用户名: 密码: 验证码:
短时高过载无槽圆筒型永磁直线电机电磁及温升特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无槽圆筒型永磁直线电机(Tubular Permanent Magnet Linear Motor,TPMLM)具有绕组利用率高,定位力小,电枢反应小等优点,在直线运动场合中具有巨大的应用前景。对于已有的无槽TPMLM,较低的磁负荷限制了电机推力密度的提高。此外,提高电机电负荷利于提高推力密度,但是此时电机发热温升迅速,影响电机的可靠性,因此必须准确预估电机温升。本文以负载大范围变化的伺服系统为应用背景,开展此类电机的电磁及温升特性研究,以提高TPMLM的推力性能,保证其可靠性,进而拓展其应用。
     本文首先进行电机磁场计算分析,在此基础上开展无槽TPMLM初级(动子)绕组的特性研究。针对单个虚槽内不同位置处绕组产生的反电势具有相角差,且与相间绝缘相关的特殊性,提出了虚槽内轴向绕组分布因数,并给出其计算公式,研究得到虚槽内绕组轴向分布特性。针对绕组所在位置属于物理气隙,绕组厚度与电磁负荷紧密关联特性,开展绕组厚度优化研究,揭示绕组厚度对电机推力及电机常数的影响规律。
     针对次级(定子)上存在漏磁大、铁心利用率低的缺点,提出类梯型、凸型、类V型和类U型四种新型磁极,通过增聚磁原理,提高电机的磁负荷。研究指出,类梯形和凸型磁极通过增加定子铁心外径处宽度,提高铁心利用率,提高了气隙磁场强度。类V型磁极使单块永磁体厚度减半,克服了厚的永磁体易在非导磁轴上形成漏磁路的缺点,具有聚磁效果。类U型磁极兼具聚磁和增磁效果,使气隙磁密基波幅值大幅度提高,且高次谐波分量没有增加,电机推力提高。对各磁极参数的研究结果表明当次级外径/内径比越大时,采用类梯形和凸型磁极的优势越明显,而当次级外径/内径比越小时,采用类V型和类U型磁极更利于改善磁场,提高电机的推力。研制了无槽TPMLM样机,并进行空载反电势及电磁力测试研究。
     针对电机温升计算中绕组建模困难问题,建立改进的圆环形分层等效绕组模型,并开展不同电密下环形线圈的温升计算与测试研究,验证绕组模型的有效性,并揭示高电密时线圈内温度梯度分布及温升规律,从而为电机电负荷的选取提供参考。针对无槽TPMLM工作时各表面空气流动及散热复杂的特点,建立基于动网格的电机外部流体场计算模型,计算得到次级表面及气隙内空气流动规律,在此基础上给出各表面散热系数的计算方法。
     分析指出无槽TPMLM热交换的特殊性:定子外表面部分区域在自然对流和强制对流换热两种状态下反复变换。针对这种特殊性,综合热路和温度场方法的无槽TPMLM温升计算模型,并进行不同工况下无槽TPMLM的温升计算研究:当动子行程长时,建立动子温度场、定子温度场及变化气隙的热路模型,并构建气隙热路和动子、定子温度场之间的热边界关联性;当动子行程短时,建立动子和定子耦合区域温度场计算模型,以及定子非耦合区域热路模型,并根据传热相等原理,将定子耦合区域向非耦合区域的传热等效为耦合区域温度场计算的热边界条件。热路和温度场综合计算的方法,既利于提高温升计算精度,又利于减小计算模型。在此基础上计算揭示短时高过载时无槽TPMLM的温升规律。通过开展电机动态和静态温升实验研究,对综合热路和温度场计算的方法及其结果进行了验证。
     深入分析短时高过载电机的发热、吸热及散热规律,指出提高电机本身吸收热量的能力,是降低短时高过载无槽TPMLM绕组温升的一个有效途径。在此基础上开展绝缘结构导热优化研究,计算表明,对于短时高过载无槽TPMLM,导热优化增强了绕组向其它部位的导热,增大了电机本身吸热量,减小了绕组与其它部位的温差,从而有效降低了绕组温升。比较研究了不同工况下导热优化、散热优化、和采用新型磁极以减小损耗的方法对于降低无槽TPMLM温升的效果,研究结果对于合理进行热优化设计以降低电机温升具有指导意义。
     通过上述研究,获得提高此类电机磁负荷以提高电机推力的方法。同时,通过温升计算方法及热优化措施研究,以准确预估及抑制高电负荷时绕组温升,从而提高电机的可靠性。
Slotless tubular permanent magnet linear motor (TPMLM) takes the advantagesof non-transverse end, high winding usage, low cogging force, and so on. Itpossesses broad prospects in linear motion application. For the existing slot-lessTPMLM, the low magnetic load restricts the improvement of the thrustcharacteristic. Increasing the electric load is benefical to imprve thrust index. But,the temperature rises quickly and threatens the reliability, so estimate thetemperature rise is necessary. This paper focuses on the electromagnetic and thermalcharacteristics of the slotless TPMLM, which is applied in wide load servo system.The purpose is to improve the thrust characteristic, estimate the temperature riseaccurately to ensure reliability, and then inpromotes its application.
