用户名: 密码: 验证码:
变结构永磁直线同步电机的主动容错控制与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁弹射系统具有重量轻、体积小、效率高、维护方便、可控性好等优点,成为了各国航空母舰新装备升级的研究热点。直线电机控制的可靠性问题是该系统研究领域的一个重要问题。根据近年电磁弹射系统的研究文献,相关研究中大部分与直线电机控制可靠性技术直接或间接相关。但根据目前的研究,直线电机的结构和控制方法设计多采用集中式或分段式方案,采用这些方案的电磁弹射系统容错能力有限,无法充分满足电磁弹射系统对可靠性的要求。因为集中或分段结构的电机及其驱动系统局部或整体失效,将降低系统推力输出性能,甚至导致系统整体故障。
     针对目前相关研究存在的一些问题,本文在分析了电磁弹射系统直线电机需求特性、电机高效驱动原理、电机故障检测与诊断等若干关键技术及待解决科学问题的基础上,以提高直线电机控制的可靠性为目标,提出了一种面向电磁弹射系统的变结构永磁直线同步电机及其主动容错控制策略,研究了变结构永磁直线同步电机主动容错控制相关的若干关键技术方法,并实验验证了所提控制策略和相关方法的正确性和可行性。
     集中式和分段式的直线电机容错能力有限,且在效率方面,结构参数固定不变的特性不适合于电磁弹射单向全程加速的特点。为此,本文提出了结构参数变化的永磁直线同步电机,并分析了电机的变结构特性。通过有限元分析,研究各线圈对应的速度段电机结构参数变化对气息磁密的影响。同时,研究结构参数变化对永磁直线同步电机推力大小及推力波动的影响,给出研究和分析的结果。电机结构参数的变化,使电机定子齿线圈面对的控制对象特性发生改变,电机线圈须独立控制,以适应不同控制对象的要求。对此,本文对基于线圈独立控制的电机绕组进行了设计,研究了结构参数变化对线圈的异质特性的影响,并建立了考虑线圈异质特性的永磁直线同步电机电气数学模型。以这些研究和分析结果,为独立线圈节点自律分散控制研究奠定基础。
     基于自律分散控制方法,提出并研究了面向容错控制的变结构永磁直线同步电机自律分散控制策略。基于节点显式协调理论,研究了采用多节点实现永磁直线同步电机矢量控制的方法。并且,针对变结构永磁直线同步电机参数非线性的特性,提出电机的推力控制模型和基于反电势补偿的推力控制策略。同时从提高系统响应频率的角度出发,提出了基于状态观测器的速度和位置控制策略,并进行了仿真和实验研究。
     针对变结构永磁直线同步电机及其特殊的控制方法,提出并研究了电机其节点控制系统故障检测的方法,为容错控制研究奠定基础。针对变结构永磁直线同步电机控制特点,对电机控制系统节点故障进行分类,研究了节点线圈故障、逆变器故障、电流传感器故障和基本定子单元衰减等故障环节的检测方法。并针对提高故障检测准确性问题,进行故障信号数字滤波器设计。
     在电机及其控制系统故障检测研究的基础上,深入研究了基于控制律重构的、针对变结构永磁直线同步电机的主动容错控制策略。基于变结构永磁直线同步电机其控制系统故障检测结果,对变结构永磁直线同步电机各种故障状态的故障特性进行了分析,在此基础上,提出了针对不同故障特性的控制律重构数学模型,并深入探讨控制律重构后系统的稳定性问题。
     为验证所提出得容错控制方法,建立了变结构永磁直线同步电机主动容错控制的实验平台,并论述系统的算法和软件的实现。针对变结构永磁直线同步电机的各种故障情况进行容错控制实验,给出电流重构实验结果,并对比故障前后动子加速度和速度变化特征。用实验结果证明了本文提出的主动容错控制策略的有效性和实用性。
Electromagnetic Aircraft Launch System (EMALS) is used for take-offassistance of the carrier aircraft; it is becoming a popular research subject in thecarrier-related area. Control reliability of the linear motor is a key issue for theEMALS project. According to the literatures found, nearly seventy percent of theliteratures in this area are somehow related to the control reliability of the linearmotor problem. However, in the literature, all the proposed solutions are based on thecentralized or segmented linear motor. These kinds of motors are low reliable interms of their lack of system redundancy, once a segment of the motor collapses, thewhole launch system fails.
