用户名: 密码: 验证码:
水热调控钛酸盐纳米管阵列的功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸盐纳米管不仅具备大的比表面积、优良的导电性、良好的生物相容性,同时还具有强吸附和离子交换性质,已引起科学家们的广泛关注和研究兴趣。目前为止,钛酸盐纳米管的研究多集中在材料制备方面,关于其催化及分析传感应用的研究报道还不多见。然而,常规的粉体分散液涂膜和交替层沉积技术多得到无序的钛酸盐纳米管膜,不利于实现其功能,故开展与基底结合牢固、取向垂直的钛酸盐纳米管阵列制备技术研究具有重要意义。本文基于对水热调控钛酸盐纳米管阵列的生长研究,设计制备了几种功能杂化材料体系,系统研究了这些功能化的钛酸盐纳米管阵列的分析性能,构建了几种高灵敏度、高稳定性、响应快速的电化学传感器。
     论文的第一章详细介绍了钛酸盐纳米管的性质、合成方法和应用领域,并对电化学传感器进行了简单的介绍。论文第二章利用水热制备方法,在金属钛片表面直接生长钛酸盐纳米管阵列膜,考察了水热制备参数对钛酸盐膜结构及形貌的影响;并基于晶体生长动力学和形态学研究结果,初步提出了钛酸盐纳米管阵列膜的水热生长机制;并在优化水热参数的基础上,实现了钛酸盐纳米管阵列的可控制备。实验结果表明,获得的钛酸盐纳米管阵列膜与钛片基底结合力强,热稳定性高,化学性质稳定。钛酸盐纳米管呈负电性,对晶体生长具有导向作用。在第三章中,基于钛酸盐纳米管阵列的纳米限域作用,模板电沉积制备了铜纳米立方,沉积的铜纳米立方堆积成三维纳米花结构,有效增大了材料的比表面积,可提供更多的催化点位,有助于提高分析检测性能。文中通过电化学氧化将沉积的铜纳米立方转化为铜氧化物,获得了钛酸盐纳米管阵列/铜氧化物纳米立方功能杂化材料体系,系统地研究了该功能电极材料的葡萄糖检测性能。钛酸盐纳米管阵列/铜氧化物纳米立方杂化材料在葡萄糖的分析检测中,具有高灵敏度、高稳定性、宽的线性范围等优点。论文第四章将石墨烯氧化物组装到钛酸盐纳米管阵列表面,实现了一维纳米材料和二维纳米材料的有序复合;然后,通过电化学还原使石墨烯氧化物转化为还原型石墨烯氧化物,系统研究了还原型石墨烯氧化物/钛酸盐纳米管阵列复合材料对邻苯二酚和对苯二酚的同时检测性能。实验结果表明,还原型石墨烯氧化物片层通过组装堆积形成了三维结构,该结构不仅具有大的比表面积,而且其三维纳米通道利于分析物的快速吸附和催化,表现出了良好的电催化性能,而且稳定性高、重现性好,可望用于环境分析检测等领域。在第五章中,改变水热反应条件,设计合成了钛酸盐纳米管交织形成的三维多级孔结构膜,并基于钛酸盐纳米管表面的负电荷,通过聚电解质层层组装技术,将金纳米粒子修饰在钛酸盐纳米管表面,制备了具有高催化活性的金纳米粒子/钛酸盐纳米管多孔膜。然后,将具有亚铁卟啉结构的血红素引入其多孔结构膜内,对比研究了其负载血红素前后对亚硝酸盐的检测性能。实验结果表明,金纳米粒子功能化的三维钛酸盐纳米管多孔膜具有大比表面积,能够提供更多的反应活性点位,且通过血红素的负载,亚铁卟啉结构呈现了快速的电子传输性能,显著改善了亚硝酸盐的检测性能。壳聚糖含有大量的羟基和氨基等活性基团,常用来作为合成金属纳米粒子的还原剂。论文第六章中,以壳聚糖为稳定剂和还原剂,利用钛酸盐纳米管表面的负电性对金纳米粒子生长的导向作用,通过调节壳聚糖与金属盐前驱体的浓度比,一步原位还原制备了钛酸盐纳米管阵列@金复合膜,获得了尺寸均匀、分散性好的钛酸盐纳米管阵列@金,并系统研究了过氧化氢的分析性能。实验结果表明,钛酸盐纳米管阵列的特殊结构、金纳米粒子尺寸小、高分散等特点,赋予复合电极材料以较高的电催化活性,实现了过氧化氢的高灵敏、快速响应、高稳定性的检测。在第七章中,在钛酸盐纳米管阵列上将多巴胺单体聚合,以聚多巴胺为碳源进行高温碳化,同时在高温条件下,钛酸盐转化为二氧化钛相,形貌由空心的纳米管转化为实心的纳米棒,制备了TiO2@C核壳结构功能杂化材料,构建了葡萄糖生物传感器并详细研究了其性能。实验结果表明,TiO2@C核壳结构纳米棒有效的加速了反应中的电子传递,实现了葡萄糖氧化酶的活性中心和TiO2@C核壳结构功能杂化材料之间的直接电子转移。该传感器用于葡萄糖的检测,具有线性范围宽、检测限低、灵敏度高、稳定性好等优点。水热钛酸盐纳米管阵列阵列电极基电化学传感平台的研究,不仅能极大提升电化学检测的分析性能,而且有望制成快速、超灵敏、无标记的电化学检测器件,为生命科学等领域研究提供更新的方法与技术。此外,由于钒和钨氧化物、硫化物等纳米管材料具有和钛酸盐纳米管阵列相似的晶体结构,本研究结果还可为其它相似半导体纳米阵列的研究提供参考和借鉴。
One-dimensional (1D) nanostructured materials are attracting great attentions inthe fields of electronics, biotechnology, catalysis and sensors due to highsurface-to-volume ratio, efficient electron transport, good chemical and thermalstabilities.1D titanate nanotubes (TNTs) are attracting great research interests,because of the advantages of cost-effectiveness, mild reaction conditions, low energyconsumption and simple equipment involved in the hydrothermal synthetic approach.These TNTs posses intrinsic multi-functionality, rising not only from combination ofthe property and application of TiO2nanomaterials with the ion exchange property oflayered titanates with tubular morphology, but also from the distinct property oftubular regions (like tube opening, inner, outer and the interstitial regions). Besides,TNTs also have great potential in catalysis via loading large amount of metal cations,based on their high cation exchange capacity, and generating hybrid nanostructurewith desirable catalytic activity. Interestingly, the morphology of hydrothermallyproduced TNTs can be modulated by tuning a large number of variable factors, andvertically aligned TNTs (VATNTs) were successfully achieved directly on Ti substrateby a modified hydrothermal process. VATNTs often exhibited an orientedmultilayered structure, consisted of vertically aligned individual nanotube with ananometer-scale inner-core cavity exposed to the outer surface. One interestingfeature of VATNTs includes uniform pore size and high available surface area, whichare ready for hybridization with functional groups or molecules. Another is the facilecharge transfer between the underlying conductive substrate and the hybridizedfunctional groups or molecules, due to the good contact of each vertically oriented TNT with Ti slide. These imply a possibility of designing VATNTs-based hybridelectrode with improved activity and signal sensitivity for catalysis and sensing.
