用户名: 密码: 验证码:
新型卟啉酞菁化合物的合成、表征及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展及生产生活的需要,对于功能性新材料的开发与应用已经成为当前研究的重要任务和热点问题。人们正致力于开发与创造能与天然材料媲美甚至优于天然材料的新的功能材料。
     自从人们认识到卟啉衍生物在生命历程中的重要性后,对于其结构、功能及性质的研究至今依然是研究的热点;而酞菁化合物良好的催化及光电特性引起了人们浓厚的研究兴趣,其作为新型功能材料不断得到开发和利用。卟啉、酞菁这类大环分子独特的结构及光、电、热、磁等特性己吸引了众多学者从事该领域的研究。所有工作都是围绕对大环进行裁剪、修饰及组装等进行的。制备三明治型卟啉、酞菁化合物也是手段之一。在三明治型化合物中,两个或三个卟啉和/或酞菁(包括萘菁)大环配体被一个或两个稀土离子配位,形成高度共轭的三明治夹心结构,大环被稀土离子拉至一个很近的距离(约3.5A),体系间存在强烈的π—π电子相互作用。未配对电子在化合物中的离域,使化合物显示出独特的物理和化学性质。作为分子半导体、光导、光电材料、光限幅、非线性光学、气体传感、电致变色、分子磁体和液晶等功能材料具有极大的应用潜力。
     本课题组多年来一直致力于稀土卟啉、酞菁三明治化合物的合成。一方面努力探索和开发更加简单有效的合成方法来制备带有不同取代基修饰的卟啉酞菁三明治型配合物;另一方面,在性质研究领域也有很多开拓性工作,如三明治型化合物的光物理及电化学性质、有机场效应晶体管性质以及超分子组装的研究。
     本文的研究工作主要集中在以下几个方面:
     1.冠醚取代不对称双层和单层酞菁的合成、表征及超分子组装的研究
     设计合成超分子体系,在生物科学方面已有重大的发展,在材料科学和电致变色方面的潜在应用价值对化学和材料学家都是一个很大的挑战。近一个世纪以来,酞菁作为新型分子导体、分子磁体、分子电子元器件、光限制、非线性光学、气体传感、电致变色,光电转换和液晶等功能材料被深入研究。另一方面,由于对碱金属,碱土金属离子的特殊选择络合作用,冠醚被大量的合成和研究,也是目前世界上分子识别,分子组装领域内的热点研究课题。为了寻求新奇的具有多功能性质的超分子构造,自上世纪八十年代以来,将冠醚的识别作用和自组装能力与酞菁的功能性相结合,吸引了许多学者并激起了广泛的研究热潮。
     我们使用模板法合成并成功分离了一系列冠醚取代的双层不对称酞菁,包括含有一个、两个(邻位和对位)、三个和四个冠醚取代的双层不对称酞菁,其中两个及三个冠醚取代的酞菁是由本课题组首次合成并分离的。另外,我们采用了一种新颖的合成方法首次成功制备了一系列不同数目(1-4)冠醚取代的不对称酞菁铜,即以上述制备的双层不对称酞菁为原料,将双层拆分成两种单层化合物,根据溶解性的不同将它们一一分离。上述两个系列的酞菁化合物在提纯后得到了满意的元素分析结果。这些配合物使用紫外可见、近红外、红外光谱和质谱明确地推断出来。另外还系统研究了它们与钾离子进行超分子组装的过程。
     2.四卟啉—芘低聚物的合成、表征及三阶非线性性质的研究
     双卟啉及其低聚卟啉的应用前景是十分诱人的,它们可以应用于模拟光合作用体系,如模拟光合作用的反应中心或捕集太阳能的天线系统,制备以卟啉为母体的分子器件,这也是分子电子学工程的一部分。同时,作为三阶非线性材料的有利候选者,关于卟啉及其衍生物的非线性光学性质也被广泛的研究。我们采用无铜条件下的钯催化偶合法,首次合成了以乙炔键连接的四卟啉—芘低聚物,同时还合成了四锌卟啉—芘低聚物。这两种新制备的低聚卟啉化合物在提纯后使用紫外可见、核磁、元素分析和质谱明确地表征出来。另外,我们还研究了分子内的能量转移过程,并使用Z扫描方法研究了这个体系的三阶非线性性质。
     3.四芘取代的卟啉酞菁三明治型化合物的合成及表征
     由于三明治型酞菁稀土配合物的共轭大环之间强烈的π-π电子相互作用,引起的独特的光、电、磁等物理性质,其在过去的几十年间作为新型分子导体、分子磁体、分子电子元器件、光限制、非线性光学、气体传感、电致变色、光电转换和液晶等功能材料被深入研究。卟啉酞菁都是易于修饰的功能大环,将同样具有功能特性的其它化合物与之相连就可以合成更具多功能性质的化合物。在本文中,我们将荧光基团芘连接在卟啉的四个meso位上,并使用模板诱导法首次合成了四芘取代的卟啉酞菁混杂的双层和三层三明治型化合物。上述卟啉酞菁化合物在提纯和重结晶后得到了满意的元素分析结果。这些配合物使用紫外可见、近红外、红外光谱和质谱明确地推断出来。同时我们还探讨了这三种化合物分子内能量传递和电子转移过程。
With the development of science and technology,the investigation and application of new functional materials have been the main task for production and life.People are pursuing for discovering and developing new functional man-made systems that can competent with the natural systems.
     After having known the significance of the porphyrins and their derivatives involved in the most important processes of natural lives,the structures,properties,and functions of the porphyrin complexes have always been the key points of the research work and discussion.Phthalocyaninato complexes,a kind of compounds that have the same structures with those of porphyrins,which are widely used as industral commodities from their first discovery in the beginning of last century,have triggered wide interests in developing their catalistic and photo-electric properties as the new functional materials recently.The tetrapyrrolic macrocyclic molecules such as porphyrin and phthalocyanine with unique photonic,electronic,and magnetic properties as well as their stabilites in air deduced from their particular structures,have attracted a lot of researchers devoting themselves to this field.Most of the work involves the modification and assembling of the macrocycles.Preparation of the porphyrinato and/or(na)phthalocyaninato sandwich-type complexes is one kind of useful method among them.Two or three porphyrin and/or (na)phthalocyanine ligands are coordinated with one or two rare earth metal ions to form the highly conjugated sandwich type double- or triple-decker complexes.Strongπ-πinteractions between the maerocyeles induces remarkable physical and chemical properties of these complexes,therefore,to provide anticipated candidates as molecular semiconductor,photo conductor,optical materials,optical limiting,non-linear optical materials,gas sensors,electrochromic materials,molecular magnetics,and liquid crystal materials.
     During the past several years,our research group had paid our attention to synthesize the porphyrin and phthalocyanine rare earth sandwich complexes.On one hand,we have been aiming to develop effective synthetic routes and methods towards preparing the porphyrin and phthalocyanine ligands with different peripheral substitutes,on the other hand to exploit the physic-chemial properties,organic field effect transistor(OFET)functionalities, and supramolecular assembling nature.With our continuous efforts,we have prepared a series of symmetrical and unsymmetrical sandwich-type double- and triple-decker complexes.