     Firstly, this paper calculates and analyzes the magnetic field of the slotlessTPMLM. On that basis, the particularities of the winding of the slotless TPMLM areresearched. According to the particularity that there is phase angle difference amongthe back EMFs of the windings in the different position in one virual slot, which isrelated to the insulation between phases, the virtual slot axial winding distributionfactor is proposed. Furthermore, the calculation formula is deduced to calculate theaxial distributional characteristic of the winding in virtual slot. According to theparticularity that the position of the winding belons to physical air gap, and thewinding thickness is closely related to the electrical and magnetic loads, the windingthickness is optimized and researched. And the laws that the winding thicknessaffects the thrust and the motor constant are gained.
     In terms of the drawbacks of big leakage flux and low usage of the stator iron,the similar trapezoid, convex, the similar V-shaped and the similar U-shaped polesare proposed based on the theory of flux concentrating and strengthening, and themagnetic fields of the motors are improved. The results show that the similartrapezoid and convex poles can enhance the magnetic field by increasing the widthof the stator iron near the outer diameter. The thickness of the permanent magnet forthe similar V-shaped pole is halved, which reduces the leakage flux circuit in thenon-magnetic axis for one thick permanent magnet. There is magnetic fluxconcentrating effect existing on the similar V-shaped pole. The similar U-shapedpole possesses the effect of both the magnetic flux concentrating and strengthening.The air gap magnetic flux is enhanced significantly without increasing the harmoniccomponents, so the thrust is promoted to a large extent. The research on the poleparameters reflects that the similar trapezoid and convex poles are more suitable forthe motor whose ratio of the stator outer/inner diameter is big, and the similar V-shaped and the similar U-shaped poles is beneficial to improve the magnetic loadfor the motor with the low ratio of the stator outer/inner diameter. The prototype isdesigned and manufactured, and the no-load back EMF and static thrust experimentare done.
     According to the difficulty of winding modeling in motor temperaturecalculation, the improved layered winding model for slotless TPMLM is established.Besides, the temperature rises of the circular winding sample with different highcurrent densities are calculated and tested, which can verify the rationality of thewinding model, revealing the law of the temperature distribution and rise of thehigh current density winding. The research provides reference for the selection ofthe winding current density. Aiming at the complexity of the air flow on the motorsurface and the heat transfer between the air and the motor, the dynamic gridmethod is adopted to establish the open fluid field of the tubular linear motor. Thelaws of air flow and heat convection on the mover outer surface and in the air gapare gained.
     The particularity of the heat exchange in slotless TPMLM is analyzed. And itis pointed out that the condition of the partial stator outside surface alternatesbetween natural convection and forced convection repeatedly. The combination ofthe thermal circuit and temperature field method is provided, which is applied to thetemperature rise calculation when the motor works in different conditions. Whenthe motor works in long distance, the mover temperature field and statortemperature field, and the thermal circuit model of the air gap are establishedseparately. Besides, the correlation between the temperature fields and air gapthermal circuit is built. When the motor works in short stroke, the temperature fieldof the coupled region of mover and stator is selected as the calculation region, andthe heat transfer from the coupling region to the uncoupling stator is equivalent tothe heat convection boundary. The equivalent heat coefficient can be calculatedaccording to the thermal circuit of the uncoupling stator. Through the method ofcombination of thermal circuit and temperature field, the calculation accuracy isimproved, and the model is simplified. The temperature rise of the motor inshort-term and high over-load condition is calculated, and the law of thetemperature gradient distribution and its variation is obtained. The temperature riseexperiments by both the dynamic and static methods are conducted, which verifiesthe studies above.