     In Chapter1, the property, synthesis and application of TNTs nanomaterials werechiefly introduced. The preparation and application of electrochemical sensors werealso briefly introduced. In Chapter2, VATNTs with high available surface area anduniform pore size was directly achieved on titanium substrate by a facile yet efficienthydrothermal route. By tuning hydrothermal conditions (including the concentrationof NaOH solution, reaction temperature and time, as well as the post treatmentprocedures), the morphology and structure of the titanate nanotubes arrays wereobtained. Based on these results, a general formation mechanism of titanate nanotubesarrays via the hydrothermal route was proposed. The optimum hydrothermalconditions of formation of titanate nanotubes arrays were in10mol·L-1NaOHsolution at140°C for6h. In Chapter3, TNTs possesses unique ion-exchange abilityand presents a uniform pore size and better stability as compared to non-alignednanotubes. These features increase the available surface area and allow greaterpenetration for catalyst loading, further simplify the optimization of the hybridizationprocesses. Here, VATNTs were in situ grew hydrothermally on titanium substrate, andthe possibility of electrochemically hybridizing VATNTs with CuxO nanocubes(CONC) to achieve VATNTs/CONC hybrid nanostructure for electrocatalysis andanalytic application was firstly demonstrated. Results revealed the distinctly enhancedsensing properties of VATNTs/CONC towards glucose, showing significantly loweredoverpotential, ultrafast and ultrasensitive current response in a wide linear range. InChapter4, VATNTs were functioned with graphene oxide (GO) sheets via layer bylayer assembly, and then GO was reduced by electrochemical reduction method. TheVATNTs functionalized RGO (RGO/VATNTs) not only exhibits excellent stability,which demonstrated as good electrocatalysts for small molecules. Simultaneousdetection of catechol (CC) and hydroquinone (HQ) was demonstrated in detail,showing promising application in medical and environmental fields. In Chapter5,3DTNT network via the hydrothermal route was proposed, which possess uniqueion-exchange ability and present uniform pore size and high stability.3D TNT network decorated with Au nanoparticles was obtained by assembly process, whichwas utilized as an efficient biomolecule immobilization platform. The heme was thenintroduced into3D TNT network, which used for determination of NO-2in water. Itsporous structures can enable rapid diffusion of analytes across a large surface area andpore, resulting in reduced response time. In addition, electronic transfer center ofheme facile charge transfer, favorable for electrochemical confining AuNPsnanostructure for catalysis and sensing. In Chapter6, VATNTs possessed increasedavailable surface area and uniform pore size, as well as additional features of highion-exchange capacity and facile charge transfer, which anchoring significant Aucations on the basis of electrostatic self-assembled strategy and producing highlydispersed AuNPs catalysts via a simple one-step chemistry reduction of chitosan (CS).They were demonstrated directly as electrode materials for electrocatalytic oxidationof peroxide. The VATNTs@Au exhibited excellent electrochemical performances forperoxide oxidation, presenting a low peak potential, high current, and highcurrent-to-background ratio. This sensor is expected to play an important role in thefield of peroxide monitoring. In Chapter7, TiO2@C nanorod was prepared throughdirect carbonization of polydopamine on VATNTs. The structures and morphologiesof TiO2@C nanorods were characterized and analyzed in detail by XRD, EDX, SEMand TEM. The TiO2@C nanorod was used as a novel immobilization platform forglucose oxidase (GOD). The entrapped enzyme retains good bioactivity and exhibitssatisfied performance due to the biocompatibility and efficient electron transfer ofTiO2@C nanorod. With satisfactory selectivity, reproducibility, and stability, thenanostructure we proposed offered an alternative for electrode fabricating and glucosebiosensing.
引文
[1] VADDIRAJU SANTHISAGAR, TOMAZOS IOANNIS, BURGESS DIANE J., etal. Emerging synergy between nanotechnology and implantable biosensors: Areview [J]. Biosensors and Bioelectronics,2010,25(7):1553-1565.
    [2] RODUNER E. Size matters: why nanomaterials are different [J]. ChemicalSociety Reviews,2006,35(7):583-592.
    [3] HEATH JAMES R., KUEKES PHILIP J., SNIDER GREGORY S., et al. ADefect-Tolerant Computer Architecture: Opportunities for Nanotechnology [J].Science,1998,280(5370):1716-1721.
    [4] YANG P., YAN H., MAO S., et al. Controlled Growth of ZnO Nanowires andTheir Optical Properties [J]. Advanced Functional Materials,2002,12(5):323-331.
    [5] SHIJU N. R., GULIANTS V. V. Recent developments in catalysis usingnanostructured materials [J]. Applied Catalysis a-General,2009,356(1):1-17.
    [6] MURRAY ROYCE W. Nanoelectrochemistry: Metal Nanoparticles,Nanoelectrodes, and Nanopores [J]. Chemical Reviews,2008,108(7):2688-2720.
    [7] LIU S., SUN S. H., YOU X. Z. Inorganic nanostructured materials for highperformance electrochemical supercapacitors [J]. Nanoscale,2014,6(4):2037-2045.
    [8] REDDY A. L. M., GOWDA S. R., SHAIJUMON M. M., et al. HybridNanostructures for Energy Storage Applications [J]. Advanced Materials,2012,24(37):5045-5064.
    [9] XIA Y., YANG P., SUN Y., et al. One-Dimensional Nanostructures: Synthesis,Characterization, and Applications [J]. Advanced Materials,2003,15(5):353-389.
    [10] HU JIANGTAO, ODOM TERI WANG, LIEBER CHARLES M. Chemistry andPhysics in One Dimension: Synthesis and Properties of Nanowires andNanotubes [J]. Accounts of Chemical Research,1999,32(5):435-445.
    [11] JI J. L., ZHOU Z. Y., YANG X., et al. One-Dimensional Nano-InterconnectionFormation [J]. Small,2013,9(18):3014-3029.
    [12] GANGULY A., CHATTOPADHYAY S., CHEN K. H., et al. Production andStorage of Energy with One-Dimensional Semiconductor Nanostructures [J].Critical Reviews in Solid State and Materials Sciences,2014,39(2):109-153.
    [13] YIN Z. G., ZHENG Q. D. Controlled Synthesis and Energy Applications ofOne-Dimensional Conducting Polymer Nanostructures: An Overview [J].Advanced Energy Materials,2012,2(2):179-218.
    [14] ZHAO Y. S., FU H. B., PENG A. D., et al. Construction and OptoelectronicProperties of Organic One-Dimensional Nanostructures [J]. Accounts ofChemical Research,2010,43(3):409-418.
    [15] TIAN J. F., XU Z. C., SHEN C. M., et al. One-dimensional boron nanostructures:Prediction, synthesis, characterizations, and applications [J]. Nanoscale,2010,2(8):1375-1389.
    [16] WANG WEI, LI ZHENYU, ZHENG WEI, et al. Electrospun palladium(IV)-doped copper oxide composite nanofibers for non-enzymatic glucosesensors [J]. Electrochemistry Communications,2009,11(9):1811-1814.
    [17] YEMINI MIRI, RECHES MEITAL, GAZIT EHUD, et al. PeptideNanotube-Modified Electrodes for Enzyme Biosensor Applications [J].Analytical Chemistry,2005,77(16):5155-5159.
    [18] QIU J. D., WANG R., LIANG R. P., et al. Electrochemically depositednanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application [J].Biosensors&Bioelectronics,2009,24(9):2920-2925.
    [19] CUI Q. H., ZHAO Y. S., YAO J. N. Tailoring the structures and compositions ofone-dimensional organic nanomaterials towards chemical sensing applications[J]. Chemical Science,2014,5(1):52-57.
    [20] LU X. F., WANG C., WEI Y. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications [J]. Small,2009,5(21):2349-2370.
    [21] CHEN X. P., WONG C. K. Y., YUAN C. A., et al. Nanowire-based gas sensors[J]. Sensors and Actuators B-Chemical,2013,177:178-195.
    [22] BIANCO A., KOSTARELOS K., PRATO M. Making carbon nanotubesbiocompatible and biodegradable [J]. Chemical Communications,2011,47(37):10182-10188.
    [23] YANG JIANG, JIANG LIAO-CHUAN, ZHANG WEI-DE, et al. A highlysensitive non-enzymatic glucose sensor based on a simple two-stepelectrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbonnanotube arrays [J]. Talanta,2010,82(1):25-33.
    [24] KUMAR M. A., JUNG S., JI T. Protein Biosensors Based on Polymer Nanowires,Carbon Nanotubes and Zinc Oxide Nanorods [J]. Sensors,2011,11(5):5087-5111.
