用户名: 密码: 验证码:
基于稳定固溶体团簇结构模型的Fe基多元合金
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe基合金是最重要的工程材料,为实现不同使役性能,往往需要在Fe基体中添加各种组元,然而合金化组元添加的种类与最佳含量通常需要经过大量试验探索,新合金的设计与开发历时较长。本工作从稳定固溶体合金的结构出发,采用团簇加连接原子结构模型设计并表征Fe基多元合金,一方面证实了该理论模型的有效性,另一方面获得了一批新合金,具有重要的理论价值和工程意义。
     该结构模型源自多元非晶和准晶的成分分析,它将结构分为团簇部分和连接原子部分,团簇为基体结构中的第一近邻配位多面体,其形成源于溶质与溶剂组元间的强交互作用,合金成分因此可以表达为团簇式形式:[团簇](连接原子)x,x表示连接原子相对于一个团簇的数目。本工作选取了两类合金体系开展研究,一是具有面心立方结构(FCC)的奥氏体合金,二是具有体心立方结构(BCC)的铁素体合金,具体合金体系分别为Fe-Ni-Cu和Fe-Cr-Mo.Al-Cu,对此进行了组织结构及性能表征,并建立了合金成分、微观组织与合金性能之间的联系。
     Fe-Ni因瓦合金是电子工业应用广泛的封接合金,采用Cu合金化可以提高其耐腐蚀性能,但过多Cu的添加会导致第二相析出,从而造成合金的耐腐蚀性能下降。为确定Fe-Ni合金中Cu的最佳含量,采用团簇加连接原子结构模型对Fe-Ni-Cu因瓦合金成分进行了理论探讨及实验研究。商业Fe-Ni因瓦合金如4j42和4j46等中Cu含量都低于4mass%,在高Cl-环境中耐腐蚀性能较差。Fe-Ni-Cu奥氏体区在20-700℃之间Cu含量为2.5-3.5at.%。根据元素间混合焓(△HFe-Ni=-2kJ/mol,△H Ni-Cu=4kJ/mol,△HCu-Fe=13kJ/mol)和稳定固溶体结构模型,提出了Fe-Ni-Cu三元稳定固溶体合金双团簇模型[CuNi12][NiFe12]m(团簇均以原子个数表达,全文同),该模型假设在合金中可以有Fe-Ni. Ni-Cu近邻,但Fe-Cu必须分开,难溶元素Cu是以团簇CuNi12形式溶于Fe的合金基体之中。试验结果表明由团簇设计的合金具有单相FCC结构,在3.5wt.%NaCl溶液中的耐腐蚀性能高于商业Fe-Ni因瓦合金,且与成分接近的因瓦合金具有相当的膨胀性能。
     铁素体不锈钢是应用广泛的耐腐蚀材料,一般需要添加Cr、Mo等元素,但是Mo含量过高引起成本增加,而Al和Cu虽然是高耐蚀性元素,其含量高则容易引发第二相析出。为确定Fe基合金中Cr、Mo、Al、Cu的含量,采用团簇加连接原子结构模型对其Cr、Mo、Al、Cu的添加含量进行了理论探讨及实验研究。首先考察了Fe-Al-Cu三元体系,确定稳定铁素体固溶体的结构模型,在20-600℃相图中,铁素体区边界为Al/Cu=8(at.比例)恒定区,根据元素间混合焓(△HFe-Al=-1kJ/mol,△HAl-Cu=-1kJ/mol,△HCu-Fe=13kJ/mol),基于稳定固溶体合金思想,提出了Fe/Al-Cu三元稳定铁素体固溶体合金的团簇模型[CuAl]Fex。进而,考虑Cr.Mo以近似元素替代部分Fe来实现五元合金,Cr含量符合Tammann n/8规则,而元素Mo位于CuAlg团簇的外围,构成Cu的次近邻和Al的第一近邻,即在BCC结构中构建了一个Cu-Al8-Mo6团簇,由此建立了Fe-Cr-Mo-Al-Cu五元铁素体不锈钢的稳定固溶体合金团簇模型,为[(CuAl8)Mo6](Fe,Cr)x实验结果表明由该团簇成分式设计的合金具有单相BCC结构;一系列性能测试表明由团簇模型设计获得的Cr24Mo7A13Cu合金(在表述合金成分时一般采用mass%,全文同)和Cr27Mo6A13Cu合金在高Cl-环境、高氧化环境中具有良好的耐腐蚀性能,优于常规高Cr、Mo铁素体不锈钢,且在高温1100℃空气环境中抗氧化能力优于Fe-23Cr-5Al合金;其力学性能与铁素体Fe-Cr-Mo不锈钢相当。
     在实现上述多元合金化基础上,结合难溶元素的固溶方法,还分析了大量的基础三元合金体系,建立了相应的稳定固溶体合金团簇结构模型,预测了潜在的新型固溶体合金成分。
Fe-based alloys are the most important engineering materials, where a host of alloying elements need to be added to meet different behaviors in service. However, the kinds and the contents of alloying elements are commonly determined by lots of try-and-error experiments, which results in that it will experience a long time to develop a new alloy. Starting from the local structure of stable solid solution alloys, this work applies the cluster-plus-glue-atom model to design Fe-based multi-element alloys, and amounts of experimental results confirm the validity of this cluster model. More importantly, a series of new Fe-based multi-component solid solution alloys are obtained with guidance of the model. This work possesses significances both in theory research and in engineering applications.