     For the unreliable problem of the research in the literature, we propose avaristructured permanent magnet linear synchronous motor (PMLSM) withindependent winding of each stator tooth, expecting to solve the problem ofefficiency optimization、 dynamic thrust control quality, and the motor controlreliability; And propose an active fault tolerant control methodology for thevaristructured PMLSM used in EMALS; study the key technologies for the reliabilityrelated issue the PMLSM. And experiments were carried out to prove the proposedmethod.
     The centralized or segmented linear motors are low reliable; and in the aspect ofthe efficiency, motors with constant structural parameters are unsuitable for theunidirectional working condition. First of all, this paper studies the structurevariation of the proposed varistructured PMLSM, and analyzes its attribute. In thispart of the job, the structural parameters variation of the motor is analyzed. Theinfluences of the structural parameters in different speed section on the air gap fluxdensity, and the influences of the structural parameters variation on the thrustmagnitude and thrust ripple, are studied based on the finite element analysis. Thecontrolled objects of every coil are different due to the variation of the motorstructure, so independent control of each coil is needed. For this requirement, thewound method of the PMLSM and the influence of the variable structure on coilattribute are studied. Mathematical model of the PMLSM considering coil attributedifference is built. These studies and their results provide reference to theautonomous decentralized control of the proposed PMLSM.
     For the control methodology, this paper proposes the autonomous decentralizedcontrol strategy for the fault tolerant control. The vector control of the PMLSM bymultiple autonomous atoms is proposed, based on the explicit coordination of the atoms. In addition, thrust control model of the motor and a back-electromotive forcebased control methodology are proposed, according to the nonlinear variation of thestructural parameters. In order to improve the system response frequency, strategiesbased on state observer for the velocity and position control are proposed, andsimulations and experiments are carried out.
     For active fault tolerant control of the varistructured PMLSM, this paperproposes a corresponding fault detection and diagnosis methodology. In this part ofthe job, the faults of the autonomous decentralized atoms are categorized, accordingto the special feature of the PMLSM control. And fault diagnosis method of themajor faults of the atoms and basic motor unit output decrement are studied. Inaddition, a digital filter for fault signal is designed, for the improvement of the faultdetection accuracy.
     For the most important part of the paper, an active fault tolerant control strategyfor the PMLSM is proposed based on the control law reconfiguration. And based onthe fault detection and diagnosis result of the motor and its autonomous controlatoms, we analyze different fault features of the PMLSM. On the basis of the faultfeature analysis, we propose the mathematical model of the control lawreconfiguration, and study the stability of the reconfigured system.
     In the end, we build a test bench for the fault tolerant control of the PMLSM,and describe the algorithm of the system. In the fault tolerant control of theexperiment of the PMLSM, the results of the faults diagnosis and the current controllaw reconfiguration are shown. The comparison experiments of the acceleration andvelocity of the PMLSM’s secondary are carried out. The experiment results prove theproposed fault tolerant control methodology.
引文
[1]李梅武,崔英,薛飞.航母飞机起飞的最佳选择—电磁弹射系统[J].舰船科学技术,2008,30(2):35-37.
    [2] Fair H D. The Science and Technology of Electric Launch[J]. IEEE Transactionon Magnetics,2001,37(1):25-32.
    [3]吴始栋.美国海军电磁弹射器现状[J].船电技术,2005,(3):5-6.
    [4]雪巴.即将登场的航母电磁弹射器[J].兵器大观,2007:69-72.
    [5] Fair H D. Electromagnetic Launch Science and Technology in the United StatesEnters a New Era[C].12th Symposium on Electromagnetic Launch Technology,Austin, USA,2005:1-8.
    [6] Bushway R R. Electromagnetic Aircraft Launch System DevelopmentConsiderations[J]. IEEE Transactions on Magnetics,2001,37(1):52-54.
    [7] Samuel D J, Conway T, Klimowski R R. Electromagnetic Aircraft LaunchSystem–EMALS[J]. IEEE Transactions on Magnetics,1995,31(1):528-533.
    [8]张爱华.中国航母与其身后的造船人——两院院士、造船专家谈航母入列[J].社会观察,2013,(11):26-29.
    [9]郭宣.“瓦良格”建造师谈“辽宁”号航母[J].现代舰船,2012,(12):10-14.
    [10]王志华.美国通用原子能公司电磁弹射系统技术故障后恢复正常[J].船电技术,2010(11):5.