     In this dissertation,our research work has been focused on the following respects: 1.Bis(phthalocyaninato)europium(Ⅲ)double-decker complexes and phthalocyaninato copper(Ⅱ)complexes fused with different number of 15-crown-5 moieties:synthesis, spectroscopy,supramolecular structures,and the effects of substituent number and molecular symmetry
     The design and preparation of supramolecular structures,which have been inspired by the significant progress in biological science and the many important potential applications in material science and molecular electronics,are great challenges for chemists and material scientists.Phthalocyanine has been an important class of dyes and pigments since their fast synthesis early last century.In particular,bis(phthalocyaninato)rare earth complexes have been intensively studied as advanced materials for gas sensors, electrochromic displays,photoconductors,and molecular electronics.On the other hand, crown ethers that have remarkable recognition and metal binding properties have been found wide applications also in molecular electronic devices.The combination of these two functional subunits for the purpose of constructing novel supramolecular structures with new and multi-functional properties has stimulated wide research interest.
     In this paper,we reported the synthesis,spectroscopy,supramolecular structures of a series of heteroleptic bis(phthalocyaninato)europium(Ⅲ)complexes with one,two,three, and four 15-crown-5 voids attached at different positions of one of the two phthalocyaninato ligands:Eu(Pc)(Pc')[Pc'= Pc(15C5),Pc(opp-15C5)_2,Pc(adj-15C5)_2, Pc(15C5)_3,Pc(15C5)_4];The other series of phthalocyaninato copper compounds CuPc(15C5)n(n = 1-4)is also been prepared employing a novel methodology using heteroleptic bis(phthalocyaninato)rare earth complexes Eu(Pc)(Pc')[Pc' = Pc(15C5), Pc(opp-15C5)_2,Pc(adj-15C5)_2,Pc(15C5)_3,Pc(15C5)_4]as starting material,reaction with copper acetate in large excess amount provides two different kinds of phthalocyaninato copper compounds Cu(Pc)and CuPc(15C5)_n(n = 1-4)in relatively good yields.Having a series of closely related phthalocyanines with different number and / or disposition of 15-crown-5 groups at the peripheral positions,the effects of 15-crown-5 substituent number and molecular symmetry on the electronic absorption spectra,infra-red(IR) spectra,and supramolecular structure formation induced by K~+ ions have been investigated.Systematic studies over the formation of dimeric supramolecular structures of the series of monomers reveal and confirm the previously proposed two-step three-stage process of K~+-induced dimerization of phthalocyanines with three or four 15-crown-5 moieties.
     2.Synthesis,characterization and third-order nonlinear optical property of novel ethynyl linked heteropentamer composed of four porphyrins and one pyrene
     Organic materials,in particular,with the structure of extensively delocalized z-electrons have received significant attention recently due to their large NLO susceptibilities, architectural flexibility,and ease of fabrication.Since porphyrins are promising candidates for nonlinear optical materials in view of not only largeπ-conjugated systems but also versatile functionalization at the peripheral positions and various possibilities of the central metalion,the expansion of theπ-electronic network of porphyrins has been attempted previously,some porphyrin arrays which were linked by alkyne linkages or directly linked and self-assembled porphyrin oligomers have showed enhanced NLO properties.However, covalently alkyne-linked porphyrin arrays with star shaped arrangement have never been studied on their nonlinear optical properties.In fact,effective and simple synthetic pathway to alkyne-linked porphyrin arrays with well-defined arrangement has attracted great attention for many researchers.
     In this paper,we used Pd-mediated reactions to join iodo/ethynyl-substituted porphyrin building blocks,synthesizing novel multi-porphyrins-pyrene arrays with a star arrangement, in which four meso-tetraphenyl porphyrins were linked to the center unit of pyrene by four aeetylenyl bonds.Then we investigated their third-order nonlinear optical properties using the Z-scan method with 1064 nm laser pulses of 20 ps duration in comparison with corresponding porphyrin and pyrene monomers.
     3.Synthesis,spectroscopy,electrochemistry,and photophysical properties of novel sandwich europium(Ⅲ)complexes with porphyrin ligand beating four pyrenyl groups at the meso-positions
     Owing to their unique optical,electrical and magnetic properties associated with the intriguing inter-ringπ-πinteractions,sandwich-type bis(phthalocyaninato)rare earth complexes have been intensively studied over the past several decades as prospective molecular electronic,molecular magnetic,electrochemical display,and non-linear optical materials.Recently,mixed(phthalocyaninato)(porphyrinato)rare earth analogues have received increasing attention partly because the individual chromophores display very different optical and redox properties which facilitate the study of theπ-πinteractions and the extent of hole delocalization.The mixed ring triple-decker complexes are also attractive for their potential use in information storage due to their large number of redox states,reversible electrochemistry,and relatively low oxidation potentials.
     It is well known that to tune the performance of the sandwich compounds,a good method is to introduce effective substituents onto porphyrin or phthalocyanine ring.In this paper,we devised and synthesized a novel porphyrin ligand with four pyrenyl groups at the meso-positions H2TPYRP,with which the mixed(phthalocyaninato)(porphyrinato) europium double- and triple-decker complexes Eu(Pc)(TPYRP)and Eu_2(Pc)_2(TPYRP) were prepared according to published procedure.To the best of our knowledge,these represent the first example of sandwich tetrapyrrole rare earth complexes attached directly with the excellent pyrenyl fluorophores.As a result,their photophysical properties were comparatively studied together with that for the monomeric metal free porphyrin H_2TPYRP.
引文
[1]Ficsher H.,et al.,"Die Chemie des pyrrols" Vol 2,part 1,Academic Verlagsegesllschft Liepzig,1937,158.
    [2]Zelaski J.,Porphyrin[J]Z Physiol Chem,1902,37,54-57.
    [3]Eds Leznoff C.C.,Lever,A.B.E,Phthalocynines:properties and applications,Volumes 1-4,New York:VCH,1989,1993,1993&1996.
    [4]Linstead R.E,Phthalocyanines.Part Ⅰ.A new type of synthetic colouring matters[J]J.Chem.Soc.,1934,1016-1017.
    [5]Robertson J.M.,An X-ray study of the phthaloeyanines.Part Ⅱ.Quantitative structure determination of the metal-free compound[J]J.Chem.Soc.,1936,1195-1209.
    [6]Robert D.H.,Thomas R.,The constituents of natural phenolic resins.Part Ⅳ.Synthesis of dehy droanhydropieropodophyllin[J]J.Chem.Soc.,1936,348-352.
    [7]Uyeda N.,Kobayashi T.,Suito E.,Harada Y.,Watanabe M.,Molecular image resolution in electron microscopy[J]J..Appl.Phys.,1972,43,5181-5189.
    [8]Kobayashi T.,Isoda S.,Lattice images and molecular images of organic materials[J]J.Mater.Chem.,1993,3,1-14.
    [9]Eley,D.D.,Phthaloeyanines as semiconductors[J]Nature,1948,162,819-820.
    [10]Schramm C.J.,Stojakovie D.R.,Hoffman B.M.,Marks T.J.,New low-dimensional molecular metals:single-crystal electrical conductivity of nickel phthalocyanine iodide[J]Science,1978,200,47-48.
    [11]Marks T.J.,Electrically conductive metallom_aeroeyelie assemblies[J]Science,1985,227,881-885.
    [12]Marks T.J.,Interfaces between molecular and polymeric "metals":electrically conductive,structure-enforced assemblies of metallomacroeycles[J]Angew:Chem.Int.Ed.Engl.,1990,29,857-858.