     The cluster-plus-glue-atom model is originated from the structural analysis and composition design of multi-component metallic glasses and quasicrystals. It dissociates an alloy structure into two parts:the cluster part and the glue atom part, where the cluster is the nearest neighbor coordination polyhedron and generally formed in solute elements with negative enthalpies of mixing (△H<0) with the base element, and the glue atoms are those elements having weak△H. The alloy composition is then expressed with [cluster](glue)x, x denoting the number of glue atoms matching one cluster. Two types of alloy systems, Fe-Ni-Cu and Fe-Cr-Mo-Al-Cu, representing FCC and BCC strucuture respectively, are selected, where the relationships among composition, microstuctrue and properties have been established through structure and property characterizations.
     Fe-Ni Invar alloys have been extensively used as sealing alloys in electronic industry. Minor amount of Cu addition can improve their corrosion resistance, but excess Cu could induce phase precipitation and thus deteriorates the corrosion resistance. In order to determine the optimum content of Cu in Fe-Ni alloys, the composition of Fe-Ni-Cu Invar alloys are analized with the cluster model and series of cluster formula alloys are designed and experimented. Generally, the Cu contents in conventional Fe-Ni Invar alloys, such as4j42,4j46et al., are less than4mass%, and these alloys possess poor corrosion resistance in high Cl--containing environment. In schematic Fe-Ni-Cu ternary phase diagrams from20℃to700℃, Cu solubility limit maintains constant, from2.5at.%to3.5at.%. The double cluster model [CuNi12][NiFe12]m (expressed in atomic number in cluster model in this paper) for Cu-containing Fe-Ni ternary stable solid solutions is proposed based on the enthalpies between the element pairs (△HFe-Ni=-2kJ/mol,△HNi-cu=4kJ/mol,△Hcu-Fe=13kJ/mol) and the cluster-structural model for stable solid solution. This model assumes that Fe-Ni and Cu-Ni nearest neighbors are allowed but the Cu-Fe ones should be avoided and Cu is dissloved in the Fe matrix in the form of CuNi12. Experimental results affirm that series of alloys formulated by this model maintain monolithic FCC structure and possess excellent corrosion-resistance, superior to those commercial Fe-Ni Invar alloys in3.5wt.%NaCl. In addition, these new alloys have comparable expansion coefficients with those comercial Invar alloys of approximate compisitions.
     As good corrosion-resistant materials, Cr and Mo elements are generally added into ferrite stainless steels. But excess Mo will raise the cost of materials. And too much Al and Cu could induce the second phase precipitation although they are benifical for corrosion resistantance. In order to determine the optimum contents of these alloying elements, the composition analysis and experiments are carried on with the cluster-plus-glue-atom model. The cluster model is first established for Fe-Al-Cu stable BCC solid solution. In the schematic Fe-Al-Cu ternary phase diagrams, the atomic ratio of Al/Cu is almost maintains constant from20℃to600℃and its value is Al/Cu=8. So the cluster model [CuAl8]Fex is established according to the enthalpies between the elements (△Hfe-Ai=-11kJ/mol,△HAl-cu=-1kJ/mol,△Hcu-Fe=13kJ/mol). And then, Cr and Mo substitute for some Fe due to their similar essence, the Cr content is according to Tammann's n/8law. The addition of Mo is supposed to be the second neighbour of Cu and the fisr neighbour of Al, and the Cu-Al8-Mo6cluster is then established. Finally, the cluster formula [(CuAl8)Mo6](Fe,Cr)x is proposed for Fe-Cr-Mo-Al-Cu quinary solid solution alloys. The experimental results show that the cluster formula alloys maintain single BCC structure. The obtained Cr24Mo7A13Cu and Cr27Mo6A13Cu alloys (mass%) posses better corrosion resistance than commercial ferrite stainless steels with high contents of Cr and Mo in high Cr-contained and strong oxidized environments. Moreover, they have much better oxidation resistance than conventional Fe-23Cr-5Al alloys at1100℃, their mechanical properties are comparalble with that of the Fe-Cr-Mo ferrite stainless steel.