    [11] Bertoncelli T, Monti A, Patterson D, et al. Design and Simulation of anElectromagnetic Aircraft Launch System[C].33rd Annual Power ElectronicsSpecialists Conference. Cairns, Qld, Austrial,2002:1475-1480.
    [12] Patterson D, Monti A, Brice C. Design and Simulation of an ElectromagneticAircraft Launch System[C].37th Annual Industry Applications Conference.Pittsburgh, USA,2002:1950-1957.
    [13] Stumberger G, Zarko D, Timur A M, et al. Design and Comparison of LinearSynchronous Motor and Linear Induction Motor for Electromagnetic AircraftLaunch System[J]. IEEE Electric Machines and Drivers Conference. Wisconsin,USA,2003:494-500.
    [14] Stumberger G, Zarko D, Timur A M, et al. Design of a Linear BulkSuperconductor Magnet Synchronous Motor for Electromagnetic AircraftLaunch Systems[J]. IEEE Transaction on Magnetics,2004,14(1):54-62.
    [15] Meeker D C, Newman M J. Indirect Vector Control of a Redundant LinearInduction Motor for Aircraft Launch[J]. Proceedings of the IEEE,2009,97(11):1768-1776.
    [16] Mirzaei M, Abdollahi S E. Design Optimization of Reluctance SynchronousLinear Machines for Electromagnetic Aircraft Launch System[J]. IEEETransaction on Magnetics,2009,45(1):389-395.
    [17] Kuznetsov S, Marriott D. High Velocity Linear Induction Launcher withExit-Edge Compensation for Testing of Aerospace Components[C]. IEEE14thElectromagnetic Launch Technology Symposium, Victoria, BC,2008:1-9.
    [18] Hanxia Z. Based on Fuzzy-Neural Network of High Speed Linear Induce MotorEfficiency Optimization[C]. Electrical Machines and Systems InternationalConference. Wuhan, China,2008:1515-1519.
    [19] Zheng L H, Jin J X, Guo Y G, et al. Design and Electromagnetic Analysis of aHTS Linear Synchronous Motor[C]. Applied Superconductivity andElectromagnetic Devices International Conference, Chengdu, China,2009:5-10.
    [20] Quesada J R, Charpentier J F. Finite Difference Study of UnconventionalStructures of Permanent-Magnet Linear Machines for Electromagnetic AircraftLaunch System[J]. IEEE Transactions on Magnetics,2005,41(1):478-483.
    [21] Johnson A P. High speed linear induction motor efficiency optimization[D].Boston: Massachusetts Inst. of Tech,2005:44-50.
    [22] Monti A, Patel K, Patterson D, et al. Modular Control For ElectromagneticAircraft Launching System[C]. IEEE34th Power Electronics SpecialistConference Annual. Acapulco, Mexico,2003:1877-1882.
    [23] Grantham C, Sorrell C C, et al. High-Temperature Superconducting LinearSynchronous Motors Integrated With HTS Magnetic Levitation Components[J].IEEE Transactions on Applied Superconductivity,2012,22(5):520-537.
    [24] Marshall R A, Zhang J. Rail_type emal system[C].16th InternationalElectromagnetic Launch Technology Symposium, Beijing, China,2012:1-2.
    [25] Musolino A, Rizzo R, Tripodi E. Analysis and design criteria of a tubular linearinduction motor for a possible use in the electro-magnetic aircraft launchsystem[C].16th International Electromagnetic Launch Technology Symposium.Beijing, China,2012:1-6.
    [26]石剑琛.美国海军航母作战系统发展及展望.舰船科学技术[J],2012,34(4):132-139.
    [27] Gurol H. General Atomics Linear Motor Applications-Moving TowardsDevelopment[J]. Proceedings of the IEEE,2009,97(11):1864-1871.
    [28] Michael C J. An EMALS catapult test range in the United States [EB/OL].(2012-03-02)[2013-04-17]. http://fareasternpotato.blogspot.com/2012/05/china-developing-emals-type-system.html.
    [29]李立毅,程树康,刘宝延.直线电磁发射技术的发展现状及前景[J].微电机,1999,32(1):26-30.
    [30]张向明,赵治华,孟进,等.大功率电磁装置短时变频磁场辐射测试系统[J].电工技术学报,2010,25(9):8-13.
    [31]孟进,马伟明,张磊,等.带整流桥输入级的开关电源差摸干扰特性[J].电工技术学报,2006,21(8):14-18.