     The law and characteristic of the heat generation, heat absorption and heatdissipation when the motor works in high over-load condition are analyzed andsummarized. The method of increasing the heat absorption capability is proposed,aiming to minimize the high winding temperature rise for the short-term highover-load motor. Based on it, the insulation structure is optimized. The results reflect that although the absorbed heat increases, the temperature differencebetween the winding and other parts is reduced, and the winding temperature isreduced effectively. When the slotless TPMLM works in different conditions,including long time and short term states, the methods of heat conductionoptimization, enhancing heat dissipation, and reducing loss by the new polestructure are applied to reduce the temperature rise. Their effects are compared andanalyzed, guiding the choosing of reasonable thermal optimization methods toreduce the temperature rise.
     Through the above research, this paper obtained the method of improve thrustdensity by enhance magnetic and current load. Meantime, the objective of thetempearture calculation and thermal optimization research is to improve thereliability by estimating the high electric load winding temperature rise accuratelyand suppressing it.
引文
[1]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000:65-300.
    [2]龙遐令.直线感应电动机的理论和电磁设计方法[M].北京:科学出版社,2006:100-150.
    [3] Miroslav Markovic, Yves Perriard. Optimization of a Segmented HalbachPermanent-Magnet Motor Using an Analytical Model[J]. IEEETransactions on Magnetics,2009,45(7):2955-2960.
    [4]邹继斌,王骞,张洪亮.横向磁场永磁直线电动机电磁力的分析与计算[J].电工技术学报,2007,22(8):127-130.
    [5]王骞.圆筒型横向磁场永磁直线电机电磁场与电磁力的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:28-29.
    [6]郑萍,薛斌峰,陈刚,吴芊.横向磁通永磁直线电机[P].授权公开号CN100581031C.
    [7]寇宝泉,谢大纲,张鲁.横向磁通圆筒型永磁直线同步电机[P].授权公开号CN101552534B.
    [8] Jiabin Wang, Weiya Wang, Kais Atallah, and David Howe. DesignConsiderations for Tubular Flux-Switching Permanent MagnetMachines[J], IEEE Transactions on Energy Conversion,2008,44(11):4026-4032.
    [9]张成明.圆筒型永磁同步直线电机的基础研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:22-38.
    [10] B. Tomczuk, G. Schroder, and A. Waindok. Finite-Element Analysis of theMagnetic Field and Electromechanical Parameters Calculation for aSlotted Permanent-Magnet Tubular Linear Motor[J]. IEEE Transactions onMagnetics,2007,43(7):3239.
    [11] J. Wang, W. Wang, K. Atallah, and D. Howe. DemagnetizationAssessment for Three-Phase Tubular Brushless Permanent-MagnetMachines[J]. IEEE Transactions on Magnetics,2008,44(9):2195-2203.
    [12] Jiabin Wang, David Howe. Tubular Modular Permanent-Magnet MachinesEquipped with Quasi-Halbach Magnetized Magnets-Part I: Magnetic FieldDistribution, EMF, and Thrust Force[J]. IEEE Transactions on Magnetics,2005,41(9):2470-2478.
    [13] Bianchi N, Bolognani S, Tonel F. Design Criteria of a Tubular Linear IPMMotor[C].2001IEEE International Electric Machines and DrivesConference, Cambridge, UK,2001:1-7.
    [14] S. Vaez-Zadeh, A. Hassanpour. Enhanced Modeling of LinearPermanent-Magnet Synchronous Motors[J]. IEEE Transactions onMagnetics,2007,43(1):33-38.
    [15] Jiabin Wang, David Howe, and Geraint W. Jewell. Fringing in TubularPermanent-Magnet Machines: Part I. Magnetic Field Distribution, FluxLinkage, and Thrust Force[J]. IEEE Transactions on Magnetics,2003,39(6):3507-3516.
