用户名: 密码: 验证码:
混合动力汽车动力电池容量预测模型及抗扰策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力电池为混合动力汽车、电动汽车的电气设备供电。影响估算电池续航里程的因素有两个,一个是使用的电池容量预测模型是否可以准确地估算在不同工况下动力电池的容量,并且能够预测动力电池的持续工作时间;另一个因素是车载供电系统是否具备抑制外界干扰的能力。
     首先,从两方面分析了限制动力电池容量准确估算的因素。即一方面,动力电池的制造材料、工艺以及结构导致实际容量与理论容量不符;另一方面,动力电池的工作环境、客观因素导致电池的容量是动态变化的。
     针对电池进行单独分析,或者是针对电池为某一电阻负载供电的情况下进行分析,都无法与车载动力电池的实际运行状况相匹配。动力电池的容量随混合动力汽车的运行状况“动态”地发生变化。动力电池的电流、电压、温度以及持续工作时间之间呈现出动态对应关系。因此,本文提出基于电化学分析的方式推导镍氢动力电池容量预测模型,结合电池温度、工作电流、端电压以及电池工作截止时间的测试数据基础上完成的。
     在镍氢动力电池的使用寿命内,考虑电池的电解质损耗较小,即扩散系数不发生变化的前提下,推导了动力电池的端电压、温度、工作电流与电池工作截止时间之间的对应关系。
     对于动力电池发生的实际可逆反应,采用热力学公式进行分析,得到电池反应电势的表达式。表达式可以完全描述动力电池中电化学反应的平衡状态。但是,热力学平衡方程式无法描述各种状态下的电流。采用电极反应动力学可以描述的是整个反应的过程。根据电极反应动力学,进一步推导出电流、电解质浓度与过电势之间的关系式。在这种平衡情况下,电极反应由动力学控制,而与物质传递无关。
     当电池的平衡状态被打破,电池内部出现过电势时,反应的加速将导致电解液中反应物的浓度出现偏差。这时,物质传递将控制反应的进行。基于物质传递过程,完成了电池反应时电流与浓度关系的分析与推导;并且完成了动力电池阻抗模型的推导。进一步结合对某镍氢单体电池、电池组多种放电率放电试验数据的分析,建立了镍氢电池放电模型。经过测量数据与模型仿真数据的对比,验证了模型的正确性以及准确性。
     当动力电池对负载供电时,尤其是为变负载供电时,端电压测量结果要比理论值低,而且随着时间变化。电解液的浓度扩散、物质迁移、对流、温度以及双电层电容等电化学因素造成电池内阻是变化的;同时,回路中的负荷存在许多非线性元件,既有整流、逆变回路的开关元件,又有电动机以及滤波、平波元件。因此,当电阻增加或电流增大时,端电压会加速下降,提前下降至截止电压,并终止放电。电池容量估算的具体过程如下:
     (1)在输出电流波动不大的范围内,可以近似认为电池处于恒电流放电工况,根据恒电流放电的持续时间得出已经放出的A h容量。
     (2)测量电池的输出电流,当输出电流发生较大变化时,等待输出电流稳定于新的状态时,更新模型参数,调整放电率。从稳定时开始采用新的电压随时间变化的曲线来估测电池的容量。
     (3)当某个参数变化较大(温度、扩散系数、浓度等)直至稳定于新的状态时,更新参数,从稳定时开始采用新的电压随时间变化的曲线来估测容量。
     (4)各个放电阶段放出A h容量总和就是已经放出的容量,截止至放电终止电压,根据曲线可以预测出当前放电倍率下放电持续时间。
     根据混合动力汽车镍氢电池经常处于变负荷工况下工作,以至经常处于不同倍率工作电流下的特点,采用电压随时间变化的曲线来估计电池剩余容量,结合电池初始容量预测模型,对并不同倍率下放出的电量进行积分,得到电池的计算容量。通过对镍氢动力电池的充、放电试验证明,电池容量预测模型是准确、有效的。
     限制动力电池容量准确估算的另一个因素是外界干扰。当车载电池工作在为电动机供电的状态时,系统中出现的各种不确定因素将影响到电池系统运行状态的稳定性、效率。混合动力汽车驱动电动机的输出轴端受到的扰动最具代表性,并且对系统的干扰效果也最明显。当驱动电动机的输出轴端受到扰动时,相应的干扰转矩将导致车载动力电池输出的电量产生波动。
     基于广义系统的框架分析。进一步提出了采用H理论来实现系统的几乎干扰解耦的控制策略,使系统具有较好的鲁棒性。结合试验数据,建立了电动机的功率模型。在H控制理论的基础上,设计了对电动机轴间扰动的抑制策略。进一步将电动机的具体参数代入,完成了实际控制策略的计算,使供电系统对特定的干扰实现了几乎干扰解耦。
Hybrid electric vehicles, electric vehicles use battery to power for motor all. There aretwo factors effect the system estimates endurance mileage. One factor is whether the modelcan accurately estimate power battery capacity in different conditions and is able to predictthe continuous working time of battery. Another factor is whether the vehicle power supplysystem has the ability of interference suppression.