    [25] QU J., LAI C. One-Dimensional TiO2Nanostructures as Photoanodes forDye-Sensitized Solar Cells [J]. Journal of Nanomaterials,2013.
    [26] YU M., LONG Y. Z., SUN B., et al. Recent advances in solar cells based onone-dimensional nanostructure arrays [J]. Nanoscale,2012,4(9):2783-2796.
    [27] YUAN J. Y., XU Y. Y., MULLER A. H. E. One-dimensional magneticinorganic-organic hybrid nanomaterials [J]. Chemical Society Reviews,2011,40(2):640-655.
    [28] KWIAT MORIA, COHEN SHIMRIT, PEVZNER ALEXANDER, et al.Large-scale ordered1D-nanomaterials arrays: Assembly or not?[J]. Nano Today,2013,8(6):677-694.
    [29] WEINTRAUB B., ZHOU Z. Z., LI Y. H., et al. Solution synthesis ofone-dimensional ZnO nanomaterials and their applications [J]. Nanoscale,2010,2(9):1573-1587.
    [30] CHOPRA N., GAVALAS V. G., HINDS B. J., et al. Functional one-dimensionalnanomaterials: Applications in nanoscale biosensors [J]. Analytical Letters,2007,40(11):2067-2096.
    [31] IIJIMA SUMIO. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [32] DUJARDIN E., EBBESEN T. W., HIURA H., et al. CAPILLARITY ANDWETTING OF CARBON NANOTUBES [J]. Science,1994,265(5180):1850-1852.
    [33] HU LIANGBING, HECHT DAVID S., GR NER GEORGE. Carbon NanotubeThin Films: Fabrication, Properties, and Applications [J]. Chemical Reviews,2010,110(10):5790-5844.
    [34] EDER DOMINIK. Carbon Nanotube Inorganic Hybrids [J]. Chemical Reviews,2010,110(3):1348-1385.
    [35] BAUGHMAN R. H., ZAKHIDOV A. A., DE HEER W. A. Carbon nanotubes-the route toward applications [J]. Science,2002,297(5582):787-792.
    [36] SUN Y. P., FU K. F., LIN Y., et al. Functionalized carbon nanotubes: Propertiesand applications [J]. Accounts of Chemical Research,2002,35(12):1096-1104.
    [37] ZHAO H., ZHENG K. Y., SHENG Y., et al. Template synthesis andluminescence properties of TiO2:Eu3+nanotubes [J]. Journal of Solid StateChemistry,2014,210(1):138-143.
    [38] POLYAKOV A. Y., YADGAROV L., POPOVITZ-BIRO R., et al. Decoration ofWS2Nanotubes and Fullerene-Like MoS2with Gold Nanoparticles [J]. Journalof Physical Chemistry C,2014,118(4):2161-2169.
    [39] NAFFAKH M., MARCO C., ELLIS G. Inorganic WS2nanotubes that improvethe crystallization behavior of poly(3-hydroxybutyrate)[J]. Crystengcomm,2014,16(6):1126-1135.
    [40] SPAHR MICHAEL E., BITTERLI PETRA, NESPER REINHARD, et al.Redox-Active Nanotubes of Vanadium Oxide [J]. Angewandte ChemieInternational Edition,1998,37(9):1263-1265.
    [41] GUO WENXI, CHEN CHANG, YE MEIDAN, et al. Carbon fiber/Co9S8nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells[J]. Nanoscale,2014,6(7):3656-3663.
    [42] MONGUZZI A., LESCI I. G., CAPITANI G. C., et al. Mineral-organic hybridnanotubes as highly sensitive solid state optical chemical sensors [J]. PhysicalChemistry Chemical Physics,2014,16(6):2491-2498.
    [43] RAO C. N. R., GOVINDARAJ A. Synthesis of Inorganic Nanotubes [J].Advanced Materials,2009,21(42):4208-4233.
    [44] WANG X. N., LI G. S., ZHU H. J., et al. Vertically aligned CdTe nanotube arrayson indium tin oxide for visible-light-driven photoelectrocatalysis [J]. AppliedCatalysis B-Environmental,2014,147:17-21.
    [45] NIE X., LI G. Y., GAO M. H., et al. Comparative study on thephotoelectrocatalytic inactivation of Escherichia coli K-12and its mutantEscherichia coli BW25113using TiO2nanotubes as a photoanode [J]. AppliedCatalysis B-Environmental,2014,147:562-570.
    [46] KIM L. J., JANG J. W., PARK J. W. Nano TiO2-functionalized magnetic-coreddendrimer as a photocatalyst [J]. Applied Catalysis B-Environmental,2014,147:973-979.
    [47] SHANKAR KARTHIK, BASHAM JAMES I., ALLAM NAGEH K., et al.Recent Advances in the Use of TiO2Nanotube and Nanowire Arrays forOxidative Photoelectrochemistry [J]. The Journal of Physical Chemistry C,2009,113(16):6327-6359.
    [48] LIU BAOSHUN, NAKATAKAZUYA, LIU SHANHU, et al. Theoretical KineticAnalysis of Heterogeneous Photocatalysis by TiO2Nanotube Arrays: the Effectsof Nanotube Geometry on Photocatalytic Activity [J]. The Journal of PhysicalChemistry C,2012,116(13):7471-7479.
    [49] LI Y., LUO S. L., WEI Z. D., et al. Electrodeposition technique-dependentphotoelectrochemical and photocatalytic properties of an In2S3/TiO2nanotubearray [J]. Physical Chemistry Chemical Physics,2014,16(9):4361-4368.
    [50] ESMAEILZADEH J., GHASHGHAIE S., KHIABANI P. S., et al. Effect ofdispersant on chain formation capability of TiO2nanoparticles under lowfrequency electric fields for NO2gas sensing applications [J]. Journal of theEuropean Ceramic Society,2014,34(5):1201-1208.
    [51] PERILLO P. M., RODR GUEZ D. F. A room temperature chloroform sensorusing TiO2nanotubes [J]. Sensors and Actuators B: Chemical,2014,193(0):263-266.
    [52] BASTAKOTI B. P., TORAD N. L., YAMAUCHI Y. Polymeric MicelleAssembly for the Direct Synthesis of Platinum-Decorated Mesoporous TiO2toward Highly Selective Sensing of Acetaldehyde [J]. ACS Applied Materials&Interfaces,2014,6(2):854-860.
    [53] ZHENG XIAOJIA, YU DONGQI, XIONG FENG-QIANG, et al. Controlledgrowth of semiconductor nanofilms within TiO2nanotubes for nanofilmsensitized solar cells [J]. Chemical communications (Cambridge, England),2014,50(33):4364-4367.
    [54] CHEN C. C., JHENG W. D., LIN C. K. Large-area TiO2nanotube dye-sensitizedsolar cells using thermal-sprayed Ti layers on stainless steel [J]. CeramicsInternational,2014,40(2):3221-3226.
    [55] WU J. B., GUO R. Q., HUANG X. H., et al. Construction of self-supportedporous TiO2/NiO core/shell nanorod arrays for electrochemical capacitorapplication [J]. Journal of Power Sources,2013,243:317-322.
    [56] KIM J. H., ZHU K., KIM J. Y., et al. Tailoring oriented TiO2nanotubemorphology for improved Li storage kinetics [J]. Electrochimica Acta,2013,88:123-128.
    [57] ARAVINDAN V., SHUBHA N., LING W. C., et al. Constructing high energydensity non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods asinsertion host [J]. Journal of Materials ChemistryA,2013,1(20):6145-6151.
    [58] CASINO S., DI LUPO F., FRANCIA C., et al. Surfactant-assisted sol gelpreparation of high-surface area mesoporous TiO2nanocrystalline Li-ion batteryanodes [J]. Journal ofAlloys and Compounds,2014,594:114-121.
    [59] QAMAR M., KIM S. J., GANGULI A. K. TiO2-based nanotubes modified withnickel: synthesis, properties, and improved photocatalytic activity [J].Nanotechnology,2009,20(45):455703.