    [16] Jiabin Wang, David Howe, and Geraint W. Jewell. Fringing in TubularPermanent-Magnet Machines: Part II. Cogging Force and ItsMinimization[J]. IEEE Transactions on Magnetics,2003,39(6):3517-3522.
    [17]李景天,宋一得,郑勤红,等.用等效磁荷法计算永磁体磁场[J].云南师范大学学报(自然科学版),1999,19(2):33-36.
    [18] G Xiong, S. A. Nasar. Analysis of Fields and Forces in a PermanentMagnet Linear Synchronous Machine Based on the Concept of MagneticCharge[J]. IEEE Transactions on Magnetics,1989,25(3):2713-2719.
    [19] Sang-Ho Lee, Su-Beom Park, Soon-Okwon. Characteristic Analysis of theSlotless Axial-Flux Type Brushless DC Motors Using Image Method[J].IEEE Transactions on Magnetics,2006,42(4):1327-1330.
    [20]程远雄.永磁同步直线电机推力波动的优化设计研究[D].武汉:华中科技大学博士学位论文,2011:11.
    [21] J. Chang, D. H. Kang, I. Viorel. Transverse Flux Reluctance LinearMotor's Analytical Model Based on Finite-Element Method AnalysisResults[J]. IEEE Transactions on Magnetics,2007,43(4):1201-1204.
    [22]陆国良,夏永明,刘晓,杨少东.基于有限元分析的3种圆筒型永磁同步直线电机的运行仿真[J].轻工机械,2006,24(4):56-59.
    [23] Jiabin Wang, David Howe, and Geraint W. Jewell. Analysis and DesignOptimization of an Improved Axially Magnetized TubularPermanent-Magnet Machine[J]. IEEE Transactions on Energy Convection,2004,19(2):289-295.
    [24] Yuriy Zhilichev. Calculation of Magnetic Field of TubularPermanent-Magnet Assemblies on Cylindrical Bipolar Coordinates[J].IEEE Transactions on Magnetics,2007,43(7):3189-3195.
    [25] HaiWei Lu, Jianguo Zhu, Youguang Guo. A Tubular Linear Motor forMicro Robotic Applications[J]. Proceeding of the2005IEEE InternationalConference on Mechatronics, Taibei, Taiwan,2005:.596-600.
    [26] Ralf Wegener. Development and Test of a High Force Tubular LinearDrive Concept with Discrete Wound Coils for Industrial Applications[C].Industry Applications Society Annual Meeting, IAS '08, Edmonton,Canada,2008:1-5.
    [27]王淑红,熊光熠.新型圆筒型永磁动圈式直线电动机气隙磁场解析分析[J].电工技术学报,2007,22(5):44-45.
    [28] Xiaopeng Li, Ku Tian, Li Chunhua, et al. Linear Electromagnetic OilPumping Unit Based on the Principle of CoilGun[J]. IEEE Transactions onMagnetics,2009,45(1):347-350.
    [29]赵镜红,张晓锋,张俊洪,等.圆筒型永磁直线同步电机推力计算[J].海军工程大学学报,2010,22(3):60-63.
    [30]胡建华,童春辉,杨铮.直流电机无槽电枢绕组设计方法分析[J].华东交通大学学报,1994,11(2):21-26.
    [31] Jin Hur, Se-Hyun Rhyu, In-soung Jung, Ha-Gyeong, and Byung-II Kwon.Three-Dimensional Characteristic Analysis of Micro BLDC MotorAccording to Slotless Winding Shape[J]. IEEE Transactions on magnetics,2003,39(5):2989-2991.
    [32] Jung-Moo Seo, Young-Kyun Kim, et al. A Design of Slotless BLDCMotor for Robot Using Equivalent Magnetic Circuit Model[C]. The8thinternational conference on ubiquitous robots and ambient intelligence,Songdo Conventi, Korea,2011:719-723.
    [33] Mi-Yong Kim, Yong-Chul Kim, and Gyu-Tak Kim. Design ofSlotless-Type PMLSM for High Power Density Using Divided PM[J].IEEE Transactions on Magnetics,2004,40(2):746-749.
