E.1982.Progressive caving induced by mining an inclined orebody.Trans Instn Min. Metall.83,A133-9.
    [167]Fletcher,J.B.1960.Ground movement and subsidence from block caving at Miami mine.Trans Soc.Min.Engrs,Am.Inst.Min,Metall.petrolm Engrs 217.413-22.
    [168]Liwinszyn,J..The theories and model researeh of movement of ground. Colliery engineering, 1958,No.10:1125-1136
    [169]Ramesh P.Singh,Ram N.Yadav, Prediction of subsidence due to coal mining in Raniganj coalfield.West Bengal,India[J]Engineering Geology,1995 (39):103.111.
    [170]Ximin Cui,Jiachen Wang.Prediction of Progressive Surface Subsidence above Longwall Coal Mining Using a Time Function[J].International Journal of Rock Mechanics and Mining Science,2001(7):1057-1063.
    [171]LIU Bao-chen,ZHANG Jia-sheng.Stochastic method for ground subsi-dence due to near surface excavation[J].Chinese Journal of Rock Me-chanics and Engineering,1995,14(4):289-296.
    [172]Bai M.Elsworth D.Modelling of subsidence and stress-dependent hy-draulic conductivity for intact and fractured porous media[J].RockM ech Rock Engng,1994,27(4):209-234.
    [173]T.H.萨文著,卢鼎霍译.孔附近的应力集中.北京科学出版社,1958
    [174]YU Xu-eyi.Evaluative method of mining surface subsidence[J].CoalDesign,1997,(5):7-10.
    [175]宫凤强,李夕兵,董陇军,刘希灵.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,2008,27(2):323-330
    [176]万玉成.未确知性在预测与决策问题中的应用[D].南京:东南大学博士论文,2004,22-27
    [177]董陇军,李夕兵,宫凤强.地下开采引发地面沉陷的未确知聚类预测方法[J].中国地质灾害与防治学报,2008,19(2):95-99
    [178]A.Volcani,A-Karnieli,T.Svoray.The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years.Forest Ecology and Management,2005,215:239-250.
    [179]李连营、李清泉、李汉武、颜辉武、王涛等编著.基于MapX的GIS应用开发[M].武汉:武汉大学出版社,2003
    [180]刘光、刘小东.地理信息系统二次开发实例教程-C#和MapObjects实现[M].北京:清华大学出版社,2004,6
    [181]基于GIS和FLAC3D矿山地表沉陷可视化.现代矿业,2011.11:44-46
    [182]江文武,张耀平,卢志刚,李国建.复杂环境下的空区顶板岩层移动破坏响应特征研究[J].金属矿山,2012(10):11-14
    [183]江文武,丁铭,张耀平,卢志刚.龙桥铁矿采空区顶板岩层移动及冒落规律研究[J].矿 业研究与开发,2011,31(3):17-20
    [184]丁德馨,毕忠伟,王卫华.开采地面沉陷预测的神经网络方法研究[J].南华大学学报(理工版),2012,16(3):01-05

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700