    [60] WENG Z. Y., GUO H., LIU X. M., et al. Nanostructured TiO2for energyconversion and storage [J]. RscAdvances,2013,3(47):24758-24775.
    [61] ROY POULOMI, BERGER STEFFEN, SCHMUKI PATRIK. TiO2Nanotubes:Synthesis and Applications [J]. Angewandte Chemie International Edition,2011,50(13):2904-2939.
    [62] CHEN XIAOBO, MAO SAMUEL S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications [J]. Chemical Reviews,2007,107(7):2891-2959.
    [63] YAN JUNFENG, ZHOU FENG. TiO2nanotubes: Structure optimization for solarcells [J]. Journal of Materials Chemistry,2011,21(26):9406-9418.
    [64] VARGHESE O. K., GONG D., PAULOSE M., et al. Extreme Changes in theElectrical Resistance of Titania Nanotubes with Hydrogen Exposure [J].Advanced Materials,2003,15(7-8):624-627.
    [65] SUI X. L., WANG Z. B., YANG M., et al. Investigation on C-TiO2nanotubescomposite as Pt catalyst support for methanol electrooxidation [J]. Journal ofPower Sources,2014,255:43-51.
    [66] BAVYKIN DMITRY V., GORDEEV SERGEY N., MOSKALENKO ANDRIYV., et al. Apparent Two-Dimensional Behavior of TiO2Nanotubes Revealed byLight Absorption and Luminescence [J]. The Journal of Physical Chemistry B,2005,109(18):8565-8569.
    [67] THORNE ALISTAIR, KRUTH ANGELA, TUNSTALL DAVID, et al.Formation, Structure, and Stability of Titanate Nanotubes and Their ProtonConductivity [J]. The Journal of Physical Chemistry B,2005,109(12):5439-5444.
    [68] C. HULTEEN JOHN, MARTIN CHARLES R. Ageneral template-based methodfor the preparation of nanomaterials [J]. Journal of Materials Chemistry,1997,7(7):1075-1087.
    [69] FUJIKAWA SHIGENORI, KUNITAKE TOYOKI. Surface Fabrication ofHollow Nanoarchitectures of Ultrathin Titania Layers from Assembled LatexParticles and Tobacco Mosaic Viruses as Templates [J]. Langmuir,2003,19(16):6545-6552.
    [70] HUANG Z. H., WANG L., BAI Y., et al. Recent progress in the preparation ofordered mesoporous carbons using a self-assembled soft template [J]. NewCarbon Materials,2012,27(5):321-336.
    [71] KOBAYASHI SATOSHI, HANABUSA KENJI, HAMASAKI NOBUHIRO, etal. Preparation of TiO2Hollow-Fibers Using Supramolecular Assemblies [J].Chemistry of Materials,2000,12(6):1523-1525.
    [72] MICHAILOWSKI ALEXEJ, ALMAWLAWI DIYAA, CHENG GUOSHENG, etal. Highly regular anatase nanotubule arrays fabricated in porous anodictemplates [J]. Chemical Physics Letters,2001,349(1–2):1-5.
    [73] CHU SONG-ZHU, WADA KENJI, INOUE SATORU, et al. Synthesis andCharacterization of Titania Nanostructures on Glass by Al Anodization andSol Gel Process [J]. Chemistry of Materials,2002,14(1):266-272.
    [74] LIU S. M., GAN L. M., LIU L. H., et al. Synthesis of Single-Crystalline TiO2Nanotubes [J]. Chemistry of Materials,2002,14(3):1391-1397.
    [75] PENG TIANYOU, HASEGAWAAKIRA, QIU JIANRONG, et al. Fabrication ofTitania Tubules with High Surface Area and Well-Developed MesostructuralWalls by Surfactant-Mediated Templating Method [J]. Chemistry of Materials,2003,15(10):2011-2016.
    [76] JUNG J. H., KOBAYASHI H., VAN BOMMEL K. J. C., et al. Creation of novelhelical ribbon and double-layered nanotube TiO2structures using an organogeltemplate [J]. Chemistry of Materials,2002,14(4):1445-1447.
    [77] GONG D., GRIMES C. A., VARGHESE O. K., et al. Titanium oxide nanotubearrays prepared by anodic oxidation [J]. Journal of Materials Research,2001,16(12):3331-3334.
    [78] MOR G. K., CARVALHO M. A., VARGHESE O. K., et al. A room-temperatureTiO2-nanotube hydrogen sensor able to self-clean photoactively fromenvironmental contamination [J]. Journal of Materials Research,2004,19(2):628-634.
    [79] TSUCHIYA HIROAKI, MACAK JAN M., TAVEIRA LUCIANO, et al.Self-organized TiO2nanotubes prepared in ammonium fluoride containing aceticacid electrolytes [J]. Electrochemistry Communications,2005,7(6):576-580.
    [80] GONG DAWEI, GRIMES CRAIG A., VARGHESE OOMMAN K., et al.Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal ofMaterials Research,2001,16(12):3331-3334.
    [81] GHICOV ANDREI, TSUCHIYA HIROAKI, MACAK JAN M., et al. Titaniumoxide nanotubes prepared in phosphate electrolytes [J]. ElectrochemistryCommunications,2005,7(5):505-509.
    [82] MACAK JAN M., SIROTNA K., SCHMUKI P. Self-organized porous titaniumoxide prepared in Na2SO4/NaF electrolytes [J]. Electrochimica Acta,2005,50(18):3679-3684.
    [83] TAVEIRA L. V., MAC K J. M., TSUCHIYA H., et al. Initiation and Growth ofSelf-Organized TiO2Nanotubes Anodically Formed in NH4F/(NH4)2SO4Electrolytes [J]. Journal of the Electrochemical Society,2005,152(10):B405-B410.
    [84] ALBU SERGIU P., GHICOV ANDREI, MACAK JAN M., et al. Self-Organized,Free-Standing TiO2Nanotube Membrane for Flow-through PhotocatalyticApplications [J]. Nano Letters,2007,7(5):1286-1289.
    [85] MEI SHENGLIN, WANG HUAIYU, WANG WEI, et al. Antibacterial effectsand biocompatibility of titanium surfaces with graded silver incorporation intitania nanotubes [J]. Biomaterials,2014,35(14):4255-4265.
    [86] BAVYKIN D. V, FRIEDRICH J. M, WALSH F. C. Protonated Titanates and TiO2Nanostructured Materials: Synthesis, Properties, and Applications [J]. AdvancedMaterials,2006,18(21):2807-2824.
    [87] WANG Y. Q., HU G. Q., DUAN X. F., et al. Microstructure and formationmechanism of titanium dioxide nanotubes [J]. Chemical Physics Letters,2002,365(5–6):427-431.
    [88] YU J. G., YU H. G., CHENG B., et al. Effects of calcination temperature on themicrostructures and photocatalytic activity of titanate nanotubes [J]. Journal ofMolecular Catalysis a-Chemical,2006,249(1-2):135-142.
    [89] KASUGA TOMOKO, HIRAMATSU MASAYOSHI, HOSON AKIHIKO, et al.Formation of Titanium Oxide Nanotube [J]. Langmuir,1998,14(12):3160-3163.
    [90] OU H. H., LO S. L. Review of titania nanotubes synthesized via thehydrothermal treatment: Fabrication, modification, and application [J].Separation and Purification Technology,2007,58(1):179-191.
    [91] ZHOU W. J., LIU H., BOUGHTON R. I., et al. One-dimensionalsingle-crystalline Ti-O based nanostructures: properties, synthesis, modificationsand applications [J]. Journal of Materials Chemistry,2010,20(29):5993-6008.
    [92] TSAI CHIEN CHENG, TENG HSISHENG. Structural Features of NanotubesSynthesized from NaOH Treatment on TiO2with Different Post-Treatments [J].Chemistry of Materials,2005,18(2):367-373.
    [93] CHEN Q., ZHOU W., DU G. H., et al. Trititanate Nanotubes Made via a SingleAlkali Treatment [J]. Advanced Materials,2002,14(17):1208-1211.