     Based on the alloying principle of insoluble elements in above two typical systems, a lot of similar ternary phase diagrams are analyzed, and the corresponding stable cluster structure models are then established to forecast new solid solution alloys.
引文
[1]熊家烔.材料设计[M].天津大学出版社,2000.
    [2]郭可信.金相学史话(1):金相学的兴起[J].材料科学与工程,2000,18(4):1-9.
    [3]沙国平.化学元素的发现及其命名探源[M].西南交通大学出版社,1996。
    [4]郭可信.金相学史话(3):Fe-C平衡图[J].材料科学与工程,2000,19(2):2-8.
    [5]Professor gustav Tammann (To 140th Birthday anniversary) [J]. Russian Journal of Applied Chemistry,2001,74:1610-1615.
    [6]Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Metal Progress,1949, 56(11):680-680B.
    [7]钢铁材料手册总编辑委员会.钢铁材料手册[M].北京:中国标准出版社,2003.
    [8]崔忠圻,金属学与热处理[M].机械工业出版社,1998.
    [9]赵振业.合金钢设计[M].国防工业出版社,1999.
    [10]Simmons J W. Overview:high-nitrogen alloying of stainless steels [J]. Materials Science and Engineering A,1996,207:159-169.
    [11]Govers H A J. Molecular substitutional disorder in solid solutions of TTF-TCNQ and TSeF-TCNQ [J]. Lecture Notes in Physics,1979,96,303-308.
    [12]Belik A A, Izumi F, Ikeda T, Morozov V A, Dilanian R. A, Torii, Kopnin E M, Lebedev O I, Van Tendeloo G, Lazoryak B I. Positional and orientational disorder in a solid solution of Sr9+xNi1.5-x(PO4)7 (x=0.3) [J]. Chem. Mater.2002,14:4464-4472.
    [13]Leach S. Electronic spectra of organic solid solutions:effects of lattice disorder on spectral line widths and multiplicities [J]. Pure Appl. Chem.,1971,27:457-480.
    [14]Bradley A J. X-ray evidence of intermediate stages during precipitation from solid solution [J]. Proceedings of the Physical Society.1940,52:80-85.
    [15]Gusev A I. Analysis of surface segregation and solid-phase decomposition of substitutional solid solutions [J]. Physical Chemistry,2003,39:235-239.
    [16]Hume-Rothery W, Raynor G V. The structure of metals and alloys [M]. The Institute of Metals, London,1962.
    [17]Silonov V M, Salekh K. Short range order in a solid solution Ni-8 at.% Nb [J]. Soviet Physics Journal,1990,33:1009-1011.
    [18]Valvoda V, Synecek V. Lattice vibrations and local order in substitutional solid solutions. Ⅰ [J]. Czech. J. of Phys. B,1967,17:417-425.
    [19]Valvoda V, Synecek V. Lattice vibrations and local order in substitutional solid solutions. Ⅱ [J]. Czech. J. of Phys. B,1967,17:1064-1072.
    [20]Valvoda V, Synecek V. Lattice vibrations and local order in substitutional solid solutions. Ⅲ [J]. Czech. J. of Phys. B,1970,20:895-898.
    [21]Valvoda V, Synecek V. Lattice vibrations and local order in substitutional solid solutions. IV [J]. Czech. J. of Phys. B,1970,20:899-902.
    [22]Cowley J M. An approximate theory of order in alloys [J]. Physical Review,1950,77:669-675.
    [23]Cowley J M. Short-range order and long-range order parameters [J]. Physical Review,1965,138: 1384-1389.
    [24]Cowley J M. Short-and long-range order parameters in disordered solid solutions [J]. Physical Review,1965,120:1648-1657.
    [25]Cowley J M. X-Ray measurement of order in single crystals of Cu3Au [J]. J. Appl. Phys.1949, 21:24-30.