    [32]马伟明.电力电子在舰船电力系统中的典型应用[J].电工技术学报,2011,26(5):1-7.
    [33]鲁军勇,马伟明,李朗如.高速长初级直线感应电动机纵向边端效应研究[J].中国电机工程学报,2008,28(30):73-78.
    [34]鲁军勇,马伟明,许金.高速长定子直线感应电动机的建模与仿真[J].中国电机工程学报,2008,28(27):89-94.
    [35]鲁军勇,马伟明,张育兴.次级边缘漏感对高速直线感应电机性能的影响[J].中国电机工程学报,2010,30(15):53-57.
    [36]朱金凯,赵宏涛,吴峻.直线感应电机边端效应的分析[J].电气技术2010年增刊(电磁弹射技术),2010:61-63.
    [37]吴峻,赵宏涛,罗宏浩.电磁弹射过程中涡流引入阻力的分析[J].国防科技大学学报,2011,33(5):69-72.
    [38]赵宏涛,吴峻.短距集中绕组永磁直线电机空载反电势分析[J].微电机,2009,42(11):4-6.
    [39]赵宏涛,吴峻.舰载无人机电磁弹射器应用能力分析[J].舰船科学技术,2010,32(3):78-80.
    [40]董健年,吴毅,桂应春,等.电磁弹射装置中线圈受力与电流相位的关系[J].高电压技术,2006,32(7):79-80.
    [41]罗宏浩,吴峻,常文森.新型电磁弹射器的动态性能仿真[J].系统仿真学报,2006,18(8):285-288.
    [42]罗宏浩,吴峻,常文森.动磁式永磁无刷直流直线电机的齿槽力最小化[J].2007,27(6):12-16.
    [43]董健年,吴毅,桂应春,等.电磁弹射装置中线圈受力与电流相位的关系[J].高电压技术,2006,32(7):79-80.
    [44]丁国良,胡叶发,孙小静.磁悬浮电磁弹射系统结构设计与磁场分析[J].机械工程师,2008(7):23-25.
    [45]陈庆国,王永红,魏新劳,等.电容驱动型轨道电磁炮电磁过程的计算机仿真[J].电工技术学报,2006,21(4):68-71.
    [46] Li L Y, Jun J H, Zhang L. Fields and Inductances of the SectionedPermanent-Magnet Synchronous Linear Machine Used in the EMALS[J]. IEEETransactions on Plasma Science,2011,39(1):87-93.
    [47] Kou B Q, Huang X Z, Wu H X. Thrust and Thermal Characteristics ofElectromagnetic Launcher Based on Permanent Magnet Linear SynchronousMotors[J]. IEEE Transactions on Magnetics,2009,45(1):358-362.
    [48]李勇,李立毅,程树康,等.电磁弹射技术的原理与现状[J].微特机电,2001,(5):3-4.
    [49] Hao S H, Shi J H, Hao M H, Yoshio M. Closed-loop Parameter Identification ofPermanent Magnet Synchronous Motor Considering Nonlinear InfluenceFactors. Journal of Advanced Mechanical Design, System, and Manufacturing,2010,4(6):1157-1165.
    [50] Hao S H, Tang Z L, Hao M H, et al. Autonomous Decentralized System forTorque Control of High Power Permanent Magnet Synchronous Motor[J]. IEEJTransactions on Electrical and Electronic Engineering,2012,7(5):529-534.
    [51] Liu J Z, Hao S H, Zheng W F, et al. Study on High-power Linear Motor OptimalDesign[C]. International Conference on Intelligent Computing Technology andAutomation, Changsha, China,2009:98-102.
    [52] Liu J Z, Hao S H, Tang Z L, et al. Autonomous Control of ElectromagneticAircraft Launch System Based on Decentralized Architecture[C]. Proceedingsof2008IEEE International Conference on Robotics and Biomimetics, Bangkok,Thailand,2009:2089-2092.
    [53]李梅武,崔英,薛飞.航母飞机起飞的最佳选择电磁弹射系统[J].舰船科学技术,2008,30(2):34-37.
    [54]吴始栋.美国海军电磁弹射器现状[J].船电技术,2005,(3):5-6.
    [55]冯尚明,杨波.用于电磁飞机弹射系统的直线电机设计综述[J].舰船科学技术,2008,30(3):36-41.
    [56]王晓远,宋鹏,田亮,等.基于DSP的盘式无铁心永磁同步电动机调速系统[J].中国电机工程学报,2006,26(17):138-142.