    [94] ZHANG MIN, JIN ZHENSHENG, ZHANG JINGWEI, et al. Effect of annealingtemperature on morphology, structure and photocatalytic behavior of nanotubedH2Ti2O4(OH)2[J]. Journal of Molecular Catalysis A: Chemical,2004,217(1–2):203-210.
    [95] KASUGA T., HIRAMATSU M., HOSON A., et al. Titania Nanotubes Preparedby Chemical Processing [J]. Advanced Materials,1999,11(15):1307-1311.
    [96] HERNANDEZ ALONSO M. D., GARCIA RODRIGUEZ S., SANCHEZ B., etal. Revisiting the hydrothermal synthesis of titanate nanotubes: new insights onthe key factors affecting the morphology [J]. Nanoscale,2011,3(5):2233-2240.
    [97] WENG L. Q., SONG S. H., HODGSON S., et al. Synthesis and characterisationof nanotubular titanates and titania [J]. Journal of the European Ceramic Society,2006,26(8):1405-1409.
    [98] BAVYKIN DMITRY V., PARMON VALENTIN N., LAPKIN ALEXEI A., et al.The effect of hydrothermal conditions on the mesoporous structure of TiO2nanotubes [J]. Journal of Materials Chemistry,2004,14(22):3370-3377.
    [99] SREEKANTAN SRIMALA, WEI LAI CHIN. Study on the formation andphotocatalytic activity of titanate nanotubes synthesized via hydrothermalmethod [J]. Journal ofAlloys and Compounds,2010,490(1–2):436-442.
    [100] MENZEL ROBERT, PEIR ANA M., DURRANT JAMES R., et al. Impact ofHydrothermal Processing Conditions on High Aspect Ratio TitanateNanostructures [J]. Chemistry of Materials,2006,18(25):6059-6068.
    [101] WEI MINGDENG, KONISHI YOSHINARI, ZHOU HAOSHEN, et al.Formation of nanotubes TiO2from layered titanate particles by a soft chemicalprocess [J]. Solid State Communications,2005,133(8):493-497.
    [102] CHEN Q., DU G.H., ZHANG S., et al. The structure of trititanate nanotubes [J].Acta Crystallographica Section B,2002,58(4):587-593.
    [103] MORGAN DANAL, TRIANI GERRY, BLACKFORD MARKG, et al. Alkalinehydrothermal kinetics in titanate nanostructure formation [J]. Journal ofMaterials Science,2011,46(2):548-557.
    [104] YAO B. D., CHAN Y. F., ZHANG X. Y., et al. Formation mechanism of TiO2nanotubes [J]. Applied Physics Letters,2003,82(2):281-283.
    [105] NAKAHIRA ATSUSHI, KUBO TAKASHI, NUMAKO CHIYA. FormationMechanism of TiO2-Derived Titanate Nanotubes Prepared by the HydrothermalProcess [J]. Inorganic Chemistry,2010,49(13):5845-5852.
    [106] MA RENZHI, BANDO YOSHIO, SASAKI TAKAYOSHI. Directly RollingNanosheets into Nanotubes [J]. The Journal of Physical Chemistry B,2004,108(7):2115-2119.
    [107] LI MENG JUNG, CHI ZUO YUN, WU YU CHUN. Morphology, ChemicalComposition and Phase Transformation of Hydrothermal Derived SodiumTitanate [J]. Journal of theAmerican Ceramic Society,2012,95(10):3297-3304.
    [108] ZHANG S., PENG L. M., CHEN Q., et al. Formation Mechanism ofH_{2}Ti_{3}O_{7} Nanotubes [J]. Physical Review Letters,2003,91(25):256103.
    [109] WU DI, LIU JI, ZHAO XIAONING, et al. Sequence of Events for theFormation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts [J].Chemistry of Materials,2005,18(2):547-553.
    [110] SUGIMOTO WATARU, TERABAYASHI OSAMU, MURAKAMI YASUSHI,et al. Electrophoretic deposition of negatively charged tetratitanate nanosheetsand transformation into preferentially oriented TiO2(B) film [J]. Journal ofMaterials Chemistry,2002,12(12):3814-3818.
    [111] KUKOVECZ áKOS, HODOS M RIA, HORV TH ENDRE, et al. OrientedCrystal Growth Model Explains the Formation of Titania Nanotubes [J]. TheJournal of Physical Chemistry B,2005,109(38):17781-17783.
    [112] YUAN ZHONG-YONG, SU BAO-LIAN. Titanium oxide nanotubes,nanofibers and nanowires [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2004,241(1–3):173-183.
    [113] YUAN Z. Y., ZHANG X. B., SU B. L. Moderate hydrothermal synthesis ofpotassium titanate nanowires [J]. Applied Physics A,2004,78(7):1063-1066.
    [114] SUN XIAOMING, CHEN XING, LI YADONG. Large-Scale Synthesis ofSodium and Potassium Titanate Nanobelts [J]. Inorganic Chemistry,2002,41(20):4996-4998.
    [115] MA RENZHI, FUKUDA KATSUTOSHI, SASAKI TAKAYOSHI, et al.Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-rayAbsorption Fine Structure and Electron Diffraction Characterizations [J]. TheJournal of Physical Chemistry B,2005,109(13):6210-6214.
    [116] LIU PORUN, ZHANG HAIMIN, LIU HONGWEI, et al. A Facile Vapor-PhaseHydrothermal Method for Direct Growth of Titanate Nanotubes on a TitaniumSubstrate via a Distinctive Nanosheet Roll-Up Mechanism [J]. Journal of theAmerican Chemical Society,2011,133(47):19032-19035.
    [117] ZHANG HAIMIN, LIU PORUN, WANG HONGJUAN, et al. Facile Formationof Branched Titanate Nanotubes to Grow a Three-Dimensional NanotubularNetwork Directly on a Solid Substrate [J]. Langmuir,2009,26(3):1574-1578.
    [118] BAVYKIN DMITRY V., KULAK ALEXANDER N., WALSH FRANK C.Control over the Hierarchical Structure of Titanate Nanotube Agglomerates [J].Langmuir,2011,27(9):5644-5649.
    [119] POUDEL B., WANG W. Z., DAMES C., et al. Formation of crystallized titaniananotubes and their transformation. into nanowires [J]. Nanotechnology,2005,16(9):1935-1940.
    [120] CHEN Q., DU G. H., ZHANG S., et al. The structure of trititanate nanotubes[J]. Acta Crystallographica Section B-Structural Science,2002,58:587-593.
    [121] NAKAHIRA A., KATO W., TAMAI M., et al. Synthesis of nanotube from alayered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources[J]. Journal of Materials Science,2004,39(13):4239-4245.
    [122] NOSHEEN SHANEELA, GALASSO FRANCIS S., SUIB STEVEN L. Role ofTi O Bonds in Phase Transitions of TiO2[J]. Langmuir,2009,25(13):7623-7630.
    [123] GAO TAO, FJELLV G HELMER, NORBY POUL. Crystal Structures ofTitanate Nanotubes: A Raman Scattering Study [J]. Inorganic Chemistry,2009,48(4):1423-1432.
    [124] TSAI CHIEN-CHENG, TENG HSISHENG. Nanotube Formation from aSodium Titanate Powder via Low-Temperature Acid Treatment [J]. Langmuir,2008,24(7):3434-3438.
    [125] HUANG JIQUAN, CAO YONGGE, WANG MEILI, et al. Tailoring ofLow-Dimensional Titanate Nanostructures [J]. The Journal of PhysicalChemistry C,2010,114(35):14748-14754.
    [126] GUO Y., LEE N. H., OH H. J., et al. Structure-tunable synthesis of titanatenanotube thin films via a simple hydrothermal process [J]. Nanotechnology,2007,18(29).
    [127] GUO Y., LEE N. H., OH H. J., et al. Preparation of titanate nanotube thin filmusing hydrothermal method [J]. Thin Solid Films,2008,516(23):8363-8371.