    [26]Cowley J M. X-Ray measurement of order in the alloy Cu3Au [J]. J. Appl. Phys.1944,15:806-812.
    [27]Nix F C, Shockley W. Order-disorder transformations in alloys [J]. The American Physical Society, 1938 10:1-71.
    [28]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1934,145:699-730.
    [29]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1935,152:231-252.
    [30]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1935,151:540-566.
    [31]Bethe H A. Statistical theories of superlattices [J]. Proceedings of the Royal Society of London, 1935,150:552-575.
    [32]Peierls R. Statistical theory of superlattices with unequal concentrations of the components [J]. Proceedings of the Royal Society of London,1936,154:207-222.
    [33]Chang T S. An extension of Bethe's theory of order-disorder transitions in metallic alloys [J]. Proceedings of the Royal Society of London,1937,161:546-563.
    [34]Kirkwood J G. Order and disorder in binary solid solutions [J]. Journal of Chemistry Physics,1938, 6(1):70-75.
    [35]Hume-Rothery W. Atomic diameters, atomic volumes and solid solubility relations in alloys [J]. Acta Metallurgica.1966,14:17-20.
    [36]Darken L S, Gurry R W. Physical chemistry of metals [M]. New York:McGraw-Hill Co..1953:77.
    [37]Waber J T, Gschneidner K J, Larson A C, Prince M Y. Prediction of solid solubility in metallic alloys [J]. Trans. Met. Soc. AI ME,1963,227:717-23.
    [38]Miedema A R, De Boer F R, De Chatel P F. Empirical description of the role of electronegativity in alloy formation [J]. J. Phys. F:Metal Phys.1973.3:1558-1576.
    [39]Chelikowsky J R. Solid solubilities in divalent alloys [J]. The American Physical Society,1979,19: 686-701.
    [40]Singh V A, Zunger A. Phenomenology of solid solubilities and ion-implantation sites:an orbital-radii approach [J]. Physical Review. B, Condensed Matter.1982,25:907-922.
    [41]Alonso J A, Simozar S. Prediction of solid solubility in alloys [J]. Physical Review B,1980,22: 5583-5589.
    [42]Guo J K, Su H, Li C H, Chen N Y. Factors affecting terminal solid solubility in slloy systems [J]. Journal of Materials Science and Technology,1998,14:277-280.
    [43]张邦维,廖树帜.合金固溶度理论的进展[J].上海金属,1999,21:3-10.
    [44]张邦维.嵌入原子方法理论及其在材料科学中的应用:原子尺度材料设计理论[M].湖南大学出版社,2003.
    [45]Zhang B W, Liao S Z. Theory of solid solubility for rare earth metal based alloys [J]. Z. Phys. B 1996,99.235-243.
    [46]Liao S Z, Zhang B W, Ouyang Y F. Model equations for solid solubilities in binary non-transition metal based alloys [J]. Materials Transactions, JIM,1997,38, (7):589-594.
    [47]廖树帜,张邦维,欧阳义芳.稀土族Pm和Tm两元素固溶度的抛物线法预测[J].湖南大学学报,1994,21:30-36.
    [48]廖树帜,张邦维,欧阳义芳.过渡族金属二元合金固溶度理论的进一步研究[J].稀有金属材料与工程,1994,23:19-28.
    [49]Hume-Rothery W, Mabbott G W, Evans K M C. The freezing points, melting points, and solid solubility limits of the alloys of silver, and Cu with the elements of the B sub-groups [J]. Phil. Trans. R. Soc. Lond. A 1934,233:1-97.
    [50]蒋敏,郝士明,刘兴军,梁志德.二元合金溶解度间隙的集团变分法分析[J].东北工学院学报,1992,13:161-168.
    [51]蒋敏,郝士明Fe-Cu,Co-Cu溶解度间隙的集团变分法分析[J].东北大学学报,1993,14:154-157.
    [52]Gallego L J, Somoza J A, Alonso J A, Lopez J M. Determination of the phase diagram of eutectic binary alloys with partial solid solubility [J]. Physica B,1988,154:82-86.
    [53]Karmazin L. New determination of solubility limit of chromium in Ni-Cr solid solution [J]. Czech. J. of Phys.,1978,28(10):1175-1178.
    [54]Arafa M K 1. A calculation of the solubility limits of the Copper-silver system [J]. Proceedings of the Physical Society B,1949,62:238-247.
    [55]Emmanuel C, Sanchez J M. Sigli C. First-principles study of the solubility of Zr in Al [J]. Physical Review B,2002,65:1-13.
