用户名: 密码: 验证码:
电场对磁性/铁电多铁异质结构磁性调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁性材料同时具有两种或两种以上基本铁性,而且这些铁性之间可相互耦合而产生新功能。磁性材料和铁电材料构成的多铁异质结构因其在磁电耦合效应方面的重要性而受到越来越多的关注。研究这种结构的一个关键问题就是利用磁电耦合效应实现电场对磁性的调控。这方面的研究不仅对铁电、铁磁相互耦合的微观机制等重要科学问题的理解具有重要的意义,而且在自旋电子学等领域有着广阔的应用前景。本论文就电场对多铁异质结构磁性调控方面的一些关键问题进行了系统的研究,主要内容如下:
     相分离锰氧化物对外界的调节非常敏感,显示出各种各样奇特的物理行为。如果实现电场对相分离材料构成的多铁异质结构磁性的调控,不仅对磁电耦合效应和相分离特性的理解具有重要意义,而且可以通过连续的应变调制相分离,这为研究相分离的演化过程提供了一个很好的途径。目前尚未有关于电场对Pr_(0.6)Ca_(0.4)MnO_3/Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_3(PCMO/PMN-PT)多铁异质结构磁性调控的报道。我们的实验结果显示,电场可以显著地提高PCMO/PMN-PT多铁异质结构的磁化强度,并且磁化强度在平行和垂直于膜面方向均随电场的增大而增加,表明电场改变了体系的相分离,增加了铁磁相的比例。更有趣的是,在低温下原位撤去电场后,PCMO薄膜的磁化强度几乎没有变化,显示了记忆效应。通过考虑PCMO相分离的能量岛状模型,我们提出了铁磁、反铁磁相分别对应自由能的两个极小值模型,对电场引起的相分离变化及其记忆效应进行了解释。
     在电场对磁性调控的研究中,测量磁场的大小扮演着非常重要的作用,研究磁场对电场调控效应的影响有助于深入理解磁电耦合效应的微观机制。我们系统地研究了不同磁场下电场对Fe/PMN-PT多铁异质结构磁性的调控。实验结果表明磁化强度-电压曲线同时存在回滞(looplike)曲线行为和蝶形(butterfly)曲线行为,并且回滞曲线和蝶形曲线的大小与磁场密切相关,这种磁场的依赖关系尚未见报道。另外,回滞曲线行为是一种非挥发的调控行为,具有重要的应用价值。我们还进一步用电子自旋共振方法测量了样品的共振场随电压的变化,得到了不同极化状态下的磁各向异性以及共振场-电压关系曲线,结合衬底109°铁电畴翻转引起的磁单轴各向异性的变化以及反压电效应引起的磁弹各向异性的变化对实验结果进行了解释。
Multiferroic materials, which simultaneously possess two or more ferroic ordersand the coupling interaction between the different order parameters could produce neweffects. Multiferroic heterostructures composed of magnetic (M) and ferroelectric (FE)materials have attracted much attention due to their importance in exploring themagnetoelectric coupling effect. One of the key issues in the study of M/FEheterostructures by using the magnetoelectric couping interaction is the electric-fieldcontrol of magnetism. This study will not only be important in understanding themicro-mechanism of the coupling interaction, but also a far outlook for the applicationin spintronics. In this dissertation, we systemically studied some key issues in theelectric-field control of magnetism in multiferroic composite structures, including:
     Phase separated manganites are very sensitive to external factors, showing a varietyof unusual physical behavior. Achieveing the electric field control of magnetism withmultiferroic heterostructures composed of phase separated manganites will not only beimportant in understanding of the effects of magnetic coupling and phase separation, butalso can modulate phase separation continuously and reversibly that provides a goodopportunity to study the ef effect of strain on the evolution of phase separation ofmanganites. There is no report on the electric-field control of phase separation inPCMO/Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_3(PMN-PT). It was shown that there is a dramaticincrease in magnetization in PCMO/PMN-PT with increasing electric field and both theout-of-plane and in-plane magnetizations for M-H curves increase with applied electricfield. The results suggest that the electric-field control of magnetism inPCMO/PMN-PT is dominated by the change in phase separation in PCMO andincreases the proportion of ferromagnetic phase. More interestingly, the electric fieldwas removed in situ at low temperatures and the magnetization remains nearlyunchanged, manifesting a memory effect of strain in PCMO. By considering the modelof the energy landscape, we proposed a model for two local minima model in the freeenergy in phase separation in PCMO. The electric-field control of phase separation andmemory effect can be explained with our model.