    [13]Wright J.D.,Gas adsorption on phthaloeyanines and its effects on electrical properties[J]Prog.Surf Sci.,1989,31,1-60.
    [14]Law K.Y.,Organic photoconductive materials:recent trends and developments,[J]Chem.Rev.,1993,93449-93486.
    [15]Tang C.W.,Two-layer organic photovoltaie cell[J]Appl.Phys.Lett.,1986,48, 183-186.
    [16]Whitlock J.B.,et al,Investigations of materials and device structures for organic semiconductor solar cells[J]Optical Egineering,1993,32,1921-1934.
    [17]Nazeeruddin M.K.,et al,Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines[J]Chem.Commun.,1998,719-720.
    [18]Webb C.E.,Fleischer E.B.,Crystal Structure of Porphine[J]J.Chem.Phys.,1965.43,3100-3111.
    [19]Adler A.D.,Longo F.R.,Shergalis W.,Mechanistic investigations of porphyrin synthesis.I.preliminary studies on meso-tetraphenylporphin[J]J.Am.Chem.Soc..1964,86,3145-3149.
    [20]Adler A.D.,Longo F.R.,Finarelli J.D.,Goldmacher J.,Assour J.,Korsakoff L..A simplified synthesis for meso-tetraphenylporphine[J]J.Org.Chem.,1967,32(2).476-478.
    [21]Lindsey J.S.,Schreiman I.C.et al.,Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J]J.Org.Chem..1987,52,827-836.
    [22]Shanmugathasan S.,Ross C.E.,Boyle W.,Advances in moderu synthetic porphyrin chemistry[J]Tetrahedron,2000,56,1025-1046.
    [23]Benjamin J.L.,Lindsey J.S.,Invistigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes[J]J.Org.Chem.,1999,64,2864-2872.
    [24]Polisetti D.R.,Benjamin J.L.,Geier G.R.,et al.,Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically unhindered transporpyhrins [J]J.Org.Chem.,2000,65,1084-1092.
    [25]Lee C.H.,Lindsey J.S.,One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrins using building_blocks[J]Tetrahedron,1994,50,11427-11440.
    [26]Benjamin J.L.,Mark A.M.,Refined synthesis of 5-substituted dipyrromethanes[J]J.Org.Chem.,1999,64,1391-1396.
    [27]何宏山,黄锦江,计亮年,尾式金属卟啉配合物研究(Ⅴ)-苯并噻唑尾式铁(Ⅲ)卟啉的合成,表征及其轴向配位和催化性质[J]高等学校化学学报,1996.17(12). 1817-1823.
    [28]Mehta G.,Sambaiah T.,Bhaskar G.M.,et al.Synthesis and mucleasw activity of some porphyrin-acfidone'hybfid molecules[J]J.Chem.Soc.Perkin Trans 1,1993,21,2667-2669.
    [29]Oliver J.C.,Ross W.B.,Isothiocyanatoporphyrins,useful intermediates for the conjugation of porphyrins with biomolecules and solid supports[J]Chem.Commun.,1999,21,2231-2232.
    [30]Beavington 1L Paul L.B.,Bis-porphyrin arrays,Part 1,the synthesis of meso-halophenyl porphyrin-α-diones[J]J.Chem.Soc.,Perkin Trans 1,1999,5,583-592.
    [31]Ng D.K.E,Jiang J.,Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes[J]Chem.Soc.Rev.,1997,26,433-442.
    [32]Lintead R.E,Lowe A.R.,Phthalocyanines.Part III.Preliminary experiments on the preparation of phthalocyanines from phthalonitdle[J]J.Chem.Soc.,1934,1022-1023.
    [33]Joyner R.D.,Kenney,M.E.,Phthalocyaninosilicon compounds[J]Inorg.Chem.,1962,1,236-238.
    [34]Barret E A.C.,Dent E.,Linstead R.E,Micellar rods and vesicular tubules made of 14',16'-diaminoporphyrins[J]J.Am.Chem.Soc.,1993,115,11036-11037.
    [35]Bennett W.E.,Broberg D.E.,Baenziger N.C.,Crystal structure of stannic phthalocyanine,an eight-coordinated tin complex[J]Inorg.Chem.,1973,12,930-936.
    [36]Lux E,Demp E,Graw D.,Diphthalocyaninato-thorium(Ⅳ)and-uranium(Ⅳ)[J]Angew.Chem.Int.Ed Eng.,1968,7,819-820.
    [37]Bouvet M.,Smion J.,Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes[J]Chem.Phys.Lett.,1990,172 299-302.
    [38]Ng D.K.P.,Jiang J.,Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes[J]Chem.Soc.Rev.,1997,26,433-442.
    [39]姜建壮,吴基培,刘伟,谢经雷,孙思修,对称的二层及三层三明治型金属酞菁配合物的研究进展[J]化学通报,1999,(2),4.
    [40]Wang C.P.,et al.,Lanthanide porphyrin complexes.Potential new class of nuclear magnetic resonance dipolar probe[J]J.Am.Chem.Soc.,1974,96,7149-7150.
    [41]计亮年,彭小彬,黄锦汪,金属卟啉配合物模拟某些金属酶的研究进展[J]自然科学进展,2002,12,120-129.
    [42]Sessler J.L.,Leghorn S.J.,Expanded,Contract & Isomeric Porphyrins.,Pergamon,Oxford,1997.
    [43]李德平,胡静,血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志,2003,24,162-163.
    [44]杨新国,孙景志,汪茫,陈红征,黄骥,卟啉类光电功能材料研究进展[J]功能材料,2003,34,113-117.
    [45]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖,酞菁锌分子激发态的超快内转换和振动弛豫[J]化学物理学报,1998,2,15-18.
    [46]Torre G.de la,Vazquez P.,Agullo-Lopez F.,et al.,Phthalocyanines and related compounds:organic targets for nonlinear optical applications[J]J.Mater.Chem.,1998,8,1671-1683.
    [47]Shirk J.S.,Lindle J.R.,Bartoli F.J.et al.,Third-order optical nonlinearities of bis(phthalocyanines)[J],/..Phys.Chem.,1992,96,5847-5852.
    [48]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本,酞菁在分子材料器件方面的研究进展[J]自然科学进展,2004,14,125-132.
    [49]Leznoff C.C.,Lever A.B.P.,Phthalocynines:properties and applications,Volumes 1-4,New York:VCH,1989,1993,1993 & 1996.
    [50]Thanabal V.,Kirshnan V.,Porphyrins with multiple crown ether voids:novel systems for cation eomplexation studies[J]J..Am.Chem.Soc.,1982,104,3643-3647.
    [51]Hendriks R.,Sielcken O.E.,Drenth E.,Nolte R.J.M.,Polytopic ligand systems:synthesis and eomplexation properties of a 'crowned' phthaloeyanine[J]J.Chem.Soc.Commun.,1986,1464-1465.
    [52]Coray A.G.,Ahsen V.,Berkaroglu O.,Preparation of a novel,soluble copper phthalocyanine with crown ether moieties[J]Chem.Commun.,1986,932-933.
    [53]Kobayashi N.,Osa T.,The effect of solvents and-or alkali cations on absorption-spectra of iron(Ⅲ)erowend porphyrin[J]Heterocycles,1981,15,675-678.
    [54]Kobayashi N.,A copper phthalocyanine with four crown ether voids[J]J..Chem.Soc.Chem.Commun.,1986,1462-1463.