    [128] DONG PENGYU, LIU BIN, WANG YUHUA, et al. A Study on the H2Ti3O7Sheet-Like Products During the Formation Process of Titanate Nanotubes [J].Journal of the Electrochemical Society,2011,158(9):K183-K186.
    [129] LAN Y., GAO X. P, ZHU H. Y, et al. Titanate Nanotubes and NanorodsPrepared from Rutile Powder [J]. Advanced Functional Materials,2005,15(8):1310-1318.
    [130] YU J. G., YU H. G. Facile synthesis and characterization of novelnanocomposites of titanate nanotubes and rutile nanocrystals [J]. MaterialsChemistry and Physics,2006,100(2-3):507-512.
    [131] GAJOVIC A., FRISCIC I., PLODINEC M., et al. High temperature Ramanspectroscopy of titanate nanotubes [J]. Journal of Molecular Structure,2009,924-26:183-191.
    [132] PAPP S., KOROSI L., MEYNEN V., et al. The influence of temperature on thestructural behaviour of sodium tri-and hexa-titanates and their protonated forms[J]. Journal of Solid State Chemistry,2005,178(5):1614-1619.
    [133] NAKAHIRA ATSUSHI, KUBO TAKASHI, NUMAKO CHIYA. TiO2-DerivedTitanate Nanotubes by Hydrothermal Process with Acid Treatments and TheirMicrostructural Evaluation [J]. ACS Applied Materials&Interfaces,2010,2(9):2611-2616.
    [134] MOZIA S., BOROWIAK PALEN E., PRZEPIORSKI J., et al.Physico-chemical properties and possible photocatalytic applications of titanatenanotubes synthesized via hydrothermal method [J]. Journal of Physics andChemistry of Solids,2010,71(3):263-272.
    [135] TSAI CHIEN CHENG, TENG HSISHENG. Regulation of the PhysicalCharacteristics of Titania Nanotube Aggregates Synthesized from HydrothermalTreatment [J]. Chemistry of Materials,2004,16(22):4352-4358.
    [136] CHEN X. B., CAO S., WENG X. L., et al. Effects of morphology and structureof titanate supports on the performance of ceria in selective catalytic reduction ofNO [J]. Catalysis Communications,2012,26:178-182.
    [137] SONG F. J., ZHAO Y. X., ZHONG Q. Adsorption of carbon dioxide onamine-modified TiO2nanotubes [J]. Journal of Environmental Sciences-China,2013,25(3):554-560.
    [138] TANG ZI-RONG, LI FAN, ZHANG YANHUI, et al. Composites of TitanateNanotube and Carbon Nanotube as Photocatalyst with High Mineralization Ratiofor Gas-Phase Degradation of Volatile Aromatic Pollutant [J]. The Journal ofPhysical Chemistry C,2011,115(16):7880-7886.
    [139] VIJAYAN BAIJU K., DIMITRIJEVIC NADA M., WU JINSONG, et al. TheEffects of Pt Doping on the Structure and Visible Light Photoactivity of TitaniaNanotubes [J]. The Journal of Physical Chemistry C,2010,114(49):21262-21269.
    [140] BAVYKIN DMITRY V., LAPKIN ALEXEI A., PLUCINSKI PAWEL K., et al.Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2Nanotubes [J]. The Journal of Physical Chemistry B,2005,109(41):19422-19427.
    [141] ZHU KAI, NEALE NATHAN R., MIEDANER ALEXANDER, et al. EnhancedCharge-Collection Efficiencies and Light Scattering in Dye-Sensitized SolarCells Using Oriented TiO2NanotubesArrays [J]. Nano Letters,2006,7(1):69-74.
    [142] MA Y. T., LIN Y., XIAO X. R., et al. Sonication-hydrothermal combinationtechnique for the synthesis of titanate nanotubes from commercially availableprecursors [J]. Materials Research Bulletin,2006,41(2):237-243.
    [143] SAPONJIC Z. V, DIMITRIJEVIC N. M, TIEDE D. M, et al. ShapingNanometer-Scale Architecture Through Surface Chemistry [J]. AdvancedMaterials,2005,17(8):965-971.
    [144] OKADA KENJI, TAKAMATSU YUICHIRO, TOKUDOME YASUAKI, et al.Highly oriented growth of titanate nanotubes (TNTs) in micro and confinementspaces on sol–gel derived amorphous TiO2thin films under moderatehydrothermal condition [J]. Journal of Sol-Gel Science and Technology,2013,65(1):36-40.
    [145] BAVYKIN DMITRY V., KULAK ALEXANDER N., WALSH FRANK C.Metastable Nature of Titanate Nanotubes in an Alkaline Environment [J]. CrystalGrowth&Design,2010,10(10):4421-4427.
    [146] MORGADO EDISSON, DE ABREU MARCO A. S., MOURE GUSTAVO T.,et al. Characterization of Nanostructured Titanates Obtained by Alkali Treatmentof TiO2-Anatases with Distinct Crystal Sizes [J]. Chemistry of Materials,2007,19(4):665-676.
    [147] ELSANOUSI AMMAR, ELSSFAH E. M., ZHANG J., et al. HydrothermalTreatment Duration Effect on the Transformation of Titanate Nanotubes intoNanoribbons [J]. The Journal of Physical Chemistry C,2007,111(39):14353-14357.
    [148] DENG QIXIN, WEI MINGDENG, DING XIAOKUN, et al. Brookite-typeTiO2nanotubes [J]. Chemical Communications,2008(31):3657-3659.
    [149] MORGAN DANA L., LIU HONG WEI, FROST RAY L., et al. Implications ofPrecursor Chemistry on the Alkaline Hydrothermal Synthesis of Titania/TitanateNanostructures [J]. The Journal of Physical Chemistry C,2009,114(1):101-110.
    [150] TIAN ZHENGRONG R., VOIGT JAMES A., LIU JUN, et al. Large OrientedArrays and Continuous Films of TiO2-Based Nanotubes [J]. Journal of theAmerican Chemical Society,2003,125(41):12384-12385.
    [151] INOUE Y., NODA I., TORIKAI T., et al. TiO2nanotube, nanowire, andrhomboid-shaped particle thin films fixed on a titanium metal plate [J]. Journalof Solid State Chemistry,2010,183(1):57-64.
    [152] PREDA SILVIU, TEODORESCU VALENTIN SERBAN, MUSUC ADINAMAGDALENA, et al. Influence of the TiO2precursors on the thermal andstructural stability of titanate-based nanotubes [J]. Journal of Materials Research,2013,28(03):294-303.
    [153] CAMPOSECO R., CASTILLO S., MEJIA I., et al. Active TiO2nanotubes forCO oxidation at low temperature [J]. Catalysis Communications,2012,17:81-88.
    [154] DMITRY V. BAVYKIN, BARBARA A. CRESSEY, MARK E. LIGHT, et al.An aqueous, alkaline route to titanate nanotubes under atmospheric pressureconditions [J]. Nanotechnology,2008,19(27):275604.
    [155] SEO D. S., LEE J. K., KIM H. Preparation of nanotube-shaped TiO2powder [J].Journal of Crystal Growth,2001,229(1):428-432.
    [156] SEO H. K., KIM G. S., ANSARI S. G., et al. A study on the structure/phasetransformation of titanate nanotubes synthesized at various hydrothermaltemperatures [J]. Solar Energy Materials and Solar Cells,2008,92(11):1533-1539.
    [157] SUN XIAOMING, LI YADONG. Synthesis and Characterization ofIon-Exchangeable Titanate Nanotubes [J]. Chemistry–A European Journal,2003,9(10):2229-2238.
    [158] BAVYKIN DMITRYV, LAPKIN ALEXEIA, PLUCINSKI PAWELK, et al.Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes [J]. Topicsin Catalysis,2006,39(3-4):151-160.