    [56]Asato M, Hoshino T, Masuda-Jindo K. First-principles calculations for solid solubility limit of impurities in metals:many-body interaction effect [J]. Journal of Magnetism and Magnetic Materials,2001,226-230:1051-1052.
    [57]Siegel D J, Hamilton J C. First-principles study of the solubility diffusion and clustering of C in Ni [J]. Physics Review B,2003,68:1-7.
    [58]雍岐龙,赵昆渝,孙新军,曹建春,曹秋野,管小光.与Fe2B及纯硼平衡的在Fe基体中硼的固溶度公式[J].昆明理工大学学报,2005,30:23-26.
    [59]曹建春,雍岐龙,刘清友,曹建春.Mo在α铁基体中的平衡固溶度公式[J].中国钼业,2005,29:46-48.
    [60]龙朝辉,廖树帜,伍晓赞,桂许春,邓志宏,张邦维Mo-Pd二元合金边际固溶度的MAEAM模型研究[J].稀有金属材料与工程,2007,36:1562-1565.
    [61]王广厚.团簇物理学[J].物理,1995,24:13-19.
    [62]王广厚.原子团族的稳定结构和幻数[J].物理学进展,2000,20:52-92.
    [63]Harris I A, Kidwell R S, Northby J A. Structure of charged argon clusters formed in a free set expansion [J]. Physical Review Letters,1984,53:2390-2393.
    [64]刘让苏,刘凤翔,董科军,郑采星,刘海蓉,彭平,李基永.液态金属Al凝固过程中团簇结构的尺寸分布及幻数特性[J].中国科学 E 辑 技术科学2006,36:9-23.
    [65]Echt O, Sattler K, Recknagel E. Magic numbers for sphere packings:experimental verification in free xenon clusters [J]. Physical Review Letters,1981,47:1121-1124.
    [66]Barlak T M, Campana J E, Colton R J, DeCorpo J J, Wyatt J R. Secondary ion mass spectrometry of metal halides.1. stability of alkali iodide clusters [J]. J. Phys. Chem.1981,85:3840-3844.
    [67]Valeri G G, Michael S. Structural and energetic properties of nickel clusters:2≤N≤150 [J]. Physics Review B,2004,70:5415-5430.
    [68]Campana J E, Barlak T M, Colton R J, DeCorpo J J, Wyatt J R, Dunlap B I. Effect of cluster surface energies on secondary-ion-intensity distributions from ionic crystals [J]. Physical Review Letters, 1981,47,1046-1049.
    [69]Cohen M H. Turnbull D. Metastability of amorphous structure [J]. Nature,1964,203:964-965.
    [70) Keishi G, John L F. Statistical geometrical approach to random packing density of equal spheres [J]. Nature,1974,252:202-205.
    [71]Rice O K. On the Statistical mechanics of liquids, and the gas of hard elastic spheres[J]. J. Chem. Phys.,1944,12:1-18.
    [72]Bernal J D. A geometrical approach to the structure of liquids [J]. Nature 1959,183:141-147
    [73]Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature,1960,185:68-70.
    [74]Bernal J D, Mason J. Co-ordination of randomly packed spheres [J]. Nature,1960,188:910-911
    [75]Scott G D. Packing of spheres [J]. Nature,1960,188:908-909.
    [76]Gaskell P H, A new structural model for transition metal-metalloid glasses [J]. Nature,1978,276: 484-485.
    [77]Dubois J M, Gaskell P H, Caer G L. A model for the structure of metallic glasses based on chemical twinning [J]. Proc. R. Soc. Lond. A,1985,402:323-357.
    [78]Inoue A. Stabilization of metallic supercooled liquid and bukl amorphous [J]. Acta mater.2000,48: 279-306.
    [79]Haussler P, Barzola Q J. Spherical periodicity a general feature of matter at its early stages of formation [J]. Journal of Non-Cryst Solids,2002,312:498-501.
    [80]Miracle D B. The efficient cluster packing model-an atomic structural model for metallic glasses [J]. Acta Materialia,2006,54:4317-4336.
    [81]Miracle D B, Greer A L, Kelton K F. Icosahedral and dense random cluster packing in metallic glass structures [J]. Journal of Non-Crystalline Solids 2008,354:4049-4055.
    [82]王清.团簇线判据及Cu-Zr(Hf)基三元块体非晶合金形成[D].大连理工大学,博十学位论文,2006.