     The magnetic field plays an important role on the electric-field control ofmagnetism. Study the influence of the magnetic field help us to understand the micro-mechanisms of the magnetoelectric couping interaction. We systematicallystudied the electric-field control of magnetism in Fe/PMN-PT multiferroicheterostructures at different magnetic fields. The M-V characteristics of theheterostructures show both a looklike behavior and a butterfly behavior and the sizes ofthe looklike and butterfly are closely related to the magnetic fields. In addition, thelooklike behavior is a nonvolatile behavior, which is very important for the application.We also used electron spin resonance method to investigate the magneticanisotropy of the samples in different polarization and Hr-V curve. We combine thethe reversal of109°ferroelectric domain which induced the change of uniaxialanisotropy and the converse piezoelectric effect in PMN-PT substrate which inducedthe change of Magnetic shells anisotropy to explain the experimental results.
引文
[1] Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics,1994,162:317.
    [2] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. Rev Mod Phys,2005,77:1083.
    [3] Ziese M, Tohornton M J. Spin Electronics. Berlin: Springer,2001.
    [4] Prinz. Magnetoelectronics. Science,1998,282:1660.
    [5] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronicsvision for the future. Science,2001,294:1488.
    [6] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys,2004,76:323.
    [7] Scott J F. Ferroelectric memories: Berlin: Springer-Verlag,2000.
    [8] Fiebig M. Revival of the magnetoelectric effect. J Phys D-Appl Phys,2005,38: R123.
    [9] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature,2006,442:759.
    [10] Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films. Nature Mater,2007,6:21.
    [11] Tokura Y. Multiferroics-toward strong coupling between magnetization and polarization ina solid. J Magn Magn Mater,2007,310:1145.
    [12] Nan C W, Bichurin M I, et al. Multiferroic magnetoelectric composites: historicalperspective, status, and future directions. J Appl Phys,2008,103:31101.
    [13] Wang K F, Liu J M, Ren Z F. Multiferroicity: the coupling between magnetic andpolarization orders. Adv Phys,2009,58:321.
    [14] Cheong S W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. NatureMater,2007,6:13.
    [15] Zvezdin A K, Kadomtseva A M, el al. Magnetoelectric interaction and magnetic fieldcontrol of electric polarization in multiferroics. J Magn Magn Mater,2006,300:224.
    [16] Breakthrough of the year: areas to watch. Science,318:1848.
    [17] Hill N A. Why are there so few magnetic ferroelectrics? J Phys Chem B,2000,104:6694.
    [18] Ivanov S A, Rundlof H. Investigation of the structure of the relaxor ferroelectricPb(Fe1/2Nb1/2)O3by neutron powder diffraction. J Phys: Cond Matt,2000,12:2393.
    [19] Brunskill I H, Depmeier W. High temperature solution growth of Pb(Fe1/2Nb1/2)O3andPb(Mn1/2Nb1/2)O3. J Cryst Growth,1981,56:541.
    [20] Vokov V A. Ferroelectric antiferromagnetics. Sov Phys JETP,1962,15:447.
    [21] Yan L, Li J F, Viehland D. Deposition conditions and electrical properties of relaxorferroelectric Pb(Fe1/2Nb1/2)O3thin films prepared by pulsed laser deposition. J Appl Phys,2007,101:104107.
    [22] Yang Y, Liu J M, et al. Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3single crystals. Phys Rev B,2004,70:132101.
    [23] Ascher E, Rieder H, et al. Some properties of ferromagnetoelectric Nickel-Iodine Boracite,Ni3B7O13I. Appl Phys Lett,1966,37:1404.
    [24] Smolenskii G A, Chupis I E. Ferroelectromagnetis. Usp Fiz Nauk,1982,137:415.