     First of all, there are two aspects to limit the battery capacity prediction accurately.
     On the one hand, battery manufacturing materials, process and structure producedeviation in capacity and theoretical capacity. On the other hand, power battery workingenvironment, objective factors lead the battery capacity to be dynamic change.
     According to the battery analysis separately or the battery power for a resistive load tocarry on the analysis, can't with the practical operation of power battery matching condition.
     The capacity of power battery changes dynamically accompanying hybrid electricvehicle operation status.
     There is a corresponding relationship between dynamic current, voltage, temperatureand the continuous working time of the power battery. Therefore, can't use theveninequivalent circuit to describe the relationship between battery's voltage and output currentsimply. It is on the basis of the principle of electrochemical and the analysis combinedbattery's temperature, current, voltage and battery work cut-off time test data that the Ni-MHbattery's capacity forecast model can be established.
     Deduced the power battery terminal voltage, temperature, working current and batterywork by the corresponding relations with the time in the battery life, in considering thebattery electrolyte loss is lesser, namely diffusion coefficient under the premise of notchanging.
     Get the expression of cell reaction potential based the analysis on thermodynamics formulathat for the battery's actual reversible reaction. The expression can fully describe the power cellelectrochemical reaction balance. However, the potential balance equation basedthermodynamic cannot accurately describe the balance condition of the size of the current.The electrode reaction kinetics can describe the entire reaction process. The relationshipbetween battery's current, electrolyte concentration, and over-potential can be derived whichaccording to the electrode kinetics. In this balance situation, the electrode reaction is controlled by the kinetics, and has nothing to do with the material transfer.
     Once the balance is broken, battery internal appeared potential, reaction speed will leadto the electrolyte concentration of reactant appeared deviation. At this time, mass transfer willcontrol the reaction.
     On the basis of the material transfer process, complete the cell reaction current andconcentration relationship analysis and derivation. And complete the power cell impedancemodel is derived.
     With a further to cell and battery various discharge rate discharge test data analysis,derived a batteries discharge model. Through the measured data and the model simulationdata contrast, verified the accuracy of model and accuracy.
     The testing figure of battery's voltage is lower than the theoretical value and changesover time when battery provides power to the load, especially for variable load.
     There are some electrochemical factors causing changes of internal resistance of thebattery such as diffusion of the electrolyte solution, mass transferring, convection,temperature and capacity of the double electrical layer.
     At the same time, there are many nonlinear elements in the load circuits, such asrectifier, inverter circuit switch element, the motor and filtering, and flat wave components.
     Therefore, when resistance increases or current increases, the terminal voltage willaccelerate drop, early fall to cut-off voltage, and terminate discharge. The specific process isas follows:
     (1) If the output current fluctuation is not in big range, it can approximate think cell is ina constant current discharge condition, according to the constant current discharge durationthat the A.H capacity can be obtained by capacity of the release.