    [55]Sasmaz S.,Agar E.,Akdemir N.,Keskin I.,Synthesis and characterization of new phthalocyanines containing thio-Oxa-Ether moieties[J]Dyes and Pigements,1998,37(3),223-230.
    [56]Ahsen V.,Gurek A.,Musluoglu E.,Bekaroglu O.,Novel phthalocyanines with aza crown ether moieties[J]Chem.Bet.,1959,122,1073-1074.
    [57]Musluoglu E.,Ahsen V.,Gul A.,Bekaroglu O.,Water-soluble phthalocyanines containing aza-crown ether substituents[J]Chem.Bet.,1991,124,2531-2536.
    [58]Gumus g.,Ozturk Z.Z.,Ahsen V.,Gul A.,Bekaroglu O.,Synthesis,characterization and electrical properties of phthalocyanines substituted with 17-membered trioxadiaza macrocycles[J]J.Chem.Soc.Dalton.Trans.,1992,2485-2489.
    [59]Kocak M.,Okur A.I.,Bekaroglu O.,Novel two-fold-macrocycle-substituted phthalocyanines[J]J.Chem.Soc.Dalton.Trans.,1994,323-326.
    [60]Agar E.,Sasmaz S.,Akdemir N.,Keskin I.,Electronic structures of copper(Ⅱ)complexes of tetradentate hydroquinone-containing Schiff bases[J]J.Chem.Soc.Dalton.Trans.,1999,2087-2095.
    [61]Gok Y.,Kantekin H.,Bilgin A.,Mendil D.,Degirmencioglu I.,Synthesis and characterization of new metal-free phthalocyanine substituted with four diazatetrathiamacrobicyclic moieties[J]Chem.Commun.,2001,285-286.[62]Miamoto R.,Yamauchi S.,Kabayashi N.,Osa T.,Ohba Y.,Tawaizumi M.,Interplanar interactions in the triplet dimers of Zn and metal free complexes of crowned porphyrin and phthalocyanine studied by time-resolved electron paramagnetic resonance[J]Coord.Chem.Rev.,1994,132,57-62.
    [63]Xu H.J.,Xiong G.X.,Spectroscopic studies of supramolecule formation through cation-induced aggregation of phthalocyanine with four crown ether voids[J]J.Photochem.Photobiol.A.Chem.,1995,92,35-38.
    [64]Kabayashi N.,Togashi M.,Osa T.,Ishii K.,Yamanch S.I.,Hino H.,Low symmetrical phthalocyanine analogues substituted with three crown ether voids and their cation-induced supermolecules[J]J.Am.Chem.Soc.,1996,118,1073-1085.
    [65]Sielken O.E.,Van Linder H.C.,Drenth W.,Schoonman J.,Schram I.,Nolte R.J.M.,Bet B.,Transient absorption and two-step laser-'mduced fluorescence studies of excited states of substituted diphenylcarbenes[J]J.Phys.Chem.,1998,93,702-707.
    [66]Gomez-Romero P.,Lee Y.S.,Kertesz M.,Band structure calculation of extended poly(Cu-phthalocyanine)one-dimensional and two-dimensional polymers[J]Inorg.Chem.,1988,27,3672-3675.
    [67]Feielding E E.,Guttman S.,Electrical properties of phthalocyanines[J]J.Chem.Phys.,1957,26,411-419.
    [68]Kobayashi N.,Lever A.B.E,Cation or solvent-induced supermolecular phthalocyanine formation:crown ether substituted phthalocyanines[J]d.Am.Chem.Soc.,1987,109,7433-7441.
    [69]Abkowitz M.,Monahan A.R.,ESR and electronic spectral investigation of the self-association of phthalocyanine dyes in solution[J]d.Chem.Phys.,1973,58,2281-2287.
    [70]van Nostrum C.E,Picken S.J.,Schouten A.J.,Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines:toward molecular wires and molecular ionoelectronics[J]d.Am.Chem.Soc.,1995,117,9957-9965.
    [71]Engelkamp H.,Middlebeek S.,Nolte R.J.M.,Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity[J]Science 1999,284,785-788.
    [72]Gurek A.G.,Ahsen V.,Bekaroglu O.,Synthesis and characterization of a new copper(Ⅱ)phthalocyaninate substituted with four 15-membered tetraazamacrocycles and its water-soluble pentanuclear complexes[J]d.Chem.Soc.Dalton.Trans.,1991,3367-3371.
    [73]Bardin M.,Berrounesque E.,Plichon V.,Simon J.,Ahsen V.,Bekaroglu O.,Mass transport to channel and tubular electrodes:the Singh and Dutt approximation[J]d.Electroanal.Chem.,1989,271,173-180.
    [74]Toupance T.,Ahsen V.,Simon J.,Iono-electronics:crown ether substituted lutetium bisphthalocyanines[J]Chem.Commun.,1994,75-76.
    [75]Bassoul R,Toupance T.,Simon J.,Semiconductivity and gas-sensing properties of crown-ether-substituted lutetium bisphthalocyanines[J]Sensors and Actuators B.,1995,26,150-152.
    [76]Chen Y.,Su W.,Bai M.,Jiang J.,Li X.,Liu Y.,Wang L.,Wang S.,High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato)rare earth triple-decker complexes[J]J.Am.Chem.Soc.,2005,127,15700-15701.
    [77]Crraea M.,Vicente H.,Laurent Jaquinod,et al.Oligomedc porphydnarrays[J]Chem.Commun.,1999,18,1771-1782.
    [78]Li J.,Lindsey J.S.,Efficient synthesis of fight-harvesting arrays composed of eight porphyrin and one phthaloeyanine light-harvesting arrays[J]J.Org.Chem.,1999,64,9101-9108.
    [79]Li J.,James R.D.,Jyoti S.,et al,Synthesis and properties of star-shap multiporphyrin-phthaloeyanine light-harvesting arrays[J]J.Org.Chem.,1999,64,9090-9100.
    [80]Anderson H.L.,Building raoleeular wires from the eolours of life:conjugated porphyrinoligomers[J]Chem.Commun.,1999,23,2323-2330.
    [81]Brandon E.J,Kollmar C.,Miller J.S.,Orbtial overlap and antifemmagnetic coupling in substituted tetraphenylporphyrinatomanganate(Ⅲ)tetraeyanoethenide bsed magnets.Theimportanee of α-d_z~2-Pz overlap[J]J..Am.Chem.Soc.,1998,120,1822-1826.
    [82]Devens G.,Thomas A.M.,Aria L.M.,Mimicking bacterial photosynthesis[J]Pure &Appl Chem.,1998,70(11),2189-2200.
    [83]Moore T.A.,Photodriven change separation in a earoten porphyrin-quinonetriad[J]Nature,1984,307,630-632.
    [84]Wanger R.W.,Lindsey J.S.,Seth J.,et al.Moleeuiar optoelectronic gates[J]J.Am.Chem.Soc.,1996,118,3996-3997.
    [85]David A.S.,Lee H.,Krishna 1L K.,et al.Cross-conjugated bis(porphyrin)synthesis,electrochemical behavior,mixed valency and biradical dication formation[J]J.Org.Chem.,1999,64,9124-9136.
    [86]Anderson H.L.,Martin S.J.,Bradly D.C.,Synthesis and third-order nonlinear optical porperties of a conjugated porphyrin[J]Angew.Chem.Int.Ed.Engl.,1994,33,655-657.