    [25] Suchtelen V J. Product properties: A new application of composite materials. Philips ResRep,1972,27:28.
    [26] Kimura T, Goto T, et a1. Magnetic control of ferroelectric polarization. Nature,2003,426:55.
    [27] Baettig P, Schelle C F, et al. Theoretical Prediction of New High-Performance Lead-FreePiezoelectrics. Chem Mater,2005,17:1376.
    [28] Hur N, Park S, Sharma P A, et a1. Electric polarization reversal and memory in amultiferroic material induced by magnetic fields. Nature,2004,429:392.
    [29] Wang J, Neaton J B, Zheng H, et a1. Epitaxial BiFeO3Multiferroic Thin FilmHeterostructures. Science,2003,299:1719.
    [30] Fiebig M, Lottermoser T, Frohlich D, et a1. Observation of coupled magnetic and electricdomains. Nature,2002,419:818.
    [31] Hemberger J, Lunkenheimer P, Fichtl R, et a1. Relaxor ferroelectricity and colossalmagnetocapacitive coupling in ferromagnetic CdCr2S4. Nature,2005,434:364.
    [32] Yamasaki Y, M iyasaka S, Kaneko Y, et a1. Magnetic Reversal of the FerroelectricPolarization in a Multiferroic Spinel Oxide. Phys Rev Lett,2006,96:207204.
    [33] Weber S, Lunkenheimer P, Fichtl R, et a1. Colossal Magnetocapacitance and ColossalMagnetoresistance in HgCr2S4. Phys Rev Lett,2006,96:157202.
    [34] Bertaut F, Forrat F, Fang P. C R Acad Sci,1963,256:1958.
    [35] Taniguehi K, Abe N, Takenobu T, et a1. Ferroelectric Polarization Flop in a FrustratedMagnet MnWO4Induced by a Magnetic Field. Phys Rev Lett,2006,97:097203.
    [36] Kimura T, Lawes G, Ramirez A P. Electric Polarization Rotation in a Hexaferrite withLong-Wavelength Magnetic Structures. Phys Rev Lett,2005,94:137201.
    [37] Lawes G, Harris A B, Kimura T, et a1. Magnetically Driven Ferroelectric Order in Ni3V2O8.Phys Rev Lett,2005,95:087205.
    [38] Wan J G, Wang X W, Wu Y J, et al. Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3composite thinfilms derived by a sol-gel process. Appl Phys Lett,2005,86:122501.
    [39] Zhong X L, Wang J B, Liao M, et al. Multiferroic nanoparticulateBi3.15Nd0.85Ti3O12-CoFe2O4composite thin films prepared by a chemical solution depositiontechnique. Appl Phys Lett,2007,90:152903.
    [40] Eerenstein W, Wiora M, Prieto J L, et al. Giant sharp and persistent conversemagnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater,2007,6:348.
    [41] Zhang Y, Zheng L, Chao Y D, et al. Demonstration of magnetoelectric read head ofmultiferroic heterostructures. Appl Phys Letts,2008,95:152510.
    [42] Wu T, Zurbuchen M A, Saha S, et al. Observation of magnetoelectric effect in epitaxialferroelectric film/manganite crystal heterostructures. Phys Rev B,2006,73:134416.
    [43] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4nanostructures. Science,2004,303:661.
    [44] Zheng H, Wang J, Mohaddes-Ardabili L, et al. Three-dimensional heteroepitaxy inself-assembled BaTiO3-CoFe2O4nanostructures. Appl Phys Lett,2004,85:2035.
    [45] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetizationswitching in epitaxial columnar nanostructures. Nano Lett,2005,5:1793.
    [46] Zheng H, Zhan Q, Zavaliche F, et al. Controlling self-assembled perovskite-spinelnanostructures. Nano Lett,2006,6:1401.
    [47] Zheng H, Straub F, Zhan Q, et al. Self-assembled growth of BiFeO3-CoFe2O4nanostructures. Adv Mater,2006,18:2747.
    [48] Chiba D, Yamanouchi M, et al. Electrical Manipulation of Magnetization Reversal in aFerromagnetic Semiconductor. Science,2003,301:943.