     (2) Measuring the battery output current, when the output current have taken place greatchanges, waiting for the output current stability in the new state, updating model parameters,adjust the discharge rate. From stable time, assess the capacity of the battery at the start ofthe new voltage curve.
     (3) When a certain parameter changes a lot (temperature, diffusion coefficient, density,etc.) until it stables at a new balanced state, updating its parameter, and using a newvoltage-time curve to estimate the capacity.
     (4) Each discharge stage discharge capacity is the capacity of the total has been released,until discharge termination voltage, according to the curve can predict the current dischargeratio lower electric duration.
     According to the work characteristics of hybrid cars batteries often in varying load conditions, through in different ratio under the premise of discharge current, use the curve ofvoltage changing with time to estimate the residual capacity of battery.
     Combined with the battery initial capacity prediction model and under the powerintegration for different ratio, get the battery capacity calculation.
     The battery's charge and discharge experiment proves that the prediction model isaccurate and efficient.
     Finally, complete the trickle charge experiment of battery and describe the terminalvoltage, current and temperature of the corresponding curve with the data accurately. All thatproof the battery capacity prediction model is accurate and efficient.
     Another factor of limited power battery capacity accurate estimation is the interference.
     When the battery work for motor, the system appeared in various uncertain factors willaffect the battery system in the running state of stability and efficiency.
     Hybrid cars drive motor output torque is the most representative of the disturbance, andthe interference effect of torque is the most obvious.
     The corresponding interference torque will cause fluctuation to the output electricquantity of the battery when driving motor output shaft endures disturbed.
     On the basis of the analysis of a generalized framework, use the almost disturbancedecoupling control strategy to realize system that make the system have good robustness.
     Establish motor’s power model with the experiment data. On the basis of the H∞control theory, complete the strategy of permanent magnet synchronous motor shaft restraindisturbance.
     Complete the actual control strategy calculation with motor specific parameter thatmake power system realize almost disturbance decoupling for specific interference.
引文
[1]凤凰网.WWW.ifeng.com
    [2]人民网. WWW.people.com
    [3]新浪网.WWW.sina.com
    [4]科学网.WWW.sciencenet.cn
    [5]张达.国务院力促节能与新能源汽车产业发展[N].证券时报,2012-07-10.
    [6] Bard A. J.著电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2008.
    [7] Linden D.著电池手册(第三版)[M].北京:化学工业出版社,2007.
    [8]陈本美,席斌著H∞控制及应用[M].北京:科学出版社,2010.
    [9]唐任远,顾国彪等编.中国电气工程大典电机工程卷[M].北京中国电力出版社,2008.
    [10]刘锦波,张承惠等编著.电机与拖动[M].北京:清华大学出版社,2006.
    [11]陈清泉著.现代电动车、电机驱动技术及电力电子技术[M].北京:中国机械工业出版社,2006.
    [12]海老原大树主编.电动机技术实用手册[M].北京:科学出版社,2006.
    [13]马宏忠著.电机状态检测与故障诊断[M].北京:中国机械工业出版社,2008.
    [14]许以超编著.线性代数与矩阵论(第二版)[M].北京:高等教育出版社,2008.
    [15] Muhammad H. Rashid主编.电力电子技术手册[M].北京:中国机械工业出版社,2004.
    [16]胡寿松主编.自动控制原理第四版)[M].北京:科学出版社,2001.
    [17] Zhu X,Yang H B,Cao Y L,et al. Preparation and electrochemical characterization ofthe alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution[J].Electrochimica Acta,2004,49:2533-2539.
    [18] Cha Chuansin,Yu Jingxian,Zhang Jixiao.Comparative experimental study of gasevolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells [J]. Journalof Power Sources,2004,129(2):347-357.
    [19] FENG F, NORTHWOOD D O. Self-discharge characteristics of a metal hydride electrodefor Ni-MH rechargeable batteries [J].Int J Hydorgen Energ,2005,30:1367-1370.
    [20] IKoma M,Yuasa S,Yuasa K,et al.Charge characteristic of sealed-type nickel/meral-hydride battery [J].Journal of Alloys and Compouds,1998,267:252-256.