    [57]王晓远,赵方,杜静娟,等.基于Halbach阵列的多盘式无铁心永磁同步电机设计研究[J].微电机,2007,40(2):26-28.
    [58]王晓远,唐任远,杜静娟,等.基于Halbach阵列盘式无铁心磁同步电机优化设计-楔形气隙结构电机[J].电工技术学报,2007,22(3):2-5.
    [59]王晓远,刘艳,阎杰,等.盘式无铁心永磁同步电动机设计[J].微电机,2004,37(4):3-5.
    [60]王晓远,李娟,齐立晓,等.盘式永磁同步电机永磁体内涡流的有限元分析[J].微电机,2007,40(1):5-9.
    [61]王晓远,田亮,冯华.无刷直流电机直接转矩模糊控制研究[J].中国电机工程学报,2006,26(15):134-138.
    [62]王晓远,丁亚明,刘艳,等.无铁心HALBACH阵列对盘式永磁同步电机控制性能的影响[J].微电机,2005,38(3):1-12.
    [63] Patton R J. Fault-tolerant control system: the1997situation[C]. IFAC/IMACsSymposiumon Fault Detection and Safety for Technical Process, Hull, England,1997:1033-1055.
    [64] Jin J. Fault tolerant control systems-an introductory overview[J]. ActaAutomatica sinica,2005,31(1):161-174.
    [65] Jack A G, Mecrow B C, Haylock J. A comparative study of permanent magnetand switched reluctance motors for high-performance fault-tolerantapplications[J]. IEEE Transitions on Industry Applications,1996,32(4):889-895.
    [66] Mecrow B C, Jack A G, Haylock J A, et al. Fault-tolerant permanent magnetmachine drives[J]. IEEE Proc-Electr Power Appl,1996,143(6):437-442.
    [67] Mecrow B C, Jack Alan G. Design and testing of a four-phase fault-tolerantpermanent-magnet machine for an engine fuel pump[J]. IEEE Transaction onEnergy Conversion,2004,19(2):132-137.
    [68] Green S, Atkinson D J, Jack A G, et al. Senseless operation of a fault tolerantPM drive[J]. IEE Proc-Electr Power Appl,2003,150(2):1030-1038.
    [69] Wang J, Atallah K, Howe D. Optimal torque control of fault-tolerant permanentmagnet brushless machines[J]. IEEE Transaction on Magnetic,2003,39(5):2962-2964.
    [70] Cengelci E, Enjet P N, Gray J W. New Modular Motor–Modular InverterConcept for Medium-Voltage Adjustable-Speed-Drive Systems[J]. IEEETransactions on Industry Applications,2000,36(3):786-796.
    [71] Chen H, Jiang J, Zhang C, et al. Analysis of the Four-Phase SwitchedReluctance Motor Drive Under the Lacking One Phase Fault Condition[C]. The2000IEEE Asia-Pacific Conference on Circuits and Systems, Tianjin, China,2000:304-308.
    [72] Abolhassani M T, Toliyat H A. Fault Tolerant Permanent Magnet Motor Drivesfor Electric Vehicles[C].2009IEEE International Electric Machines and DrivesConference, Miami, FL, United states,2009:1146-1152.
    [73] Iles D. Automotive electric drives-An overview. FISITA World AutomotiveCongress, Congress Proceedings-Electronics, Munich, Germany,2008:250-253.
    [74] Craig E, Mecrow B C, Atkinson D J. A fault detection procedure for singlephase bridge converters[C]∥UPEA Conf93.Brighto,1993:468-471.
    [75] Ede J D, Atallah K, Howe D, et al. Effect of optimal torque control on rotor lossof fault-tolerant permanent-magnet brushless machines[J]. IEEE Transactionson Magnetics,2002,38(51):3291-3293.
    [76] Sun Z, Wang J, Howe D, et al. An online winding fault detection technique forfault-tolerant PM machines[J]. International Journal of Systems Science,2009,40(3):289-296.
    [77] Sun Z G, Jewell G W, Howe D, et al. Enhanced optimal torque control offault-tolerant PM machine under flux-weakening operation[J]. IEEETransactions on Industrial Electronics,2010,57(1):344-353.
    [78] Diallo D, Benbouzid M H, Makouf A. A Fault-Tolerant Control Architecture forInduction Motor Drives in Automotive Applications[J]. IEEE Transactions onVehicular Technology,2004,53(6):1847-1855.