    [87]Nimri S.,Keinan E.,Antibody-metalloporphyrin catalytic assembly mimicsnatural oxidation enzymes[J]J.Am.Chem.Soc.,1999,121,8978-8982.
    [88]Adler A.D.,Longo F.R.,Finarelli J.D.,et al,A simplified synthesis for mesotetraphenylporphin [J]J.Org.Chem.,1976,32,476--480.
    [89]Lindsey J.S.,Schreiman I.C.,Hsu H.C.,Keamey P.C.,Marguerettaz A.M.,Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J]J.Org.Chem.,1987,52(5),827-836.
    [90]王莉红,汤福隆,卟啉类试剂合成的进展[J]化学试剂,1999,21(5),273-289.
    [91]Shanmugathasan S.,Edwards C.,Boyle R.W.,Advances in modeRN synthetic porphyrin chemistry[J]Tetrahedron,2000,56,1025-1046.
    [92]Wagner R.W.,Johnson T.E.,Li F.,Lindsey J.S.J.,Synthesis of ethyne-linked or butadiyne-linked porphyrin arrays using mild,copper-free,Pd-eediated coupling reactions[J]J.Org.Chem.,1995,60(16),5266-5273.
    [93]Arnold D.P.,Nitschinsk L.J.,Porphyrin dimers linked by conjugated butadiynes[J]Tetrahedron,1992,48,8781-8792.
    [94]Knciauskas D,Liddell P A,Johnson T E,et al.,An artificial photosynthetic antennareaction center complex[J]J.Am.Chem.Soc.,1999,121,8604-8614.
    [95]Guilard R.,Lopez M.A.,Alain T.,et al.First crystal and molecular structure of a heterobimetall biphenylene pillared cofacial diporphyrin[J]J.Am.Chem.Soc.,1992,114,9877-9889.
    [96]Collman J.P.,Tyvoll D.A.,Fish H.T.,et al.,Facile Synthesis of meso-tetraaryl cofacial diporphyrins[J]J.Org.Chem.,1995,60,1926-1931.
    [97]Maiman T.H.,Stimulated Optical Radiation in Ruby[J]Nature,1960,187,493-494.
    [98]Franken P.A.,Hill A.E.,Peters C.W.,et al.,Optical third-harmonic generation in gases[J]Physics Review Letter,1961,19,556-559.
    [99]Robert W.B.,Nonlinearoptics,Boston:Academic Press,2003.
    [100]阿戈沃,非线性光纤光学原理及应用,东方等译,北京:电子工业出版社,2002.
    [101]邓晓旭,有机分子系统非线性吸收和非线性折射的稳态条件与动态分析[博士学位论文],哈尔滨:哈尔滨工业大学,1999.
    [102]Lim J.H.,Nonlinearities of polymethine and squarylium molecules for optical limiting:[dissertation].Flotida:Univ of Central Florida,1998.
    [103]Wei T.H.,Nonlinear optical absorption and refractions study of metallophthalocyaninedyes:[dissertation].Texas:Univ of North Texas 1992.
    [104]王玉晓,有机材料激发态非线性吸收与非线性折射:[博士学位论文],哈尔滨:哈尔滨工业大学,1997.
    [105]Sutherland R.L.,Marcel D.,Handbook of Nonlinear Optics,New York,USA 2003.
    [106]Verbiest T.,Houbrechts S.,Kauranen M.,Clays K.,Persoons A.,Second-order nonlinear optical materials:recent advances in chromophore design[J]J.Mater.Chem.,1997,7,2175-2189.
    [107]Marks T.J.,Rathe M.A.R.,Design,Synthesis,and properties of molecule-based assemblies withlarge second-order optical nonlinearities[J]Angew.Chem.Int.Ed.Engl.,1995,34,155-173.
    [108]Long N.J.,Organometallic compounds for nonlinear optics-the search for enlightenment[J]Angew.Chem.lnt.Ed.Engl.,1995,34,21-38.
    [109]Bredas J.L.,Adant C.,Tackx P.,Persoons A.,Pierce B.M.,Third-order nonlinear optical response in organic materials:theoretical and experimental aspects[J]Chem.Rev.,1994,94,243-278.
    [110]Norwood R.A.,Sounik J.R.,Third-order nonlinear optical response in polymer thin films incorporating porphyrin derivatives[J]Applied Physics Letters.,1992,60,295-297.
    [111]D1'az-Gare1'a M.A.,Ledoux I.,Duro J.A.,Torres T.,Agullo'-Lo'pez F.,Zyss J.,Third-Order nonlinear optical properties of soluble oetasubstituted metallophthalocyanines[J]J.Phys.Chem.,1994,98,8761-8764.
    [112]Shirk J.S.,Lindle J.R.,Bartoli F.J.,Hoffman C.A.,Kafafi Z.H.,Snow A.,Off-resonant third-order optical nonlinearities of metal-substituted phthalocyanines [J]Appl.Phys.Lett.,1989,55,1287-1288.
    [113]Kambara H.,Maruno T.,Yamashita A.,Matsumoto S.,Hayashi T.,Konami H.,Tanaka N.,Third-order nonlinear optical properties of phthaloeyanine and fullerere Kanbara[J]d.AppL Phys.,1996,80,3674-3682.
    [114]Di B.S.,Second-order nonlinear optical properties of transition metal complexes[J]Chem.Soc.Rev.,2001,30,355-366.
    [115]Shirk J.S.,Lindle J.R.,Bartoli F.J.,Boyle M.E.,Third-order optical nonlinearities of bis(phthalocyanines)[J]J.Phys.Chem.,1992,96,5847-5852.
    [116]Huang W.,Wang S.,Liang R.,Gong Q.,Qiu W.,Liu Y.,Zhu D.,Ultrafast third-order nonlonear optical response Diels-Alder adduet of fullerene C_(60)with a metallophthaloeyanine[J]Chem.Phys.Lett.,2000,324,354-358.
    [117] Anderson H. L., Synthesis and third-order nonlinear optical properties of a conjugated porphyrin polymer [J] Angew. Chem. Int. Ed. Engl, 1994, 33, 655-657.
    [118] Anderson H. L., Supramolecular orientation of conjugated porphyrin oligomers in stretched polymers [J] Adv. Mater., 1994, 6, 834-836.
    [119] Martin S. J., Anderson H. L., Bradley D. D. C., Quadratic electrooptic nonlinearity of a conjugated porphyrin polymer [J] Adv. Mater. Opt. Electron., 1994, 4, 277-238.
    [120] Ogawa K., Zhang T., Yoshihara K., Kobuke Y.. Large third-order optical nonlinearity of self-assembled porphyrin oligomers [J] J. Am. Chem. Soc, 2002. 124, 22-23.
    [1] Lever A. B. P., Leznoff C. C., Phthalocyanine: Properties and Applications. VCH. New York, 1989, Vol. 1; 1993, Vols. 2 and 3; 1996, Vol. 4.
    
    [2] McKeown N. B., Phthalocyanines Materials-Synthesis, Structure and Function, Cambridge University Press, New York, 1998.
    [3] Kadish K. M., Smith K. M., Guilard R., The Porphyrin Handbook, Academic Press, San Diego, 2000-2003, Vols. 1-20.
    [4] Pederson C. J., Cyclic polyethers and their complexes with metal salts [J] J. Am. Chem. Soc, 1967, 89, 2495-2496.