    [21] F. Feng, M. Geng, D. O. Northwood. Electrochemical Behavior of Intermetallic-basedMetal Hydrides Metal Hydrides Used in Ni/metal Hydride (MH) Batteries: a Review.Int. J. Hydrogen Energy,2001,26:725-734.
    [22] IWAKURA C, KAJIYA Y, YONEYAMA H, et al. Self-discharge mechanism of nickel-hydrogenbatteries using metal hydride anodes [J]. J Electrochem Soc,1989,134:1351-1355.
    [23] Y.Z.Wang, M.S.Zhao, S.C.Li, L.M.Wang. Structure and Electrochemical Charac teristics of Melted Composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30-LaNi5Hydrogen Storage Alloys[J].Electrochim. Acta,2008,53:7831–7837.
    [24] I.B. Weinstock. Recent Advances in the US Department of Energy’s Energy StorageTechnology Research and Development Programs for Hybrid Electric and ElectricVehicles [J]. Power Sources,2002,110:471-474.
    [25]董清海,颜广炅,余成洲等.电解液量对MH/Ni电池性能的影响[J].电池,2000,30(2):77-79.
    [26]王宏亮,崔胜民.基于试验的铅酸电池充放电特性模型的建立[J].蓄电池,2005,42(1):38-40.
    [27]俞涛,韩佐青,陈延. MH/Ni电池内压影响因素的研究[C].全国第九届电化学会议论文集,山东,1997.
    [28]周红丽,何莉萍,钟志华,高学锋.电动车用电池动态性能分析及剩余容量预测[J].计算机仿,2008(1):274-277.
    [29]齐国光,李建民,郏航,等.电动汽车电量计量技术的研究[J].清华大学学报(自然科学版),1997(3).
    [30]林成涛,王军平,陈全世,电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378.
    [31] Lewandowski A, Skorupska K, Malinska J. Novel poly (vinyl alcohol)-KOH-H2O alkalinepolymer electrolyte [J]. Solid State Ionics,2000,133:265-271.
    [32]董雄鹤,齐国光,冯熙康等.电动车用电池充电状态和功率强度估计[J].电源技术,2006,26(3):137-141.
    [33] Mark Verbrugge, Edward Tate. Adaptive state of charge algorithm for nickel metal hydridbatteries indluding hysteresis phenomena [J]. Journal of Power Sources,2004(126):236-249.
    [34] YANG Minjie,NAN Junmin,HOU Xianlu,LI Weishan. Preparation and ElectrochemicalPerforma nces of Nickel Metal Hydride Batteries with High Specific Volume Capacity[J]. Chinese Journal of Chemical Engineering,2008,16(6):944-948.
    [35]程博,韩琳,郭振宇,王军平,曹秉刚.基于混沌免疫进化网络的电池荷电状态预测[J].系统仿真学报,2008,20(11):2889-2892.
    [36] Ikeya T, Kumai K, Iwahori T. Mechanical process for enhancing metal hydride for theanode of a Ni-MH secondary battery [J]. Electrochem.Soc,1993,(140):3082-3086.
    [37]娄豫皖,杨传铮,何丹农,夏保佳.镍氢电池的循环性能与活性物质微结构的研究[J].化学学报,2008,66(10)1173-1180.
    [38] Bernhard Schweighofer, Klaus M Raab, Georg Brasseur. Modeling of High Power Automotive Batteries by the Use of an Automated Test System [J].IEEE Transactions onInstrumentation and Measurement,2003,52(4):1087-1091.
    [39] K.Hong. The Development of Hydrogen Storage Electrode Alloys for Nickel HydrideBatteries [J]. Power Sources,2001,96:85-89.
    [40]黄文华,韩晓东,陈全世,林成涛.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程2007,29(3).
    [41]焦慧敏,余群明.遗传算法和BP网络在电池电量预测中的研究[J].计算机仿真,2006,23(11):218-220.