    [79] Parsa L, Toliyat H A. Fault-Tolerant Five-Phase Permanent Magnet MotorDrives[C]. IEEE Industry Applications Conference,39th IAS Annual Meeting,Seattle, WA, United states,2004:1048-1054.
    [80] Wang H, Pekarek S, Fahimi B, et al. Improvement of Fault Tolerance in ACMotor Drives Using a Digital Delta-Hysteresis Modulation Scheme[C]. IEEE35th Annual Power Electronics Specialists Conference, Aachen, Germany,2004:944-949.
    [81] Rossiter M B, Jacobina C B, Cabral E R, et al. An Induction Motor DriveSystem with Improved Fault Tolerance[J]. IEEE Transactions on IndustryApplications,2011,37(3):873-879.
    [82] Tahami F, Shojaei A, Khatir D A. A Diversity Based Reconfigurable Method forFault Tolerant Control of Induction Motors[C]. International Symposium onPower Electronics, Electrical Drives, Automation and Motion, Taormina, Italy,2006:66-71.
    [83] Szabo L, Ruba M, Fodorean D. Study on a Simplified Converter Topology forFault Tolerant Motor Drives[C].11th International Conference on Optimizationof Electrical and Electronic Equipment, Brasov, Romania,2008:197-202.
    [84] Rodriguez M A, Claudio A, Theilliol D, et al. Strategy to Replace the DamagedPower Device for Fault-Tolerant Induction Motor Drive[C].24th Annual IEEEApplied Power Electronics Conference and Exposition, Washington, DC, UnitedStates,2009:343-346.
    [85] El B H, Poure P, Saadate S. Study and comparison of fault tolerant shunt threephase active filter topologies[C]. CES/IEEE5th International Power Electronicsand Motion Control Conference, Shanghai, China,2007:1669-1674.
    [86] Caseiro J A, Mendes A M, Marques C A. The Usage of a PWM Rectifier toImprove Three-Phase Induction Motor Drive Performance under FaultConditions.13th European Conference on Power Electronics and Applications,Barcelona, Spain,2009:1-10.
    [87]王海南,赵争鸣,刘云峰.新型高容错电机集成系统的设计[J].电工电能新技,2001,(3):29-32.
    [88]蒋栋,赵争鸣,郭伟,等.双余度电动作动器电气设计与实验[J].清华大学学报,2008,48(1):5-8.
    [89]王雪松,赵争鸣,袁立强.基于IGBT的变换器系统安全工作区[J].清华大学学报,2011,51(7):914-920.
    [90]张兰红,胡育文,黄文新.容错型四开关三相变换器异步发电系统的直接转矩控制研究[J].中国电机工程学报,2005,25(18):140-145.
    [91]张兰红,胡育文,黄文新.基于直接转矩控制技术的异步电机驱动系统两种容错方案研究[J].南京航空航天大学学报,2005,37(1):36-41.
    [92]齐蓉,陈明.永磁容错电机及容错驱动结构研究[J].西北工业大学学报,2005,23(4):475-478.
    [93]齐蓉,陈峥,林辉.永磁容错电机解耦控制研究[J].西北工业大学学报,2007,25(6):809-813.
    [94]张玲霞,陈明,刘翠萍.冗余传感器故障诊断的最优奇偶向量法与广义似然比检验法的等效性[J].西北工业大学学报,2005,23(2):266-270.
    [95]吉静华,孙玉坤,朱纪洪,等.新型定子永磁式容错电机的工作原理和性能分析[J].中国电机工程学报,2008,28(21):96-101.
    [96]赵文祥,程明,花为.双凸极永磁电机故障分析与容错控制策略[J].电工技术学报,2009,24(4):71-77.
    [97]杨正专,程明,赵文祥.8/6极双凸极永磁电动机驱动系统容错型拓扑结构[J].2009,24(7):34-40.
    [98]沈天珉,胡育文,郝振洋,等.基于电压调制的永磁容错电机转矩控制系统仿真[J].微特机电,2011,(3):66-72.
    [99]郝振洋,胡育文,黄文新.电力作动器中永磁容错电机的电感和谐波分析[J].航空学报,2009,30(6):1063-1069.
    [100] Zhu J G, Zhang H Y, Tang R Y. The study and modeling of multi-Phase PMSMvariety speed system with high fault-tolerance[C]. Proceedings of the1lthInternational Conference on Electrical Machines and Systems,2008:3102-3107.