    [49] Ohno H, Chiba D, et al. Electric-field control of ferromagnetism. Nature2000,408:944.
    [50] Vaz C A F, Hoffman J, et al. Origin of the Magnetoelectric Coupling Effect inPb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3Multiferroic Heterostructures. Phys Rev Lett,2010,104:127202.
    [51] Molegraaf H J A, Hoffman J, et al. Magnetoelectric Effects in Complex Oxides withCompeting Ground States. Adv Mater,2009,21:3470.
    [52] Chu Y H, Martin L W, et al. Electric-field control of local ferromagnetism using amagnetoelectric multiferroic. Nature Mater,2008,7:478.
    [53] Laukhin V, Skumryev V, et al. Electric-Field Control of Exchange Bias in MultiferroicEpitaxial Heterostructures. Phys Rev Lett,2006,97:227201.
    [54] Thiele C, D rr K, et al. Influence of strain on the magnetization and magnetoelectric effectin La0.7A0.3MnO3/PMN-PT(001)(A=Sr,Ca). Phys Rev B,2007,75:054408.
    [55] Yang J J, Zhao Y G, et al. Electric field manipulation of magnetization at room temperaturein multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3heterostructures. Appl Phys Lett,2009,94:212504.
    [56] Sahoo S, Polisetty S, et al. Ferroelectric control of magnetism in BaTiO3/Feheterostructures via interface strain coupling. Phys Rev B,2007,76:092108.
    [57] Lou J, Liu M, et al. Giant Electric Field Tuning of Magnetism in Novel MultiferroicFeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures. Adv Mater,2009,21:4711.
    [58] Sheng Z G, Gao J, Sun Y P. Coaction of electric field induced strain and polarizationeffects in La0.7Ca0.3MnO3/PMN-PT structures. Phys Rev B,2009,79:174437.
    [59] Dekker M C, Rata A D. Colossal elastoresistance and strain-dependent magnetization ofphase-separated (Pr1yLay)0.7Ca0.3MnO3thin films. Phys Rev B,2009,80:144402.
    [60] Brown W F J, Hornreich R M, Shtrikman S. Upper bound on magnetoelectric susceptibility.Phys Rev,1968,168:574.
    [61] Haghiri-Gosnet A M, Renard J P. CMR manganites: physics, thin films and devices. J PhysD: Appl Phys,2003,36:R127.
    [62] Jahn H A, Teller E. Stability of Polyatomic Molecules in Degenerate Electronic StatesI-Orbital Degeneracy. Proc Roy Soc A,1937,166:220.
    [63] Tokura Y. Correlated-Electron Physics in Transition-Metal Oxides. Physics Today,2003,56:50.
    [64] Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role of phaseseparation. Physics Reports,2001,344:1.
    [65] Tokura Y, Tomioka Y. Colossal magnetoresistive manganites. J Magn Magn Mater,1999,200:1.
    [66] Dessau D S, Saitoh T, Park C-H, et al. k-Dependent Electronic Structure, a Large “Ghost”Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide. Phys Rev Lett,1998,81:192.
    [67] Zhao G M, Conder K, Keller K, et al. Giant oxygen isotope shift in the magnetoresistiveperovskite La1-xCaxMnO3+y. Nature,1996,381:676.
    [68] Zener C. Interaction between the d-Shells in the Transition Metals. II. FerromagneticCompounds of Manganese with Perovskite Structure. Phys Rev,1951,82:403.
    [69] Anderson P W, Hasegawa H. Considerations on Double Exchange. Phys Rev,1955,100:675.
    [70] Chen C H, Cheong S-W. Commensurate to Incommensurate Charge Ordering and ItsReal-Space Images in La0.5Ca0.5MnO3. Phys Rev Lett,1996,76:4042.
    [71] Mori S, Chen C H, Cheong S-W. Pairing of charge-ordered stripes in (La,Ca)MnO3. Nature,1998,392:473.
    [72] Tomioka Y, Asamitsu A, Kuwahara H, et al. Magnetic-field-induced metal-insulatorphenomena in Pr1-xCaxMnO3with controlled charge-ordering instability. Phys Rev B,1996,53:R1689.