    [42] Zhang Jixiao, Yu Jingxian, Cha Chuansin, et al.The effects of pulse charging on innerpressure and cycling characteristics of sealed MH/Ni batteries[J].Journal Power andSources,2004,136:180-185.
    [43] A.J.Salkind, C.Fennie, P.Singh, T.Atwater, D.E.Reisner. Determination of State-of-Charge and State-of-Health of Batteries by Fuzzy Logic Methodology [J]. Journal of PowerSources,1999,(80):293-300.
    [44]王芳,陈实,孙文鹏,吴锋,邱新平. MH/Ni电池充放电循环过程中电化学性能研究[J].现代化工,2006,26(7)139-143.
    [45]李丽,吴锋,杨凯等.过充电对MH-Ni电池电化学性能的影响[J].材料导报,2004,18(2):101-103.
    [46]麻有良,陈全世,齐占宁.电动汽车用电池SOC定义与监测方法[J].清华大学学报,2001(11).
    [47] Conway B E. Recharge ability of a chemically modified MnO2/Zn battery system atpractically favorable power levels [J]. Electroanal Chem,1993,140:884-889.
    [48] Mohamad A A, Mohamed N S, Yahya M Z A, et al. Ionic conductivity studies of poly(vinyl alcohol)alkaline solid polymer electrolyte and its use in nickel-zinc cells [J]. Solid State Ionics,2003,156:171-177.
    [49] Liu, S.Y, Dougal, R. A, Weidner, J. W, Gao, L. J. A simplified physics-based model for nickelhydr ogen battery [J]. Power Sources,2005,141(2):326-339.
    [50] D.W.Cprson. High Power Battery Systems for Hybrid Vehicles [J]. Power Sources,2002,105(2):110-113.
    [51] Arun Kbosla. Fuzzy Controller for Rapid Nickel-Cadmium Bat-teries Charger throughAdaptive Neuro-Fuzzy Inference System (ANFIS) Architecture [J].IEEE,2003:540-544.
    [52] DARREN Lim, ADNAN Anbuky. A distributed industrial bat-tery management network [J].IEEE Transactions on Industrial Electronics,2004,51(6):1181-1193.
    [53] S.M.Han, M.S.Zhao, Z.Zhang, et al. Effect of AB2Alloy Addition on the Phase Structure andElectrochemical Characteristics of LaNi5Hydride Electrode[J].Alloys Compd,2005,392:268-273.
    [54] Kim J K, Kalkur T S. High-speed current-mode logic Amplifier using positive Feedbackand Feed-forward Source-follower Techniques for high-speed CMOS I/O Buffer. IEEE [J].Solid-State Circ uits,2005,40(3):796-802.
    [55] Zuttel A, Chartouni D, Gross K, et al. Relationship between composition, volume expansionand cyclic stability of AB5-type metal hydride electrodes [J]. Alloys Compd.1997,253-254:626-628.
    [56] C. Fellner, J. Newman. High-Power Batteries for Use in Hybrid Vehicles [J]. Power Sources,2000,85(2):229-236.
    [57] Huet F. A review of impedance measurements for determination of the state-of-chargeor state-of-health of secondary batteries [J].Journal of Power Sources,1998,(70):59-69.
    [58] H.L.Chan. D.Sutanto. A New Battery Model for use with Battery energy Storage Systemsand Elec tric Vehicles Power Systems,2000[C]. IEEE: Power Engineering SocietyWinter Meeting,2000,5(1):470-475.
    [59] S. Buller, M. Thele, E. Karden, R.W. De Doncker. Impedance-based Non-linear Dynamic BatteryModeling for Automotive Applications [J]. Journal of Power Sources,2003,(113):422-430.
    [60] Yang Y, Li J, Nan J M, Lin Z G. Performance and characterization of metal hydride electrodesin nickel/metal hydride batteries [J]. Journal of Power Sources,1997,(65):15-21.
    [61] K.Hong.TheDevelopmentofHydrogenStorageAlloysandtheProgressofNickelHydrideBatteries.[J]. Alloys Compd,2001,321:307-313.