    [34] Sung-II Kim, Jung-Pyo Hong, Young-Kyoun Kim, Hyuk Nam, and Han-IKCho. Optimal Design of Slotless-Type PMLSM Considering MultipleResponses by Residering Multiple Responses by Respoonse SurfaceMethodology[J]. IEEE Transactions on Magnetics,2006,42(4):1219-1222.
    [35] Ronghai Qu, Thomas A. Lipo. Analysis and Modeling of Air gap andZigzag Leakage Fluxes in a Surface-Mounted Permanent-MagnetMachine[J]. IEEE Transactions on Industry Applications,2004,40(1):121-127.
    [36] Wen-Bin Tsai, Ting-Yu Chang. Analysis of Flux Leakage in a BrushlessPermanent-Magnet Motor with Embedded Magnets[J]. IEEE Transactionson Magnetics,1999,35(1):543-547.
    [37] Chang-Chou Hwang, Y. H. Cho. Effects of Leakage Flux on MagneticFields of Interior Permanent Magnet Synchronous Motors[J]. IEEETransactions on Magnetics,2001,37(4):3021-3024.
    [38]张卓然,周竞捷,严仰光,周波.并列结构混合励磁同步电机的轴向漏磁及其影响[J].中国电机工程学报,2009,29(36):49-54.
    [39]孙昕,韩雪岩,李岩.多极少槽永磁同步电动机齿顶漏磁的计算与分析[J].电气技术,2008,(4):23-25.
    [40] J. Wang, W. Wang. K. Atallah, and D. Howe. DemagnetizationAssessment for Three-Phase Tubular Brushless Permanent-MagnetMachines[J]. IEEE Transactions on Magnetics,2008,44(9):2195-2203.
    [41] Kou Baoquan, Li Liyi, Zhang Chengming. Analysis and Optimization ofThrust Characteristics of Tubular Linear Electromagnetic Launcher forSpace-Use[J]. IEEE Transactions on Magnetic,2009,45(1):250-255.
    [42] Jiabin Wang, David Howe. Design Optimization of Radially Magnetized,Iron-Cored, Tubular Permanent-Magnet Machines and Drive Systems[J].IEEE Transactions on Magnetics,2004,40(5):3262-3277.
    [43] Jiabin Wang, Weiya Wang, Geraint W. Jewell, and David Howe. Design ofa Miniature Permanent-Magnet Generator and Energy Storage System[J].IEEE Transactions on Industrial Electronics,2005,52(5):1383-1390.
    [44]李伟力,丁树叶等.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):3-4.
    [45]殷巧玉,李伟力,于海涛,孙宏丽.大型同步发电机断股故障情况下电磁场和温度场的计算与分析[J].电工技术学报,2011,26(2):60-65.
    [46] Y. K. Chin, D. A. Staton. Transient Thermal Analysis Using BothLumped-circuit Approach and Finite Element Method of a PermanentMagnet Traction Motor[C].7th AFRICON Conference, Africa,2004:1027-1035.
    [47] Fabrizio Marignetti, Vincenzo Delli Colli, and Yuri Coia. Design of AxialFlux PM Synchronous Machines Through3-D Coupled ElectromagneticThermal and Fluid-Dynamical Finite-Element Analysis[J]. IEEETransactions on Industrial Electronics,2008,55(10):3591-3600.
    [48] A. L. Shenkman, M. Chertkov. Experimental Method for Synthesis ofGeneralized Thermal Circuit of Polyphase Induction Motors[J]. IEEETransactions on Energy Convection,2000,15(3):264-268.
    [49] Kyu-Soeb Kim, Byeong-Hwa Lee, Jung-Pyo Hong. Improvement ofThermal Equivalent Circuit Network and Prediction on Heat Characteristicof Motor by Calculation of Convection Heat Transfer Corfficient[J].6thInternational Conference on Electromagnetic Field Problems andApplications, DaLian, China,2012:1-4.
    [50] Bousbaine A, McCormick M, Low W F. In-situ Determination of ThermalCoefficients for Electrical Machines[J]. IEEE Transactions of EnergyConversion.1995,10(3):385-381.
    [51] J. G. Amoros, P. Andrada, B. Blanque. An Analytical Approach to theThermal Design of a Double-Sided Linear Switched Reluctance Motor.ICEM2010, Rome, Italy,2010:1-4.