    [73] Tokura Y, Nagaosa N. Orbital Physics in Transition-Metal Oxides. Science,2000,288:462.
    [74] Yunoki S, Hu J, Malvezzi A L, et al. Phase Separation in Electronic Models for Manganites.Phys Rev Lett,1998,80:845.
    [75] Yunoki S, Moreo A, Dagotto E. Phase Separation Induced by Orbital Degrees of Freedomin Models for Manganites with Jahn-Teller Phonons. Phys Rev Lett,1998,81:5612.
    [76]刘俊明,王克锋.稀土掺杂锰氧化物庞磁电阻效应.物理学进展,2005,25:82.
    [77] Vitins J, Wachter P. Doped EuTe: A mixed magnetic system. Phys Rev B,1975,12:3829.
    [78] De Teresa J M, Ibarra M R, Algarabel P A, et al. Evidence for magnetic polarons in themagnetoresistive perovskites. Nature,1997,386:256.
    [79] Goodenough J B, Zhou J S. New forms of phase segregation. Nature,1997,386:229.
    [80] F th M, Freisem S, Menovsku A A, et al. Spatially Inhomogeneous Metal-InsulatorTransition in Doped Manganites. Science,1999,285:1540.
    [81] Uehara M, Mori S, Chen C H, et al. Percolative phase separation underlies colossalmagnetoresistance in mixed-valentmanganites. Nature,1999,399:560.
    [82] Moreo A, Mayr M, Feiguin A, et al. Giant Cluster Coexistence in Doped Manganites andOther Compounds. Phys Rev Lett,2000,84:5568.
    [83] Nelson C S, Hill J P, Gibbs Doon, et al. Substrate-induced strain effects on Pr0.6Ca0.4MnO3.J Phys: Condens Matter,2004,16:13.
    [84]近角聪信.铁磁性物理.葛世慧,译.兰州:兰州大学出版社,2002.
    [85]钟文定.铁磁学(中册).北京:科学出版社,1987.
    [86] Cullity B D. Introduction to Magnetic Materials (Addision-Wesley, Reading, MA,1972).
    [87] Taniyama T, Akasaka K. Electrical voltage manipulation of ferromagnetic microdomainstructures in a ferromagnetic/ferroelectric hybrid structure. J Appl Phys,2007,101:09F512.
    [88] Taniyama T, Akasaka K, et al. Artificially controlled magnetic domain structures inferromagnetic dots/ferroelectric heterostructures. J Appl Phys,2009,105:07D901.
    [89] Brivio S, Petti D, et al. Electric field control of magnetic anisotropies and magneticcoercivity in Fe/BaTiO3(001) heterostructures. Appl Phys Lett,2011,98:092505.
    [90] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of Y-Ba-Cu oxide superconductorthin films using pulsed laser evaporation from high TCbulk material. Appl Phys Lett,1987,51:619.
    [91]杜永胜.全钙钛矿结构磁性隧道结的制备与性能研究[硕士学位论文].北京:北京工业大学,2005.
    [92]杨德政.磁性多层膜中交换偏置和巨磁电阻效应的研究[博士学位论文].上海:同济大学,2007.
    [93]杨军杰.多铁异质结构电、磁特性的调控[博士学位论文].北京:清华大学,2010.
    [94] Vaz C A F, Hoffman J, et al. Magnetoelectric Coupling Effects in Multiferroic ComplexOxide Composite Structures. Adv Mater,2010,22:2900.
    [95] Ma J, Hu J M, et al. Recent Progress in Multiferroic Magnetoelectric Composites: fromBulk to Thin Films. Adv Mater,2011,23:1062.
    [96] Tian H F, Qu T L, et al. Strain induced magnetoelectric coupling between magnetite andBaTiO3. Appl Phys Lett,2008,92:063507.
    [97] Chen Y, Wang J, et al. Giant magnetoelectric coupling and E-field tunability in a laminatedNi2MnGa/lead-magnesium-niobate-lead titanate multiferroic heterostructure. Appl PhysLett,2008,93:112502.