    [62] Mohamad A A, Mohamed N S, Alias Y, et al. Studies of alkaline solid polymer electrolyteand mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries[J]. Journal of Alloys and Compounds,2002,337:208-213.
    [63] Barral G,Njanjo-Eorke F,Maximovitch S. Characterisation of the passive layer and ofhydroxide deposits of nickel by impedance spectroscopy.[J]. Electrochimica Acdta,1995,40(17):2815-2828.
    [64] Kanda M, et al. Cyclic behaviour of metal hydride electrodes and the cell characteristicsof nickel-metal hydride batteries [J]. Less-Common Met,1991,172:1227.
    [65] Ju ping, Cai changchun, Cao ciangqin. Overall model based on the physical background ofthe micro-network. Electric Power Automation Equipment,2010,30(3):7-11.
    [66] Yan J X, Lin D Y, Miao K H, Li M Q. Analysis on Controllability of Descriptor Systems underStructuralDecomposition.Proceedingsofthe6thIEEEConferenceonControlandAutomation,Gua ngzhou,China,2007,3169-3172.
    [67] Hirotsuka, K. Tsuboi, F. Ishibashi. Effect of Slot Combination on Electromagnetic Vibrationof Squirrel-cage Induction Motor under Loaded Condition [C]. IEEE Transactions on PowerElectr onics,1997,(2):843-848.
    [68]高纯娬,高纯斌.混合动力汽车镍氢电池放电模型的研究[J].吉林广播电视大学学报,2012,03:29-33.
    [69]赵辉,李铁才等.电池供电的永磁电动机系统的再生制动[J].电机与控制学报,1999,3(4):207-211.
    [70]张卫青.混合动力汽车的发展现状及其关键技术[J].重庆工学院学报,2006,20(5):19-22.
    [71]郭香云,张瑞成,陈至坤,童朝南.具有不确定性的轧机主传动系统机电振动H∞控制研究[J].电气传动,2008,38(4)30-34.
    [72] Gao Y M, Ehsani M, Electronic braking system of EV and HEV-integration of regenerativebraking, automatic braking force control and ABS [J]. SAE paper,2001-01-2478.
    [73] Tae-Suk Kwon, Dong-Hoon Lee, Seung-Ki Sul, Reduction of engine torque ripple atstarting with belt driven integrated starter generator [C]. IEEE2005:1035-1040.
    [74]孙华东,周孝信,李若梅.计及感应电动机负荷的静态电压稳定性分析[J].中国电机工程学报,2005,25(24):1-7.
    [75] Cai W. Pillay P. Omekanda A. Analytical formulae for calculating SRM modal frequencies forreduced vibration and acoustic noise design [C]. IEEE IEMDC, Boston. MA,2001,203-207.
    [76]陈棣湘,潘孟春,罗飞路.三维磁场精密测量系统的研制[J].测试技术学报,2005,19(3):279-282.
    [77] Chen B M. H∞control and Its Applications//Lecture Notes in control and InformationSciences,235.London:Springer,1998.
    [78] Willems J C. Almost invariant subspaces: An approach to high gain feedbackdesign-part I: Almost controlled invariant subspaces [C]. IEEE Transactions onAutomatic Control,1981,26:235-252.
    [79] Willems J C. Almost invariant subspaces: An approach to high gain feedback design-partII: Almost controlled invariant subspaces [C]. IEEE Transactions on Automatic Control,1982,27:1071-1085.
    [80] Willems J C. Almost disturbance decoupling with internal stability [C]. IEEE Transactionson Automatic Control,1989,34:277-286.
    [81] Seok-Myeong Jang, Han-Wook Cho, Sung-Ho Lee. The Influence of Magnetization Pattern onthe Rotor Losses of Permanent Magnet High-Speed Machines[J]. IEEE Transactions onMagnetics,2004,40(4):2062-2064.
    [82]杨剑雄.奇异线性系统结构分解、控制和应用[D].厦门:厦门大学,2009.
    [83]孙凯.自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现[D].天津:天津大学电气与自动化工程学院,2007.