    [5] Liu C., Walter D., Neuhauser D., Baer R., Molecular recognition and conductance in crown ethers [J] J. Am. Chem. Soc, 2003,125, 13936-13937 and references therein.
    [6] Koray A. R., Ahsen V, Bekaroglu O., Preparation of a novel soluble copper phthalocyanine with crown ether moieties [J] Chem. Commun., 1986, 932-933.
    [7] Kobayashi N., Nishiyama Y., A copper phthalocyanine with four crown ether voids [J] Chem. Commun., 1986, 1462-1463.
    [8] Hendriks R., Sielecken O. E., Drenth W., Nolte R. J. M., Polytopic ligand systems: synthesis and complexation properties of a 'crowned' phthalocyanine [J] J. Chem. Soc, Chem. Commun., 1986, 1464-1465.
    [9] Kobayashi N., Lever A. B. P., Cation or solvent-induced Supermolecular phthalocyanine formation: crown ether substituted phthalocyanines [J] J. Am. Chem. Soc, 1987,109,7433-7441.
    [10] Sielecken O. E., Tilborg M. M. van, Roks M. F. M.; Hendriks R., Drenth W.. Nolte R. J. M., Synthesis and aggregation behavior of hosts containing phthalocyanine and crown ether subunits [J] J. Am. Chem. Soc, 1987, 109,4261-4265.
    
    [11] Kobayashi N., Togashi M., Osa T., Ishii K., Yamauchi S., Hino H., Low symmetrical phthalocyanine analogues substituted with three crown ether voids and their cation-induced supermolecules [J] J. Am. Chem. Soc, 1996, 118, 1073-1085.
    
    [12] Aoudia M., Cheng G., Kennedy V. O., Keny M. E. Rodgers M. A. J. Synthesis of a series of octabutoxy- and octabutoxybenzophthalocyanines and photophysical properties of two members of the series [J] J. Am. Chem. Soc, 1997, 119, 6029-6039.
    
    [13] Kobayashi N., Mack K., Ishii, Stillman M., Electronic structure of reduced symmetry peripheral fused-ring-substituted phthalocyanines [J] Inorg. Chem., 2002. 41. 5350-5363.
    [14] Ishikawa N., Kaizu Y., A supramolecule composed of two phthalocyanine dimer radicals linked by a pivot joint: synthesis of mono-15-crown-5-substituted bis(phthalocyaninato)lutetium [J] Chem. Lett, 1998,183-184.
    [15] Ishikawa N., Kaizu Y., Biradical state in phthalocyanine (2+2) tetramer composed of 2 bis(phthalocyaninato)lutetium radicals [J] Chem. Phys. Lett., 1993, 203,472-476.
    [16] Bai M, Bao M., Ma C., Arnold D. P., N D. K. P., Jiang J., New dimeric supramolecular structure of mixed (porphyrinato)(phthalocyaninato) europium sandwiches: preparation and spectroscopic characteristics [J] J. Mater. Chem.. 2003. 13, 1333-1339.
    [17] Nyokong T., Furuya F., Kobayashi N., Du D., Liu W., Jiang J., Low symmetrical phthalocyanines having spectroscopic and electrochemical properties characteristic of unexpected accidental S1 state degeneracy and non-planar distortions [J] Inorg. Chem., 2000,39, 128-135.
    [18] Kobayashi N., Kondo R., Nakajima S.. Osa T., New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines [J] J. Am. Chem. Soc, 1990,112, 9640-9641.
    [19] Stites J. G., Macarty C. N., Quill L. L., The rare earth metals and their compounds. Ⅷ. An improved method for the synthesis of some rare earth acetylacetonates [J] J. Am. Chem. Soc, 1948, 70, 3142-3143.
    [20] Petersen C. J., Cyclic polyethers and their complexes with metal salts [J] J. Am. Chem. Soc, 1967, 89, 7017-7036.
    
    [21] Ahsen V., Yilmazer E., Musluoglu E., Synthesis and characterization of metal-free and mrtal derivatives of a novel soluble crown-ether-containing phthalocyanine [J] J. Chem. Soc. Dalton. Trans., 1988,401-406.
    [22] Bouvet M., Simon J., Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes [J] Chem. Phys. Lett, 1990, 172, 299-302.
    [23] Liu Y., Shigehara K., Hara M., Yamada A., Electrochemistry and electrochromic behavior of Langmuir-Blodgett films of octakis-substituted rare-earth metal diphthalocyanines [J] J. Am. Chem. Soc, 1991. 113,440-443.
    [24] Guyon F., Pondaven A., Guenot P., L'Her M., Bis(2,3-naphthalocyaninato) lutetium (III) and (2,3-Naphthalocyaninato)(phthalocyaninato)lutetium(III) complexes: synthesis, spectroscopic characterization, and electrochemistry [J] Inorg. Chem., 1994, 33, 4787-4793.
    
    [25] Pondaven A., Cozien Y., L'Her M., symmetrically and unsymmetrically substituted lutetium diphthalocyanines - synthesis and spectroscopic characterization [J] New J. Chem., 1992, 16, 711-718.
    [26] Steybe F., Simon J., Ionoelectronics: synthesis and surface grafting of an unsymmetrical lutetium bisphthalocyanine bearing four crown-ether moieties and four hexanoic acid side chains [J] New J. Chem., 1998, 22,1305-1306.
    [27] Jiang J., Liu W., Law W. F., Lin J., D. Ng K. P., A new synthetic route to unsymmetrical bis(phthalocyaninato)europium(III) complexes [J] Inorg. Chim. Acta., 1998,268,141-145.
    [28] Jiang J., Liu R. C. W., Mak T. C. W., Ng D. K. P., Chan T. W. D, Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes [J] Polyhedron, 1997, 16, 515-520.
    [29] Bian Y., Jiang J., Tao Y., Choi M. T. M., Li R., Ng A. C. H., Zhu P., Pan N.. Sun X., Arnold D. P, Zhou Z., Li H.W., Mak T. C. W., Ng D. K. P., Tuning the valence of the cerium center in (na)phthalocyaninato and porphyrinato cerium double-deckers by changing the nature of the tetrapyrrole ligands [J] J. Am. Chem. Soc, 2003, 125, 12257-12267.
    [30] Kobayashi N., The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San Diego, 2003, vol. 15, chapter 100, pp. 161-262.
    [31] Luo Q., Chen B., Wang M., Tian H., Mono-bisthienylethene ring-fused versus multi-bisthienylethene ring-fused photochromic hybrids [J] Adv. Fund. Mater.. 2003. 13, 233-239.
    [32] Jiang J., Kasuga K., Arnold D. P., Supramolecular Photosensitive and Electroactive Materials (Ed.: H. S. Nalwa), Academic Press, New York, 2001, chapter 2. pp. 113-210.
    [33] Ng D. K. P., Jiang J., Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes [J] Chem. Soc. Rev., 1997, 26,433-442.
    [34] Law W. F., Liu R. C. W., Jiang J., Ng D. K. P., Synthesis and spectroscopic properties of octasubstituted (phthalocyaninato)- titanium(IV) complexes [J] Inorg. Chim. Acta., 1997,256,147-150.
    [35] Jiang J., Bao M., Rintoul L., Arnold D. P., Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes [J] Coord. Chem. Rev., 2006, 250, 424-448.
    [36] Bao M., Pan N., Ma C., Arnold D. P., Jiang J., Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes: Part 4. The infrared characteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earth complexes [J] Vibrational Spectroscopy, 2003, 32, 175-184.