    [159] ZHU BAOLIN, GUO QI, HUANG XUELIANG, et al. Characterization andcatalytic performance of TiO2nanotubes-supported gold and copper particles [J].Journal of Molecular Catalysis A: Chemical,2006,249(1–2):211-217.
    [160] ZHU BAOLIN, ZHANG XIAOXIANG, WANG SHURONG, et al. Synthesisand catalytic performance of TiO2nanotubes-supported copper oxide forlow-temperature CO oxidation [J]. Microporous and Mesoporous Materials,2007,102(1–3):333-336.
    [161] LUO SHENGLIAN, SU FANG, LIU CHENGBIN, et al. A new method forfabricating a CuO/TiO2nanotube arrays electrode and its application as asensitive nonenzymatic glucose sensor [J]. Talanta,2011,86(0):157-163.
    [162] WALSH F. C., BAVYKIN D. V., TORRENTE-MURCIANO L., et al. Synthesisof novel composite materials via the deposition of precious metals ontoprotonated titanate (TiO2) nanotubes [J]. Transactions of the IMF,2006,84(6):293-299.
    [163] LI HONG, ZHU BAOLIN, FENG YUNFENG, et al. Synthesis,characterization of TiO2nanotubes-supported MS (TiO2NTs@MS, M=Cd, Zn)and their photocatalytic activity [J]. Journal of Solid State Chemistry,2007,180(7):2136-2142.
    [164] LIU NAN, CHEN XIAOYIN, ZHANG JINLI, et al. A review on TiO2-basednanotubes synthesized via hydrothermal method: Formation mechanism,structure modification, and photocatalytic applications [J]. Catalysis Today,2014,225(0):34-51.
    [165] RISS ALEXANDER, BERGER THOMAS, GROTHE HINRICH, et al.Chemical Control of Photoexcited States in Titanate Nanostructures [J]. NanoLetters,2007,7(2):433-438.
    [166] SAKAI NOBUYUKI, EBINA YASUO, TAKADA KAZUNORI, et al.Electronic Band Structure of Titania Semiconductor Nanosheets Revealed byElectrochemical and Photoelectrochemical Studies [J]. Journal of the AmericanChemical Society,2004,126(18):5851-5858.
    [167] LI QIUYE, ZHANG JINGWEI, JIN ZHENSHENG, et al. Photo andphotoelectrochemical properties of p-type low-temperature dehydrated nanotubetitanic acid [J]. Electrochemistry Communications,2006,8(5):741-746.
    [168] TACHIKAWA TAKASHI, TOJO SACHIKO, FUJITSUKA MAMORU, et al.Photoinduced Charge Separation in Titania Nanotubes [J]. The Journal ofPhysical Chemistry B,2006,110(29):14055-14059.
    [169] DANG HAIFENG, DONG XINFA, DONG YINGCHAO, et al. TiO2nanotubes coupled with nano-Cu(OH)2for highly efficient photocatalytichydrogen production [J]. International Journal of Hydrogen Energy,2013,38(5):2126-2135.
    [170] HU CHENG CHING, HSU TZU CHIEN, LU SHAN YU. Effect of nitrogendoping on the microstructure and visible light photocatalysis of titanatenanotubes by a facile cohydrothermal synthesis via urea treatment [J]. AppliedSurface Science,2013,280(0):171-178.
    [171] HERN NDEZ ALONSO MAR A D., GARC A RODR GUEZ SERGIO, SUREZ SILVIA, et al. Operando DRIFTS study of the role of hydroxyls groups intrichloroethylene photo-oxidation over titanate and TiO2nanostructures [J].Catalysis Today,2013,206(0):32-39.
    [172] NIE Z. M., ZHOU X. Y., ZHANG Q. F., et al. Aggregated TiO2-BasedNanotubes for Dye Sensitized Solar Cells [J]. Science of Advanced Materials,2013,5(11):1750-1755.
    [173] LEE CHUNG KUNG, WANG CHENG CAI, JUANG LAIN CHUEN, et al.Effects of sodium content on the microstructures and basic dye cation exchangeof titanate nanotubes [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2008,317(1–3):164-173.
    [174] DAI HONG, CHI YUWU, WU XIAOPING, et al. Biocompatibleelectrochemiluminescent biosensor for choline based on enzyme/titanatenanotubes/chitosan composite modified electrode [J]. Biosensors andBioelectronics,2010,25(6):1414-1419.
    [175] ERJAVEC BO TJAN, TI LER TATJANA, KAPLAN RENATA, et al. TitanateNanotubes As a Novel Catalyst for Removal of Toxicity and Estrogenicity ofBisphenol A in the CWAO Process [J]. Industrial&Engineering ChemistryResearch,2013,52(35):12559-12566.
    [176] CHAO HUAN PING, LEE CHUNG KUNG, JUANG LAIN CHUEN, et al.Sorption of Organic Compounds, Oxyanions, and Heavy Metal Ions onSurfactant Modified Titanate Nanotubes [J]. Industrial&Engineering ChemistryResearch,2013,52(29):9843-9850.
    [177] WANG S. R., KANG Y. F., WANG L. W., et al. Organic/inorganic hybridsensors: Areview [J]. Sensors and Actuators B-Chemical,2013,182:467-481.
    [178] WANG JOSEPH. Electrochemical Glucose Biosensors [J]. Chemical Reviews,2007,108(2):814-825.
    [179] KAUSHIK A., VASUDEV A., ARYA S. K., et al. Recent advances in cortisolsensing technologies for point-of-care application [J]. Biosensors&Bioelectronics,2014,53:499-512.
    [180] YAN F., ZHANG M., LI J. H. Solution-Gated Graphene Transistors forChemical and Biological Sensors [J]. Advanced Healthcare Materials,2014,3(3):313-331.
    [181] TROJANOWICZ M. Enantioselective electrochemical sensors and biosensors:Amini-review [J]. Electrochemistry Communications,2014,38:47-52.
    [182] SUGINTA W., KHUNKAEWLA P., SCHULTE A. Electrochemical BiosensorApplications of Polysaccharides Chitin and Chitosan [J]. Chemical Reviews,2013,113(7):5458-5479.
    [183] KURNIAWAN FREDY, TSAKOVA VESSELA, MIRSKY VLADIMIR. GoldNanoparticles in Nonenzymatic Electrochemical Detection of Sugars [J].Electroanalysis,2006,18(19-20):1937-1942.
    [184] REITZ ELIOT, JIA WENZHAO, GENTILE MICHAEL, et al. CuONanospheres Based Nonenzymatic Glucose Sensor [J]. Electroanalysis,2008,20(22):2482-2486.
    [185] LI XIN, ZHU QINGYUAN, TONG SHENGFU, et al. Self-assembledmicrostructure of carbon nanotubes for enzymeless glucose sensor [J]. Sensorsand Actuators B: Chemical,2009,136(2):444-450.
    [186] YUAN JUNHUA, CHEN JIANRONG, WU XIAOHUA, et al. A NADHbiosensor based on diphenylalanine peptide/carbon nanotube nanocomposite [J].Journal of Electroanalytical Chemistry,2011,656(1–2):120-124.
    [187] DE LA RICA ROBERTO, PEJOUX CHRISTOPHE, MATSUI HIROSHI.Assemblies of Functional Peptides and Their Applications in Building Blocks forBiosensors [J]. Advanced Functional Materials,2011,21(6):1018-1026.
    [188] WANG HAIBO, ZHANG QING, CHU XIA, et al. Graphene Oxide–PeptideConjugate as an Intracellular Protease Sensor for Caspase-3Activation Imagingin Live Cells [J]. Angewandte Chemie International Edition,2011,50(31):7065-7069.
    [189] KUMAR M. ANISH, JUNG SOYOUN, JI TAEKSOO. Protein BiosensorsBased on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods [J].Sensors,2011,11(5):5087-5111.
    [190] LEI J. P., JU H. X. Signal amplification using functional nanomaterials forbiosensing [J]. Chemical Society Reviews,2012,41(6):2122-2134.