    [52] J. Mukosiej. Effect of Thermal Resistances on Value and TemperatureDistribution of Electric Machines[C]. Proceedings of the15thInternational Conference on Electrical Machines and Systems(ICEMS’2001), ShenYang, China,2001:1187-1190.
    [53]王述成,詹琼华,叶华峰.采用热路图法计算开关磁阻电机温升[J].微电机,2004,37(4):16-19.
    [54] Serap Karagol, Marwan Bikdash. Generation of Equivalent-Circuit ModelsFrom Simulation Data of a Thermal System[J]. IEEE Transactions onPower Electronics,2010,25(4):820-828.
    [55] Georgios D. Demetriades, Hector Zelaya de la Parra, Arik Andersson, andH kan Olsson. A Real-Time Thermal Model of a Permanent-MagnetSynchronous Motor[J]. IEEE Transactions on Power Electronics,2010,25(2):463-474.
    [56] M. R. Hachicha, M. Ghariani and R. Neji. Thermal Model for InductionMachine[C]. The8th International Multi-Conference on Systems, Sousse,Tunisia,2011:1-5.
    [57] Luigi Alberti, Nicola Bianchi. A Coupled Thermal-ElectromagneticAnalysis for a Rapid and Accurate Prediction of IM Performance[J]. IEEETransactions on Industrial Electronics,2008,55(10):3575-3582.
    [58] Pinjia Zhang, Yi Du, Thomas G. Habetler. A Transfer-Function-BasedThermal Model Reduction Study for Induction Machine Thermal OverloadProtective Relays[J]. IEEE Transactions on Industry applications,2010,46(5):1919-1926.
    [59]黄学良,胡敏强,周鹗.电机三维温度场新的有限元计算模型[J].中国电机工程学报,1998,(2):78-82
    [60]刘泉,张建民,孙洁,王先逵.平板式永磁直线电动机的热分析与冷却系统设计[J].北京理工大学学报,2005,25(3):194-196.
    [61] J. A. D, Ponto and C. F. L. Transient Heating and Cooling Analysis in anElectromagnetic Device[J]. IEEE Transactions on Magnetic,1994,(30):3339-3342.
    [62] Bermrdo Alvarenga. Thermal characterization of long electricaldevices-application to a tubular linear induction motor[C]. IEEEInternational Electric Machines and Drives Conference, IEMDC’3,Wisconsin, USA,2003:938-942.
    [63] Shanel M, Pickering S J, Lampard D. Application of Computational FluidDynamic to the Cooling of Salient Electrical Machines. ICEM, Espoo,2000:338-342.
    [64] Aldo Boglietti, Andrea Cavagnino, David Staton, et. Evolution andModern Approaches for Thermal Analysis of Electrical Machines[J]. IEEETransactions on Industrial Electronics,2009,56(3):871-882.
    [65]李伟力,付敏,周封,等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报,2000,20(5):14-17.
    [66]周封,熊斌,李伟力等.大型电机定子三维流体场计算及其对温度场分布的影响[J].中国电机工程学报,2005,25(24):128-132.
    [67]刑军强,王凤翔,张殿海,孔晓光.高速永磁电机转子空气摩擦损耗研究[J].中国电机工程学报,2010,30(27):14-19.
    [68] M. J. Chung, D. G. Gweon. Modeling of the Armature Slotting Effect inthe Magnetic Field Distribution of a Linear Permanent Magnet Motor[J].Electrical Engineering,2002,84(2):101-108.
    [69]杨玉波,王秀和,朱常青.基于分块永磁磁极的永磁电机齿槽转矩削弱方法[J].电工技术学报,2012,27(3):73-77.
    [70] S. M. Sharkh and S. H. Lai. Slotless PM Brushless Motor With HelicalEdge-Wound Laminations[J]. IEEE Transactions on Energy Convection,2009,24(3):594-598.
    [71] T. Ibrahim, J. Wang, D. Howe. Analysis of a Single Phase, Quasi-HalbachMagnetised Tubular Permanent Magnet Motor with Non-ferromagneticSupporting Tube[C].4th IET Conference on Power Electronics, Machinesand Drives, Yoke,2008:762-766.