    [37] Su W., Bao M., Jiang J., Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes: Part 12. The infrared characteristics of phthalocyanine in heteroleptic bis(phthalocyaninato) rare earth complexes [J] Vibrational Spectroscopy, 2005, 39, 186-190.
    [38] Jiang J., Rintoul L., Arnold D. P., Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes [J] Polyhedron, 2000,19,1381-1394.
    [39] Chen Y, Su W., Bai M., Jiang J, Li X., Liu Y., Wang L., Wang S., High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare Earth triple-decker complexes [J] J. Am. Chem. Soc, 2005, 127, 15700-15701.
    [40] Braunschweiler L., Ernst R. R., Coherence transfer by isotropic mixing application to proton correlation spectroscopy [J] J. Magn. Reson., 1983, 53, 521-528.
    [41] Zhu P., Lu F., Pan N., Arnold D. P., Zhang S., Jiang J., Comparative electrochemical study of unsubstituted and substituted bis(phthalocyaninato) rare earth(III) complexes [J] Eur. J. Inorg. Chem., 2004, 510-517.
    [42] Pearce S., West W. P., The dimeric state of cyanine dyes [J] J. Phys. Chem., 1965. 69. 1894-1903.
    [1]Wanger R.W.,Lindsey J.S.,Seth J.,et al,Molecular optoelectronic gates[J]J.Am.Chem.Soc.,1996,118,3996-3997.
    [2]Mak C.C.,Pomeranc D.,Montalti M.,Prodi L.,Sanders J.K.M.,A versatile synthetic strategy for construction of large oligomers:binding and photophysical properties of a nine-porphyrin array[J]Chem.Commun.,1999,1083-1084.
    [3]Mak C.C.,Bampos N.,Sanders J.K.M.,Metalloporphyrin dendrimers with folding arms[J]Angew.Chem.Int.Ed.,1998,37,3020-3023.
    [4]Li J.,Lindsey J.S.,Efficient synthesis of light-harvesting arrays composed of eight porphyrins and one phthalocyanine[J]J.Org.Chem.,1999,64,9101-9108.
    [5]Li J.,Diets J.R.,Seth J.,Yang S.I.,Bocian D.F.,Holten D.,Lindsey J.S.,Synthesis and properties of star-shaped multiporphyrin-phthalocyanine light-harvesting arrays[J]J.Org.Chem.,1999,64,9090-9100.
    [6]Prathapan S.,Johnson T.E.,Lindsey J.S.,Building-block synthesis of porphyrin light-harvesting arrays[J]J.Am.Chem.Soc.,1993,115,7519-7520.
    [7]Li F.,Gentemann S.,Kalsbeck W.A.,Seth J.,Lindsey J.S.,Holten D.,Bocian D.F..Effects of central metal ion(Mg,Zn)and solvent on singlet excited-state energy flow in porphyrin-based nanostructures[J]J.Mater.Chem.,1997,7,1245-1262.
    [8]Burrell A.K.,Officer D.L.,Enzyme-mediated optical resolution of 2-methyl-3,4-pentadienl,a chiral building block possessing terminal allenyl group[J]Synlett.,1998,1297-1307.
    [9]Venkataramana G..,Sankararaman S.,Synthesis,absorption,fluorescence-emission properties of 1,3,6,8-tetraethynylpyrene and its derivatives[J]Eur.J.Org.Chem..2005,4162-4166.
    [10]Barnett G.H.,Hudson M.F.,Smith K.M.,Concerning meso-tetraphenylporphyrin purification[J]J.Chem.Soc.Perkin Trans.,1 1975,1401-1403.
    [11]Wagner R.W.,Johnson T.E.,Li F.,Lindsey J.S.,Synthesis of ethyne-linked or butadiyne-linked porphyrin arrays using mild,copper-free,Pd-mediated coupling reactions[J]J.Org.Chem.,1995,60(16),5266-5273.
    [12]Milanesio E.,Alvarez M.G..,Yslas E.I.,Borsarelli C.D.,Silber J.J.,Rivarola V.. Durantini E. N.. Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line [J] Photochem. Photobiol., 2001,74,14-21.
    [13] Du H., Fuh R. A., Li J., Corkan A., Lindsey J. S., PhotochemCAD: A computer-aided design and research tool in photochemistry [J] Photochem. Photobiol., 1998, 68, 141-142.
    [14] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., J. A., Montgomery Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M.. Iyengar S. S., Tomasi J., Barone V., MennuccB. i, Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E.. Hratchian H. P., Cross J. Adamo B.. C., Jaramillo J., Gomperts R., Stratmann R. E.. Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y. Morokuma K., Voth G. A., P Salvador., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D.. Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J.. Keith T., Al-Laham M. A.. Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03. Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 1998.
    [15] Stewart J. J. P., Optimization of parameters for semiempirical methods I. Method [J] J. Comp. Chem., 1989, 10,209-220.
    [16] Stewart J. P., Optimization of parameters for semiempirical methods II. Applications [J] J. Comp. Chem., 1989, 10,221-264.
    [17] Sheik-Bahae M., Said A. A., Van Stryland E. W. High sensitivity, Single beam n_2 measurements [J] Optics Letters, 1989,14 (17), 955-957.
    [18] Ronchi A., Cassano T., Tommasi R., μ(3) measurements in novel poly (2,5-dioctyloxy-4, 4, 4-terphenylenevinylene) using the Z-scan technique [J] Synthetic. Metals., 2003, 139 (3), 831-834.
    [19] Clementi A.. Chiodini N., Paleari A.. Cubic Optical Nonlinearity in Nanostructrued SnO_2: SiO_2 [J] Applied Physics Letters, 2004, 84 (6), 960-962.
    [20] Cassano T, Tommasi R, Ferrara M., et al. Substituent dependence of the Optical Nonlinearities in Poly(2,5-dialkoxy-p-phenylenevinylene) Polymers Investigated bythe Z-Scan Technique [J] Chemical Physics, 2001, 272 (1), 111-118.
    [21] Xiao W., Li R., Zeng Xue R, et al., A Study on the third-order nonlinearitis of new ruthenium complexes by Z-scan technique [J] Acta Physica Sinica, 2000, 49(6), 1086-1090.
    [22] Sheik-Bahae M., Said A. A., Wei T. H., et al. Sensitive measurement of optical nonlinearities using a single beam [J] IEEE Journal Quantum Electronics, 1990. 26 (4), 760-769.
    [23] Terazima M., Shimizu H., Osuka A., The third-order nonlinear optical properties of porphyrin oligomers [J] J. Appl. Phys., 1997, 81, 2946-2951.
    [24] Marder S. R., Organic nonlinear optical materials: where we have been and where we are going [J] Chem. Commun., 2006, 131-134.
    [25] Tykwinski R. R., Gubler U., Martin R. E., Diederich F., Bosshard C., Gunter P.. Structure-property relationships in third-order nonlinear optical chromophores [J] J. Phys. Chem. B., 1998,102,4451-4465.
    [26] Wang X. Q., Xu D., Lu G. W., Lv M. K., Yuan D. R, Zhang G. H., Lu G. T., Chen Y., Zhou Y. Q., Vibrational spectra and theoretical study of ZnCd(SCN)_4 single crystal [J] Chem. Phys. Lett., 2002, 360, 573-578.