    [84]梁艳,李永东.无传感器永磁同步电机矢量控制系统概述[J].电气传动,2003,33(4):4-9.
    [85]许俊逢,冯江华,许建平.电动汽车用永磁同步电机直接转矩弱磁控制[J].电气传动,2005,35(10):11-14.
    [86]温香彩.广义非线性系统的变结构控制理论[J].控制理论与应用,1999,16(1):87-90.
    [87]孙艳娜,郭庆鼎.永磁直线同步伺服电动机H∞鲁棒自适应控制[J].电工技术报,2000,15(4):1-4.
    [88]金能强,何洪涛.稀土永磁电机的应用和发展状况[J].电工电能新技术,1995,(3):17-21
    [89] Lin C C,Peng H,Grizzle J W. Power management strategy for a parallel hybrid electrictruck [J]. IEEE Transactions on Control Systems Technology,2003,11(6):839-849.
    [90] Changliang Xia, Chen Guo, Tingna Shi. A new algorithm for dynamic decoupling control ofHPMSM using fuzzy controllers [C]. IEEE International Conference on Industrial Electronicsand Application, Singapore,2008,1031-1035.
    [91]王晓远,丁亚明,刘艳等.无铁心H ALBACH阵列对盘式永磁同步电机控制性能的影响[J].微电机,2005,38(3):10-12.
    [92]刘海燕,王毅,刘杰.电动车用感应电机弱磁控制研究[J].电机与控制学报,2005, l9(5):452-460.
    [93]孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电动机速度估计仿真研究[J].系统仿真学报,2006,13(12):13-18.
    [94]范承德,李西秦,屈碧波,陈凌珊.基于H∞理论的LPG发动机怠速控制研究[J].内燃机工程,2007,28(3)58-62.
    [95]杨遇春.国外燃料电池电动汽车开发现状[J].稀土信息,1999(6):12-13.
    [96] Baumann B, Rizzoni G, Washington G. Intelligent control of hybrid vehicles using neural networksand fuzzy logic [J]. SAE paper,1998,981061:125-133.
    [97] Yilmaz Sozer, David A.Torrey, Closed loop control of excitation parameters for high speedswitch ed-reluct ance generators [C]. IEEE transactions on power electronics, vol.19, No.2,March2004:355-362.
    [98]石景海,贺仁睦.基于量测的负荷建模-分类算法[J].中国电机工程学报,2004,24(2):78-82.
    [99]吴建华,陈永校.开关磁阻电动机的噪声及其抑制方法[J].中小型电机,1997,24(3):20-23.
    [100] H.A.Leupold, G.F.Mclane. Fabrication of multi polar magnetic field sources [J].Journal of AppliedPhysics,1994,76(10):6253-6255.
    [101] A.K.Adnanes,T.M.Undeland.Optimum Torque Performaneein PMSM drives aboverated speed,[C].1991IEEE Industrial Applications Meetings,vol.1,167-175.
    [102]袁方伟,陈思忠.电动汽车电池管理系统的研究[J].汽车研究与开发,2003(3):41-44.
    [103] Blaker. A New Quick-Reponse and High-Efficiency Control Strategy of an InductionMotor [J]. IEEE Transactions on Industry Application,22(5):820-827.
    [104] H. Murakami, Y. Honda, T. Higaki. Design of an Interior Permanent Magnet Motor for ElectricVehicles [C].13th International Electric Vehicle Symposium,1996,(1):l35-141.
    [105]沈滢,郝荣泰.感应电机矢量控制解耦算法的研究[J].北方交通大报,2003,27(2):54-57.
    [106] David Stein,Gregory S Chirikjian. Experiments in the Commutation and Motor Planning of aSpherical Stepper Motor [C]. ASME International Conference on Design Engineering TechnicalConferences and Computers Information in Engineering Conference,2000,9:1-7.
    [107] Koot M, Kessels J T B A, Jager B D, et al. Energy management strategies for vehicular electricpower systems [J]. IEEE Transactions on Vehicular Technology,2005,54(3):771-781.