    [98] Zhang Y, Liu J, et al. Large reversible electric-voltage manipulation of magnetism inNiFe/BaTiO3heterostructures at room temperature. J Phys D: Appl Phys,2010,43:082002.
    [99] Dagotto E. Nanoscale Phase Separation and Colossal Magnetoresistance.(Springer, Berlin,2003).
    [100] Saurel D, Br let A, Heinemann A, et al. Magnetic field dependence of the magnetic phaseseparation in Pr1xCaxMnO3manganites studied by small-angle neutron scattering. PhysRev B,2006,73:094438.
    [101] W. Prellier, E. Rauwel Buzin, et al. High magnetic field transport measurements ofcharge-ordered Pr0.5Ca0.5MnO3strained thin films. Phys Rev B,2002,66:024432.
    [102] Wu T, Ogale S B, et al. Substrate induced strain effects in epitaxial La0.67xPrxCa0.33MnO3thin films. J Appl Phys,2003,93:5507.
    [103] Jirák Z, Krupi ka S, im a Z, et al. Neutron diffraction study of Pr1-xCaxMnO3perovskites.J Magn Magn Mater,1985,53:153-166.
    [104] Mertelj T, Yusupov R, et al. Magnetic properties of the insulating ferromagnetic phase instrained Pr0.6Ca0.4MnO3thin films. Appl Phys Lett,2008,93:042512.
    [105] Zheng R K, Chao C, et al. Converse piezoelectric control of the lattice strain and resistancein Pr0.5Ca0.5MnO3/PMN-PT structures. Phys Rev B,2007,75:024110.
    [106] Ahn K H, Lookman T, et al. Strain-induced metal–insulator phase coexistence in perovskitemanganites. Nature (London),2004,428:401.
    [107] López J, Lisboa-Filho W P N, et al. Magnetic relaxation behavior in La0.5Ca0.5MnO3andNd0.5Sr0.5MnO3.Phys Rev B,2001,63:224422.
    [108] Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films. Nature Mater,2007,6:21.
    [109] Catalan G, Scott J F. Physics and Applications of Bismuth Ferrite. Adv Meter,2009,21:2463.
    [110] Bea H, Bibes M, et al. Mechanisms of Exchange Bias with Multiferroic BiFeO3EpitaxialThin Films. Phys Rev Lett,2008,100:017204.
    [111] Wang D H, Goh W C, et al. Effect of Ba doping on magnetic, ferroelectric, andmagnetoelectric properties in multiferroic BiFeO3at room temperature. Appl Phys Letts,2006,88:212907.
    [112] Tian Z M, Yuan S L, et al. Spin glass-like behavior and exchange bias in multiferroicBi1/3Sr2/3FeO3ceramics. Appl Phys Letts,2010,96:142516.
    [113] Gepr gs S, Brandlmaier A, et al. Electric field controlled manipulation of the magnetizationin Ni/BaTiO3hybrid structures. Appl Phys Lett,2010,96:142509.
    [114] Liu M, Obi O, et al. Giant Electric Field Tuning of Magnetic Properties in MultiferroicFerrite/Ferroelectric Heterostructures. Adv Funct Mater,2009,19:1826.
    [115] Chen Y J, Gao J S, et al. Large converse magnetoelectric coupling in FeCoV/lead zincniobate-lead titanate heterostructure. Appl Phys Lett,2009,94:082504.
    [116] Zhang S, Zhao Y G, et al. Electric-field control of nonvolatile magnetization inCo40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3structure at room temperature. Phys Rev Lett,2012,108:137203.
    [117] Noheda B, Cox D E, et al. Phase diagram of the ferroelectric relaxor(1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B,2002,66:054104.
    [118] Bai F M, Li J F, et al. Domain hierarchy in annealed (001)-orientedPb(Mg1/3Nb2/3)O3-PbTiO3single crystals. Appl Phys Lett,2004,85:2313.
    [119] Bokov A A, Ye Z G. Domain structure in the monoclinic Pm phase ofPb(Mg1/3Nb2/3)O3–PbTiO3single crystals. J Appl Phys,2004,95:6347.
    [120]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700