    [72]孔凡让,赵吉文,刘维来,等.新型圆筒直线电机推力的解析与数值计算方法研究[J].光学精密工程,2004,12(5):525-529.
    [73]刘晓.空心式永磁直线伺服电机及其驱动控制系统研究[D].杭州:浙江大学博士学位论文,2008:81-90.
    [74]邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究[D].杭州:浙江大学博士学位论文,2002:4-6.
    [75]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2006:45.
    [76] Jiabin Wang, David Howe, and Geraint W. Jewell. Analysis and DesignOptimization of an Improved Axially Magnetized TubularPermanent-Magnet Machine[J]. IEEE Transactions on Energy Conversion,2004,19(2):289-295.
    [77] Jiabin Wang, and David Howe. Influence of Soft Magnetic Materials onthe Design and Performance of Tubular Permanent Magnet Machines[J],IEEE Transactions on Magnetics,2005,41(10):4057-4050.
    [78]冯开杰,于建伟,王玉娥.一种圆筒形直线电机定子铁芯[P].授权公告号CN200941584Y.
    [79]马俊.圆筒型直线电机模型建立及其动态温度场研究[D].哈尔滨:哈尔滨理工大学,2005:18.
    [80] David G. Dorrell. Combined Thermal and Electromagnetic Analysis ofPermanent-Magnet and Induction Machines to Aid Calculation[J]. IEEETransactions on Industrial Electronics,2008,55(10):3566-3574.
    [81] C. Kral, A. Haumer, and T. B uml. Thermal Model and Behavior of aTotally-Enclosed-Water-Cooled Squirrel-Cage Induction Machine forTraction Spplications[J]. IEEE Transactions on Industrial Electronics,2008,55(10):3555-3565.
    [82] J. Driesen, G. Deliége, R. Belmans, and K. Hameyer. CoupledThermo-Magnetic Dimulation of a Foil-Winding Transformer Connectedto a Non-linear Load[J]. IEEE Transactions on Magnetics,2000,36(4):1381-1385.
    [83] Y. D. Fan, X. S. Wen, H. M. Wang, J. H. Seo. Research on StatorTemperature Field of Hydro-Generator with Skin Effect[J], IET ElectricPower Application,2011,5(4):371-376.
    [84] F. Marignetti, V. Delli Colli, and Y. Coia. Design of Axial FluxSynchronous Machines Through3-D Coupled Electromagnetic Thermaland Fluid-Dynamical Finite-Element Analysis[J]. IEEE Transactions onIndustrial Electronics,2008,55(10):3591-3601.
    [85] Fan Jinxin, Chengning Zhang, Zhifu Wang, Yugang Dong, et al. ThermalAnalysis of Permanent Magnet Motor for the Electric Vehicle ApplicationConsidering During Duty Cycle[J]. IEEE Transactions on Magnetics,2010,46(6):2493-2496.
    [86] A. Boglietti, A. Cavagnino, D. Staton. Determination of CriticalParameters in Electrical Machine Thermal Models[J]. IEEE Transactionson Industry Applications,2008,44(4):1150-1158.
    [87] Z. Makni, M. Besbes, and C. Marchand. Multiphysics Desgn Methodologyof Permanent-Magnet Synchronous Motors. IEEE Transactions onVehicular Technology,2007,56(4):1524-1530.
    [88] J. F. Trigeol, Y. Bertin, and P. Lagonotte. Coupling Control VolumeModeling in Fluid and Lumped Thermal Model—Application to anInduction Machine[C]. Proc. IECON’06, Paris, France,2006:4829–4834.
    [89] D. Staton, A. Boglietti, and A. Cavagnino. Solving the More DifficultAspects of Electric Motor Thermal Analysis in Small and Medium SizeIndustrial Induction Motors[J]. IEEE Transactions on Energy Conversion,2005,20(3):620-627.
    [90] J. Faiz, B. Ganji, C. E. Carstensen, K. A. Kasper, and R. W. De Doncker.Temperature Rise Analysis of Switched Reluctance Motors Due toElectromagnetic Losses[J]. IEEE Transactions on Magnetics,2009,45(7):2927-2933.