    [1] Jiang J., Kasuga K., Arnold D.P., ed. Nalwa H.S., Supra-molecular photoactive and electro-active materials, ch. 2. San Diego, CA: Academic Press, 2001, pp. 113-210.
    
    [2] Buchler J. W., Ng D. K. P., ed. Kadish K. M., Smith K. M., Guilard R., The porphyrin handbook, ch. 20, San Diego, CA: Academic Press, 2000, pp. 245-294.
    [3] Li J., Gryko D., Dabke R. B., Diers J. R., Bocian D. F., Kuhr W. G., Lindsey J. S., Synthesis of thiol-derivatized europium porphyrinic triple-decker sandwich complexes for multibit molecular information storage [J] J. Org. Chem., 2000. 65, 7379-7390.
    [4] Gryko D., Li J., Diers J. R., Roth K. M., Bocian D. F., Kuhr W. G., Lindsey J. S.. Studies related to the design and synthesis of a molecular octal counter [J] J. Mater. Chem., 2001,11,1162-1180.
    [5] Bilsel O., Rodriguez J., Milam S. N., Gorlin P. A., Girolami G. S., Suslick K. S., Electronic states and optical properties of porphyrins in van der Waals contact: thorium(IV) sandwich complexes [J] J. Am. Chem. Soc, 1992,114, 6528-6538.
    [6] Bilsel O., Milam S. N., Girolami G. S., Suslick K. S., Holten D., Ultrafast electronic deactivation and vibrational dynamics of photoexcited uranium(IV) porphyrin sandwich complexes [J] J. Phys. Chem., 1993, 97, 7216-7224.
    [7] Yan X., Holten D., Photophysics of a cerium(IV)-porphyrin sandwich complex: picosecond deactivation via neutral exciton or charge-transfer excited states [J] J. Phys. Chem., 1988,92,409-414.
    [8] Bilsel O., Rodriguez J., Holten D., Picosecond relaxation of strongly coupled porphyrin dimmers [J] J. Phys. Chem., 1990, 94, 3508-3512.
    [9] Wittmer L. L., Holten D., Photophysics of lanthanide triple decker porphyrin sandwich complexes [J] J.Phys. Chem., 1996, 100, 860-868.
    [10] Bo S., Tang D., Liu X., Zhen Z., Synthesis, spectroscopic properties and electrochemistry of (2,9,16,23-tetrasubstituted phthalocyaninato) erbium complexes [J] Dyes and Pigments, 2008, 376, 5-40.
    
    [11] Bian Y., Wang D., Wang R., Weng L., Dou J., Zhao D., Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands [J] New. J. Chem., 2003, 27. 844-849.
    [12] Jiang J., Bian Y., Furuya F., Synthesis, structure, spectroscopic properties. and electrochemistry of rare earth sandwich compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands [J] Chem. Eur. J., 2001, 7. 5059-5069.
    [13] Furuya F., Jiang J., Synthesis, structure, and optical characterization of sandwich-type (2,3-naphthalocyaninato)(octaethylporphyrinato)europium(III) [J] Chem. Lett., 2001, 944-945.
    [14] Bian Y., Jiang J., Tao Y., Choi M. T. M., Li R., Ng A. C. H., Tuning the valence of the cerium center in (na)phthalocyaninato and porphyrinato cerium double-deckers by changing the nature of the tetrapyrrole ligands [J] J. Am. Chem. Soc, 2003, 125. 12257-12267.
    [15] Jiang J., Choi M. T. M, Law W. F., Chen J., Ng D. K. P., A new pathway to heteroleptic double-decker(phthalocyaninato)(porphyrinato) europium(III) complexes [J] Polyhedron, 1998, 17, 3903-3908.
    [16] Jiang J., Liu W., Law W. F., Lin J., Ng D. K. P., A new synthetic route to unsymmetrical bis (phthalocyaninato) europium (III) complexes [J] Inorg. Chim. Acta., 1998,268,141-144.
    [17] Stites J. G., McCarty C. N., Quill L. L., The rare earthmetals and their compounds. VIII. An improved method for the synthesis of some rare earth acetylacetonates [J] J. Am. Chem. Soc, 1948, 70, 3142-3143.
    [18] Barrett P. A., Frye D. A., Linstead R.P., Phthalocyanines and associated compounds. Part XIV. Further investigations of metallic derivatives [J] J. Chem. Soc, 1938, 1157-1163.
    [19] Fieser L. F., Hartwell J. L., Meso aldehydes of anthracene and 1,2-benzanthracene [J] J. Am. Chem. Soc, 1938, 60, 2555-2559.
    [20] Fernandez J. E., Roger S., Cryoscopic study of methanediamines in sulfuric acid [J] J. Org. Chem., 1967, 32, 477-478.
    [21] Jiang J., Liu W., Cheng K. L., Poon K. W., Ng D. K. P., Heterolptic rare earth double-decker complexes with porphyrinato and 2,3-naphthalocyaninato ligands preperation, spectroscopic charaterization and electrochemical study [J] Eur. J. Inorg. Chem.. 2001,413-417.
    [22] Jiang J.. Du D., Ng D. K. P., Synthesis and spectroscopic characterization of heteroleptic europium(III) double-deckers containing 2.3-naphthalocyaninato and tetra(4-pyridyl)porphyrinato ligands [J] Chem. Lett., 1999, 261-262.
    [23] Lu F., Sun X., Li R., Liang D.. Jiang J., Synthesis, spectroscopic properties, and electrochemistry of heteroleptic rare earth double-decker complexes with phthalocyaninato and meso-tetrakis (4-chlorophenyl)porphyrinato ligands [J] New J. Chem., 2004,28,1116-1122.
    [24] Gross T., Chevalier F., Lindsey J. S., Investigation of rational syntheses of heteroleptic porphyrinic lanthanide (europium, cerium) triple-decker sandwich complexes [J] Inorg. Chem., 2001, 40, 4762-4774.
    
    [25] Guyon F., Pondaven A., Guenot P., L'Her M., Bis(2,3-naphthalocyaninato)lutetium(III) and (2,3-Naphthalocyaninato)(phthalocyaninato)lutetium(III) Complexes: Synthesis. Spectroscopic Characterization, and Electrochemistry [J] Inorg. Chem., 1994, 33, 4787-4793.
    [26] Sun X., Cui X., Arnold D. P., Choi M. T. M., Ng D. K. P., Jiang J., The electronic absorption characteristics of mixed phthalocyaninato porphyrinato rare earth(III) triple-deckers M_2(TPyP)_2(Pc) [J] Eur. J. Inorg. Chem., 2003,1555-1561.
    [27] Chabach D., Tahiri M., Fischer J., Weiss R., Bibout M. E. M., Tervalent-metal porphyrin-phthalocyanine heteroleptic sandwich-type complexes, synthesis, structure. and spectroscopic characterization of their neutral, singly-oxidized, and singly-reduced States [J] J. Am. Chem. Soc, 1995, 117, 8548-8556.
    [28] Milanesio E., Alvarez M. G., Yslas E. I., Borsarelli C. D., Silber J. J., Rivarola V.... Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line [J] Photochem. Photobiol. 2001, 74,14-21.
    [29] Du H., Fuh R. A., Li J., Corkan A., Lindsey J. S., PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry [J] Photochem. Photobiol, 1998. 68. 141-142.
    [30] Giaimo J. M., Gusev A. V. R., Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation [J] J. Am. Chem. Soc, 2002, 124. 8530-8531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700