    [83]Dong C, Chen W R, Wang Y G, Qiang J B, Wang Q, Lei Y, Dahlborg M C, Dubois J M. Formation of quasicrystals and metallic glasses in relation to icosahedral clusters [J]. Journal of Non-Crystalline Solids,2007,353:3405-3411.
    [84]Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. Journal of Physics D:Applied Physics,2007,40:R273-R291.
    [85]Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron [J]. Materials Science and Engineering A,2007,449-451:281-284.
    [86]Wang Y M. Wang Q, Zhao J J, Dong C. Ni-Ta binary bulk metallic glasses [J]. Scripta Materialia, 2010,63:178-180.
    [87]Yuan L, Qiang J B, Pang C, Wang Q, Wang Y M, Dong C. Ni-Nb-Ta bulk metallic glasses designed by a cluster-plus-glue atom model [J]. Transactions of the Indian Institute of Metals,2011,64: 293-295.
    [88]袁亮,羌建兵,庞厰,王英敏,王清,董闯.源自Ni-Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag)三元块体非晶合金成分设计[J].金属学报2011,47:1003-1008.
    [89]Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S. Dong C. Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model [J]. Journal of Materials Research,2010,25:328-336.
    [90]Zhang J, Wang Q, Wang Y M, Wen L S, Dong C. Effect of heat treatment on the highly corrosion-resistant Cu7oNi27,7Fe2.3 alloy [J]. J. Alloys Compd.,2010,505:505-509.
    [91]Zhang J, Wang Q, Wang Y M, Wen L S, Dong C. Highly corrosion-resistant Cu70(Ni,Fe,Mn,Cr)30 cupronickel designed using a cluster model for stable solid solutions [J]. J. Alloys Compd.,2010, 505:179-182.
    [92]张杰,王清,王英敏,董闯.含Fe和Mn的Ni30Cu70固溶体团簇模型与耐蚀性研究[J].金属学报,2009,45(11):1390-1395.
    [93]Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater. Trans. JIM 2000,41:1372-1378.
    [94]谷俊杰.基于团簇模型Mone1400耐蚀合金成分设计[D].大连理工大学,硕士学位论文,2011.
    [95]马仁涛,郝传璞,王清,任明法,王英敏,董闯.低弹bcc结构Ti-Mo-Nb-Zr(?)固溶体合金的“团簇加连接原子”模型及其成分设计[J].金属学报,2010,46:1034-1040.
    [96]郝传璞.体心立方固溶体合金中的“团簇加连接原子”模型及其在Ti-Cr-V基储氢合金设计上的应用[D].大连理工大学,硕十学位论文,2011.
    [97]Baboian R. Corrosion tests and standards, application and interpretation, second ed. [M]. ASTM International, Baltimore,2005.
    [98]Davis J R. Metals Handbook, Desk ed. [M]. ASM international, Materials Park, OH,1998.
    [99]刘江.低膨胀合金的应用和发展[J].金属功能材料,2007,14:33-37.
    [100]《钢Fe材料手册》总编辑委员会.精密合金类材料[M].中国标准出版社,2003.
    [101]方昆凡.工程材料手册,黑色金属材料卷[M].北京出版社,2001.
    [102]Fiaud C, Kadri A. Influence de I'oxygene et des ions chlorure sur le comportement electrochimique d'un alliage Fe-Ni (36 % Ni) en milieu acide et neutre [J]. Mater. Chem. Phys., 1983,9:529-537.
    [103]Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion [J]. J Colloid Interface Sci.,2007,310: 90-98.
    [104]罗北平,龚竹青,郑雅杰,杨余芳,陈梦君.因瓦合金箔电沉积的制备及其微观结构和耐蚀性[J].中南大学学报(自然科·学版),2006,37:263-268.
    [105]张郁彬,苏长伟,张长科,周俊,何凤姣.镍铁合金的微观结构及其在3.5%氯化钠溶液中的腐蚀行为[J].电镀涂饰,2009,28:1-4.
    [106]李研,冯佃臣Fe-Ni-Cu低膨胀系数合金的研究[J].内蒙古石油化工,2010:19-20.
    [107]姜磊,杨戈涛,李晓辉,邵光杰Cu、Mn添加对低膨胀铸铁中Ni部分竹代的试验研究[J].铸 造,2008,57:505-508.
    [108]Fredrick F N, John N D. Microstructural development and solidification cracking susceptibility of Cu deposits on steel:Part II-use of a Ni interlayer [J]. J Mater Sci,2007,42:510-521.