    [108] Zhou K, Doyle J, Glower K. Robust and Optimal Control [M]. New York, Prentice Hall,1996.
    [109] Scherer C.H∞-optimization without assumptions on finite or infinite zeros [J].SIAMJournal on Control and Optimization,1992,30,143-166.
    [110]王芳,陈实等. MH/Ni电池充放电循环过程中电化学性能研究[J].现代化工,2006,26:139-142.
    [111]张燕燕,庞辉等. PAA碱性聚合物电解质电化学稳定性及其在镍氢电池中的应用[J].南开大学学报(自然科学版)2008,41(5)58-61.
    [112] Yang Minjie,Nan Junmin.Preparation and Electrochemical Performances of Nickel MetalHydride Batteries with High Specific Volume Capacity [J].Chinese Journal of ChemicalEngineering,2008,16(6):944-948.
    [113]周红丽,何丽萍等.电动车用电池动态性能分析及剩余容量预测[J].计算机仿真2008,25(1):275-277.
    [114]黄文华,韩晓东等.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程2007,29(3):198-202.
    [115]何丽萍等.基于DSP的电动汽车电池管理系统的设计[J].湖南大学学报(自然科学版)2009,36(5):33-36.
    [116]程博,韩琳等.基于混沌免疫进化网络的电池荷电状态预测[J].系统仿真学报2008,20:(11),2889-2892.
    [117]娄豫皖,杨传铮等.镍氢电池的循环性能与活性物质微结构的研究[J].化学学报2008,66(10):1173-1180
    [118]邓刚,陈云贵等.LaFeO3电极材料的制备和电化学性能[J].化学学报2009,67(17):2001-2004.
    [119]王志福,胡志敏,史健军.高功率镍蓄电池在混合动力车辆上的应用特性[J].哈尔滨工业大学学报,2009,41(9):109-113.
    [120]盛大双,姜久春,李景新.基于实时操作系统的电池管理系统研究[J].电测与仪表2009,46(521):68-71.
    [121]杨阳,秦大同等.基于效率优化的混合动力再生制动控制策略[J].中国机械工程2009,20(11):1376-1380.
    [122]王琪,谭宝成,高田.模糊控制的镍氢镍镉电池充电系统研究[J].西安工业大学学报2007,27(3):268-171.
    [123]王艳芝,赵敏寿,李书存.镍氢电池复合出储氢合金负极材料的研究进展[J].稀有金属材料与工程2008,37(2):195-199.
    [124]刘倩,熊丽荣.基于CAN总线的混合动力电动汽车的镍氢电池管理系统[J].农业装备与汽车工程2008,(5):13-14.
    [125]秦明俊,朱鹏等.镍氢电池温度场及其结构影响的数值分析[J].机械工程学报2009,45(1):277-280.
    [126]常国峰,陈磊涛等.镍氢电池热管理系统结构优化设计[J].同济大学学报(自然科学版)2009,37(11):1518-1520.
    [127]甘达淅.电动汽车用电池建模及整车动力性能仿真[J].大众科技2012,14(151):129-131.
    [128]宋永华,阳岳希,胡泽春.电动汽车电池的现状及发展趋势[J].电网技术2011,35(4):1-7
    [129]于海芳,逯仁贵等.基于安时法的镍氢电池SOC估计误差校正[J].电工技术学报2012,27(6):12-18.
    [130]胡志坤,王文祥等.基于4维Map图的镍氢电池SOC估计方法[J].电机与控制学报2012,16(2):83-89.
    [131]毛王君,娄豫皖等.内压用于镍氢电池充电控制及SOC估算[J].电池2011,41(5):254-257.
    [132]汤哲,刘万臣等.基于CMAC神经网络的电池荷电状态估计[J].计算机工程2011,37(14):200-204.
    [133]张剑波,卢兰光等.车用动力电池系统的关键技术与学科前沿[J].汽车安全与节能学报2012,l3(2):201287-104.
    [134]司康.电动汽车核心技术之动力电池及管理系统介绍(一)动力电池的主要种类及性能特点[J].技术纵横2012,9(277):35-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700