    [91]安娜-马里娅·比安什,伊夫·福泰勒,雅克琳娜·埃黛.传热学[M].王晓东,译.大连:大连理工大学出版社,2008.
    [92]吕玉坤,刘伟,王海红.汽轮发电机定子强迫蒸发冷却循环流动与传热计算[J].发电设备,2010,(1):33-36.
    [93]约翰D.安德森.计算流体力学基础及其应用[M].吴颂平,刘赵淼,译.北京:机械工业出版社,2010:24-64.
    [94]陈琳,刘长红,姚若萍.流场分析轴向通风冷却电机的转子温度[J].大电机技术,2005,(4):12-15.
    [95]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [96]李伟力,杨雪峰,顾德宝,冯勇利.多风路空冷汽轮发电机定子内流体流动与传热耦合计算与分析[J].电工技术学报,2009,24(12):24-28.
    [97]靳慧勇,李伟力,马贤好,等.大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析[J].中国电机工程学报,2006,26(16):168-173.
    [98]张殿海.高速永磁电机流体场分析与温升计算[D].沈阳:沈阳工业大学硕士学位论文,2009:24-42.
    [99]黄涛,阮江军,等.基于多物理场耦合计算分析的多相异步电机设计平台.大电机技术,2012,(2):22-26.
    [100] B. V.卡里卡, R. M.戴斯蒙德.工程传热学[M].北京:人民教育出版社,1981:373-400.
    [101] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine.传热和传质基本原理[M].葛新石,叶宏,译.北京:化学工业出版社(CIP),2009:300-369.
    [102] Fang Deng. An improved Iron Loss Estimation for Permanent MagnetBrushless Machines[J]. IEEE Transactions on Energy Conversion,1999,1494):1391-1394.
    [103] Chunting Mi, Gordon R. Slemon, and Richard Boner. Modeling of IronLosses of Permanent-Magnet Synchronous Motors[J]. IEEE Transactionson Industry Applications,2003,39(3):734-741.
    [104]赵海森.超高效异步电机损耗模型及降耗措施研究[D].北京:华北电力大学博士学位论文,2011:8-23.
    [105]黄允凯,胡虔生,朱建国.永磁无刷直流电机铁耗计算方法[J].电机与控制应用,2007,34(4):6-9.
    [106] Waseem A. Roshen. A Practical. Accurate and Very General Core LossModel for Nonsinusoidal Waveforms[J]. IEEE Transactions on PowerElectronics,2007,22(1):30-40.
    [107] Tsakani Lotten Mthombeni, Pragasen Pillay, and Reinhold M. W. Strnat.New Epstein Fram for Lamination Core Loss Measurements Under HighFrequencies and High Flux Densities[J]. IEEE Transactions on EnergyConvection,2007,22(3):614-620.
    [108] Nakata T, Ishihara Y, Kaido C, et al. Iron Losses of Silicon steel CoreProduced by Distributed Flux[J]. Electrical Engineering in Japan,1970,90(2):10-20.
    [109]程志光,高桥则雄,博扎德.弗甘尼.电气工程电磁热场模拟与应用[M].北京:科学出版社,2009:97-99.
    [110]王晓远,李娟,齐立晓,唐任远.盘式永磁同步电机永磁体内涡流的有限元分析[J].微电机,2007,40(1):4-9.
    [111] C. Jang, J. Y. Kim, Y. J. Kim, and J. O. Kim. Heat Transfer Analysis andSimplified Thermal Resistance Modeling of Linear Motor Driven Stagesfor SMT Applications[J]. IEEE Transactions on Components andPackaging Technologies,2003,26(3):532-539.
    [112]孙建宏,丁文,鱼振民.扁平型直线异步电机温度场的计算与分析[J].电机与控制应用,2006,33(1):20-24.
    [113] Kou Bao Quan, Huang Xu Zhen, Wu Hong-xing, and Li Li-yi. Thrust andThermal Characteristics of Electromagnetic Launcher Based on PermanentMagnet Synchronous Motors[J]. IEEE Transactions on Magnetics,2009,45(1):358-362.
    [114]宋强,王志福,张承宁,孙逢春.基于零秒电阻拟合的电机绕组温升测试方法[J].北京理工大学学报,2007,27(1):13-16.
    [115]李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010:85-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700