    [109]Turchanin M A. Thermodynamics of liquid alloys, and stable and metastable phase equilibria in the Copper-Iron system [J]. Powder Metallurgy and Metal Ceramics,2001,40:337-353.
    [110]Edward H, Kottkamp J. ASM handbook volume 03 alloy phase diagrams 10th edition [M], ASM International,1992
    [111]Nash P. Phase diagrams of binary nickel alloys [M]. ASM International, Materials Park,1991.
    [112]Ebel M F. X-ray measurements on spinodal decomposition in Cu-Ni alloys [J]. PhysStat Sol A, 1971,5:91-94.
    [113]Myagkova V G, Bykovaa L E, Bondarenkob G N, Zhigalova V S. Solid-phasesynthesis of solid solutions in Cu/Ni(001) ebaxial nanofilms [J]. JETP Letters,2008,88:515-519.
    [114]Gupta K P. The Cu-Fe-Ni (Copper-Iron-Nickel) system, phase diagrams of ternary nickel alloys [M]. Indian Institute of Metals, Calcutta,1990.
    [115]Hasebe M, Nishizawa T. Analysis and synthesis of phase diagrams of the Fe-Cr-Ni, Fe-Cu-Mn and Fe-Cu-Ni systems [M]. National Bureau of Standards,1977.
    [116]Palmer E W, Wilson F H. Constitution and properties of some iron-bearing cupronickels [J]. Trans. Amer. Inst. Min. Met Eng.,1952,194:55-64.
    [117]Crangle J, Hallam G C. The magnetization of face-centred cubic and body-centered cubic iron-nickel alloys [J]. Proc R Soc London Ser A,1963,272:119-132.
    [118]Korb L J, Olson D L. ASM handbook volume 13, corrosion [M]. ASM international, Materials Park, OH,1992.
    [119]Nascimentoa A M, Ierardia M C F, Kinab A Y, Tavares S S M. Pitting corrosion resistance of cast duplex stainless steels in 3.5% NaCl solution [J]. Materials Characterization,2008,59: 1736-1740.
    [120]陆世英,张廷凯,杨长强,康喜范,王熙.不锈钢[M].原子能出版社,1995.
    [121]李水辉,李国柱,佟岩,刘向辉.氯离子对18-8不锈钢点腐蚀的探讨[J].氯碱工业1998:30-33.
    [122]Tsai W T, Tsai K M, Lin C J, Yan F. Selective corrosion in duplex stainless steel [J]. Electrochemistry,2003,9:170-176.
    [123]王孝天.不锈钢阀门的设计与制造[M].机械工业出版社,1987.
    [124]崔大伟,曲选辉,李科.高氮低镍奥氏体不锈钢的研究进展[J].材料导报,2005,19:64-67.
    [125]李晓波.国内铁索体不锈钢的最新发展[J].铸造设备研究,2006:52-54.
    [126]罗永赞.铁素体不锈钢的进展[J].材料开发与应用.1996,11:41-48.
    [127]罗永赞.近代超级不锈钢的发展[J].特殊钢,2000,21:5-8.
    [128]丁茹,王伯健,王成,白鹤.铁素体不锈钢的开发研究[J].钢铁研究学报.2009,21:1-4.
    [129]段汉桥,魏伯康,林汉同.我国铸造不锈钢应用现状及发展趋势[J].铸造,51:268-272.
    [130]Lena A J, Hawkes M F.475℃ (885°F) embrittlement in stainless steels [J]. Journal of Metal, 1954:607-615.
    [131]Grobner P J. The 885°F (475℃) embrittlement of ferritic stainless steels [J]. Metallurgical Transactions,1973,4:251-260.
    [132]Bergman G, Shoemaker D P. The determination of crystal structure of the sigma phase in the iron-Chromium and iron-Molybdenum systems [J]. Acta cryst.1954,7:857-865.
    [133]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels [J]. Materials Science and Engineering R,2009,65:39-104.
    [134]Yamagishi T, Akita M, Nakajima M, Uematsua Y, Tokajia K. Effect of σ-phase embrittlement on fatigue behaviour in high-Chromium ferritic stainless steel [J]. Procedia Engineering,2010,2: 275-281.
    [135]Heakal F E, Ghoneim A A, Fekry A M. Stability of spontaneous passive films on high strength Mo-containing stainless steels in aqueous solutions [J]. Journal of Applied Electrochemistry,2007, 37:405-413.
    [136]Craig C H, Friend C M, Edwards M R, Cornishc L A, Gokcend N A. Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys [J]. J. Alloys Compd.,2003,361:187-199.