    [101] An Q T, Sun L, Zhao K, et al. Scalar PWM Algorithms for Four-SwitchThree-Phase Inverters[J]. Electronics Letters,2010,46(13):900-902.
    [102]孙丹,贺益康,何宗元.基于容错逆变器的永磁同步电机直接转矩控制[J].浙江大学学报(工学版).2007,41(07):1101-1106.
    [103]薛山,温旭辉.基于矢量空间解耦的五相永磁同步电机建模与仿真.微特电机,2006,(6):21-23.
    [104] Mori K. Autonomous Decentralized Systems Concept, Data Filed Architectureand Future Trends[C]. International Symposium on Autonomous DecentralizedSystems, Kawasaki, Japan,1993:28-34.
    [105] Divshali P H, Alimardani A, Hosseinian S H, et al. Decentralized CooperativeControl Strategy of Microsources for Stabilizing Autonomous VSC-BasedMicrogrids. IEEE Transactions on Power Systems,2012,27(4):1949-1959.
    [106] Lavaei J, Momeni A, Aghdam A G. A Near-Optimal DecentralizedServomechanism Controller for Hierarchical Interconnected Systems[C].46thIEEE Conference on Decision and Control, Pasadena, USA,2007:5023-5030.
    [107] Leguizamo C P, Wang D, Mori K. Autonomous decentralized database systemreconstruction technology through mobile agent monitoring and coordination[J].Computer Software and Applications Conference, Tokyo, Japan,2003:283-288.
    [108] Yasuda K, Ishii T. Decentralized autonomous control of super distributedenergy systems[J].2002IEEE International Conference on Systems, Man andCybernetics, Tokyo, Japan,2002,(6):1-6.
    [109] Urban C, Gunther R, Nagel T. Development of a bendable permanent-magnettubular linear motor[J]. IEEE Transactions on Magnetics,2012,42(8):2367-2373.
    [110] Kondo S, Koyama D, Nakamura K. Bar-shaped ultrasonic linear motor usingtraveling wave along rod with bimorph transducers[C].2012IEEE1st GlobalConference on Consumer Electronics, Tokyo, Japan,2012:62-66.
    [111] Smithmaitrie P, Suybangdum P, Laoratanakul P, et al. Design and performancetesting of an ultrasonic linear motor with dual piezoelectric actuators[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2012,59(5):1033-1042.
    [112] Fujiwara, Shinsh R, Uehara T, et al. Positioning characteristics of a MEMSlinear motor utilizing a thin film permanent magnet and DLC coating[J].International Journal of Automation Technology,2013,7(2):148-155.
    [113] Si J K, Wang S H, Xu X Z. Analysis of characteristics of permanent magnetlinear motor fed by sinusoidal and non-sinusoidal power supply[J].2011International Conference on Electrical, Information Engineering andMechatronics, Jiaozuo, China,2011:2073-2079.
    [114] Yousefi H, Handroos H, Hirvonen M. Optimization of unknown parameters ofadaptive backstepping in position tracking of a permanent magnet linearmotor[J]. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering,2012,226(2):162-174.
    [115] Siatkowski M, Orlik B. Construction of a high force density linear motor with apassive stator using transverse flux technology[C]. International Exhibition andConference for Power Electronics, Intelligent Motion, Renewable Energy andEnergy Management, Nuremberg, Germany,2012:186-193.
    [116] Yongkuk L, Famouri, Parviz. The movement of actin-myosin biomolecularlinear motor under AC electric fields: An experimental study[J]. Journal ofColloid and Interface Science,2013,394(1):312-318.
    [117]唐任远.现代永磁电机的理论与设计[M].北京:机械工业出版社,2008:62-75.
    [118] Matyas A R, Biro K A, Fodorean D. Multi-phase synchronous motor solutionfor steering applications[J]. Progress in Electromagnetics Research,2012,(131):63-68.
    [119] Carpita M, Beltrami T, Besson C, et al. Multiphase Active Way Linear Motor:Proof-of-Concept Prototype. IEEE Transactions on Industrial Electronics,2012,59(5):2178-2188.
    [120] Wang Y H, Zhu X L, Dang Z Q, et al. Self-adjusting Fuzzy ControllerApplication for Linear Induction Motor Control System[C].3rd IEEEConference on industrial Electronics and Applications, Changchun, China,2008:528-531.
    [121] Itoh K, Kubota K. Thrust Ripple Reduction of Linear Induction Motor withDirect Torque Control[C]. Proceedings of the Eighth International Conferenceon Electrical Machines and Systems, Nanjing,2005,(1):655-658.