    [137]Notten G. Corrosion prevention and protection materials selection duplex stainless steels [J]. Stainless Steel World,2007,62-75.
    [138]Cleland J H. What does the pitting resistance equivalent really tell us [J]? Engineering Failure Analysis,1996,3:65-69.
    [139]Ahn M K, Kwon H S, Lee H M, Quantitative comparison of the influences of tungsten and molybdenum on the passivity of Fe-29Cr ferritic stainless steels [J]. Corrosion Science,1998,40: 307-322.
    [140]杨武,华惠中Fe-Cr-Mo系铁索体不锈钢在氧化物介质中的实验电位-pH 图研研究[J].中国腐蚀与防护学报,1985,5:79-91.
    [141]赵先存,宋为顺,杨志勇,梁剑雄,李文辉.高强度超高强度不锈钢[M].冶金工业出版社,2008.
    [142]赵宇,李军,李波,连法增.钳对耐蚀软磁合金抗蚀性及磁性能的影响[J].钢铁研究学报,2006,18:34-38.
    [143]沈六一,沈其昉,杨武.Cu和Al对铁素体不锈钢在氯化物介质中腐蚀行为的影响[J].腐蚀与防护,1997,18:195-198.
    [144]邢建东,高义民,王恩泽,鲍崇高.碳化物抗氧化稳定性及其与基体的协同作用对Cr-Ni合金铸铁高温耐磨性的影响[J].摩擦学学报,2001,21:340-343.
    [145]Biegun T, Danielewski M, Skrzypek Z. The reactive-element effect in the high-temperature oxidation of Fe-23Cr-5Al commercial alloys [J]. Oxidation of Metals,1992,38:207-215.
    [146]Fei W, Kuiry S C, Seal S, Scammon K, Quick N, June M. Quick N, June M. High temperature surface oxidation of metallic fibres for hot gas filtration [J]. Surface Engineering,2002 18:197-201.
    [147]Young D J. High temperature oxidation and corrosion of metals [M]. Linacre House, Jordan Hill, Oxford OX2 8DP, UK:Elsevier Ltd.,2008.
    [148]Airiskallio E, Nurmi E, Heinonen M H, Vayrynen I J, Kokko K, Ropo M, Punkkinen M P J, Pitkanen H, Alatalo M, Kollar J. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys:The Role of Cr as a Chemically Active Element [J]. Corrosion Science,2010,52:3394-3404.
    [149]Wood G C, Stott F H. Oxidation of alloys [J]. Materials Science and Technology,1987,3: 519-530.
    [150]Buscail H, Messki S E, Riffard F, Perrier S, Cueff R. Issartel C. Role of molybdenum on the AISI 316L oxidation at 900 ℃ [J]. J Mater Sci,200843:6960-6966.
    [151]谭毅.新材料概论[M].冶金工业出版社,2004.
    [152]董闯,傅尧春,王德和,徐为平,宋美丽,下英敏.一个与准晶相关的新Al-Cu相[J].材料研究学报,1995,9:107-110.
    [153]齐民,朱敏,杨大智Fe-Cu超饱和固溶体的机械合金化合成[J].材料研究学报,1993,7:31-34.
    [154]Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams, second printing, Vol.3 [M]. ASM International,1997.
    [155]Lula R A. Toughness of ferritic stainless steels [M]. American Society for Testing and Materials,1980.
    [156]刘贵立Fe-Cr-Al合金高温氧化行为电子理论研究[J].物理学报,2010,59:494-498.
    [157]辛丽,李美栓,钱余海,李铁藩.氧化铝膜的破裂行为[J].中国有色金属学报,2000,10:326-329.
    [158]辛丽,李美栓,周龙江,李铁藩,王福会.钇对Fe-Cr-Al合金氧化膜粘附性的影响[J].中国稀土学报,2000,18:329-333.
    [159]Liu G M, Yu F, Zhang C R, Du N, Li M S. Electrochemical behaviour of Fe-20Cr-5AI and Fe-20Cr-5Al-0.3Y alloys in aqueous solutions [J]. Corrosion Engineering, Science and Technology, 2008,43:231-235.
    [160]马金达,林炜,胡青松,蒋伟挺.400系不锈钢耐蚀性行为的研究[J].金属世界,2010:26-30.
    [161]李家嚷,宋为顺,罗永赞.高强耐海水腐蚀不锈钢的研究[J].上海金属,1998,20:50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700