    [122] Gui X G, Yang M, Xu D G. Research on Thrust Ripples Elimination Techniquefor Double Sided PM Linear Motor[C]. International Conference on ElectricalMachines and Systems, Harbin, China,2008:3449-3452.
    [123] Blaschke F. Method for controlling asynchronous machines: U. S,237572[P].1972-03-23.
    [124] Palomino G G, Conde J R. Comparative Results of Thrust Ripple in SeveralTopologies of PMLSM[C].4th IET Conference on Power Electronics,Machines and Drives, York, Eng,2008:135-138.
    [125] Park R H. Two-reaction theory of synchronous machines generalized method ofanalysis-part I[J]. Transactions of the American Institute of Electrical Engineers,1929,48(3):716-727.
    [126] Hall D, Kapinski J, Krefta M. Transient Electromechanical Modeling for ShortSecondary Linear Induction Machines[J]. IEEE Transactions on EnergyConversion,2008,23(3):789-795.
    [127] Elhadef M. Using linear support vector machines to solve the asymmetriccomparison-based fault diagnosis problem[C].2012Seventh InternationalConference on Availability, Reliability and Security, Prague, Czech,2012:18-27.
    [128] Nacusse M A, Romero M E, Haimovich Hernan, et al. Model predictive controlfor induction motor control reconfiguration after inverter faults[J]. JournalEuropean des Systemes Automatises,2012,46(2-3):307-321.
    [129] Espinoza D R, Campos D U. Active fault tolerant scheme for variable speeddrives under actuator and sensor faults[C]. Proceedings of the IEEEInternational Conference on Control Applications, San Antonio, USA,2008:474-479.
    [130] Detroja K P, Gudi R D, Patwardhan S C. Data reduction algorithm based onprinciple of distributional equivalence for fault diagnosis[C].2011InternationalSymposium on Advanced Control of Industrial Processes, Hangzhou, China,2011:23-26.
    [131] Capisani L M, Ferrara A, Ferreira D E, et al. Manipulator fault diagnosis viahigher order sliding-mode observers[J]. IEEE Transactions on IndustrialElectronics,2012,59(10):3979-3986.
    [132] Mourad E, Nayak A. Comparison-based system-level fault diagnosis: A neuralnetwork approach[J]. IEEE Transactions on Parallel and Distributed Systems,2012,23(6):1047-1059.
    [133] Grouz F. Particle swarm optimization based fault diagnosis for non-salientPMSM with multi-phase inter-turn short circuit[C].20122nd InternationalConference on Communications, Computing and Control Applications,Marseille, France,2012:1-6.
    [134] Konar P, Bhawal S, Saha M, et al. Rough set based multi-class fault diagnosisof induction motor using Hilbert Transform[C].2012International Conferenceon Communications, Devices and Intelligent Systems, Kolkata, India,2012:33-340.
    [135] Alwodai A, Yuan X, Shao Y, et al. Modulation signal bispectrum analysis ofmotor current signals for stator fault diagnosis[C].201218th InternationalConference on Automation and Computing, Loughborough, Eng,2012:1-6.
    [136] Pezzani C, Bossio G, Angelo C D. Winding distribution effects on inductionmotor rotor fault diagnosis[C].8th IFAC Symposium on Fault Detection,Supervision and Safety of Technical Processes, Mexico City, Mexico,2012:1376-1381.
    [137] Khwan-on S, Lillo L D, Empringham L, et al. Fault-tolerant matrix convertermotor drives with fault detection of open switch faults[J]. IEEE Transactionson Industrial Electronics,2012,59(1):257-268.
    [138] Sayed-Ahmed A, Demerdash N A O. Fault-tolerant operation of delta-connected scalar and vector-controlled AC motor drives[J]. IEEE Transactionson Power Electronics,2012,27(6):3041-3049.
    [139] Estima J O, Cardoso A J M. Efficiency evaluation of fault-tolerant operatingstrategies applied to three-phase permanent magnet synchronous motordrives[C].2012International Conference on Electrical Machines (ICEM),Marseille, France,2012:2411-2417.
    [140] Gaied K S, Ping H W, Uddin M N, et al. Wavelet based prognosis for faulttolerant control of induction motor with stator and speed sensor faults[C].Industry Applications Society Annual Meeting (IAS), Las Vegas, USA,2012:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700