    [191] KONG L. R., CHEN W. Carbon Nanotube and Graphene-based BioinspiredElectrochemicalActuators [J].Advanced Materials,2014,26(7):1025-1043.
    [192] YIN T. J., QIN W. Applications of nanomaterials in potentiometric sensors [J].Trac-Trends in Analytical Chemistry,2013,51:79-86.
    [193] CHEN A. C., CHATTERJEE S. Nanomaterials based electrochemical sensorsfor biomedical applications [J]. Chemical Society Reviews,2013,42(12):5425-5438.
    [194] WU S. X., HE Q. Y., TAN C. L., et al. Graphene-Based ElectrochemicalSensors [J]. Small,2013,9(8):1160-1172.
    [195] PRAKASH S., CHAKRABARTY T., SINGH A. K., et al. Polymer thin filmsembedded with metal nanoparticles for electrochemical biosensors applications[J]. Biosensors&Bioelectronics,2013,41:43-53.
    [196] GALSTYAN V., COMINI E., FAGLIA G., et al. TiO2Nanotubes: RecentAdvances in Synthesis and Gas Sensing Properties [J]. Sensors,2013,13(11):14813-14838.
    [197] JUSTINO C. I. L., ROCHA-SANTOS T. A. P., DUARTE A. C. Advances inpoint-of-care technologies with biosensors based on carbon nanotubes [J].Trac-Trends in Analytical Chemistry,2013,45:24-36.
    [198] GAO C., GUO Z., LIU J. H., et al. The new age of carbon nanotubes: Anupdated review of functionalized carbon nanotubes in electrochemical sensors [J].Nanoscale,2012,4(6):1948-1963.
    [199] LIU X. Q., ZHANG J. M., YAN R., et al. Preparation of graphenenanoplatelet-titanate nanotube composite and its advantages over the two singlecomponents as biosensor immobilization materials [J]. Biosensors&Bioelectronics,2014,51:76-81.
    [200] KITANO MASAAKI, WADA EMIKO, NAKAJIMA KIYOTAKA, et al.Protonated Titanate Nanotubes with Lewis and Br nsted Acidity: Relationshipbetween Nanotube Structure and Catalytic Activity [J]. Chemistry of Materials,2013,25(3):385-393.
    [1] XIA Y., YANG P., SUN Y., et al. One-Dimensional Nanostructures: Synthesis,Characterization, and Applications [J]. Advanced Materials,2003,15(5):353-389.
    [2] CHOPRA N., GAVALAS V. G., HINDS B. J., et al. Functional one-dimensionalnanomaterials: Applications in nanoscale biosensors [J]. Analytical Letters,2007,40(11):2067-2096.
    [3] LU X. F., WANG C., WEI Y. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications [J]. Small,2009,5(21):2349-2370.
    [4] BAVYKIN D. V., FRIEDRICH J. M., WALSH F. C. Protonated titanates and TiO2nanostructured materials: Synthesis, properties, and applications [J]. AdvancedMaterials,2006,18(21):2807-2824.
    [5] SHI LIANG, CAO LIXIN, LIU WEI, et al. Astudy on partially protonated titanatenanotubes: Enhanced thermal stability and improved photocatalytic activity [J].Ceramics International,2014,40(3):4717-4723.
    [6] SREEKANTAN SRIMALA, WEI LAI CHIN. Study on the formation andphotocatalytic activity of titanate nanotubes synthesized via hydrothermalmethod [J]. Journal ofAlloys and Compounds,2010,490(1–2):436-442.
    [7] HU WANBIAO, LI LIPING, LI GUANGSHE, et al. Synthesis of Titanate-BasedNanotubes for One-Dimensionally Confined Electrical Properties [J]. TheJournal of Physical Chemistry C,2009,113(39):16996-17001.
    [8] KASUGA TOMOKO, HIRAMATSU MASAYOSHI, HOSON AKIHIKO, et al.Formation of Titanium Oxide Nanotube [J]. Langmuir,1998,14(12):3160-3163.
    [9] KASUGAT., HIRAMATSU M., HOSON A., et al. Titania Nanotubes Prepared byChemical Processing [J]. Advanced Materials,1999,11(15):1307-1311.
    [10] HERNANDEZ ALONSO M. D., GARCIA RODRIGUEZ S., SANCHEZ B., etal. Revisiting the hydrothermal synthesis of titanate nanotubes: new insights onthe key factors affecting the morphology [J]. Nanoscale,2011,3(5):2233-2240.
    [11] KWIAT MORIA, COHEN SHIMRIT, PEVZNER ALEXANDER, et al.Large-scale ordered1D-nanomaterials arrays: Assembly or not?[J]. Nano Today,2013,8(6):677-694.
    [12] TIAN ZHENGRONG R., VOIGT JAMES A., LIU JUN, et al. Large OrientedArrays and Continuous Films of TiO2-Based Nanotubes [J]. Journal of theAmerican Chemical Society,2003,125(41):12384-12385.
    [13] YADA MITSUNORI, INOUE YUKO, UOTA MASAFUMI, et al. Plate, Wire,Mesh, Microsphere, and Microtube Composed of Sodium Titanate Nanotubes ona Titanium Metal Template [J]. Langmuir,2007,23(5):2815-2823.
    [14] GUO Y., LEE N. H., OH H. J., et al. Structure-tunable synthesis of titanatenanotube thin films via a simple hydrothermal process [J]. Nanotechnology,2007,18(29).
    [15] FENG XINJIAN, SHANKAR KARTHIK, VARGHESE OOMMAN K., et al.Vertically Aligned Single Crystal TiO2Nanowire Arrays Grown Directly onTransparent Conducting Oxide Coated Glass: Synthesis Details and Applications[J]. Nano Letters,2008,8(11):3781-3786.
    [16] YANG YANG, WANG XIAOHUI, ZHONG CAIFU, et al. Synthesis and GrowthMechanism of Lead Titanate Nanotube Arrays by Hydrothermal Method [J].Journal of the American Ceramic Society,2008,91(10):3388-3390.
    [17] AN HUIQIN, ZHU BAOLIN, LI JUNXIA, et al. Synthesis and Characterizationof Thermally Stable Nanotubular TiO2and Its Photocatalytic Activity [J]. TheJournal of Physical Chemistry C,2008,112(48):18772-18775.
    [18] ZHANG HAIMIN, LIU PORUN, WANG HONGJUAN, et al. Facile Formationof Branched Titanate Nanotubes to Grow a Three-Dimensional NanotubularNetwork Directly on a Solid Substrate [J]. Langmuir,2009,26(3):1574-1578.
    [19] ZHANG MIN, JIN ZHENSHENG, ZHANG JINGWEI, et al. Effect of annealingtemperature on morphology, structure and photocatalytic behavior of nanotubedH2Ti2O4(OH)2[J]. Journal of Molecular Catalysis A: Chemical,2004,217(1–2):203-210.
    [20] SUN XIAOMING, LI YADONG. Synthesis and Characterization ofIon-Exchangeable Titanate Nanotubes [J]. Chemistry–A European Journal,2003,9(10):2229-2238.
    [21] THORNE ALISTAIR, KRUTH ANGELA, TUNSTALL DAVID, et al.Formation, Structure, and Stability of Titanate Nanotubes and Their ProtonConductivity [J]. The Journal of Physical Chemistry B,2005,109(12):5439-5444.
    [22] RISS ALEXANDER, BERGER THOMAS, GROTHE HINRICH, et al.Chemical Control of Photoexcited States in Titanate Nanostructures [J]. NanoLetters,2007,7(2):433-438.
    [23] BAVYKIN DMITRYV, LAPKIN ALEXEIA, PLUCINSKI PAWELK, et al.Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes [J]. Topicsin Catalysis,2006,39(3-4):151-160.
    [24] LIU X. Q., ZHANG J. M., YAN R., et al. Preparation of graphenenanoplatelet-titanate nanotube composite and its advantages over the two singlecomponents as biosensor immobilization materials [J]. Biosensors&Bioelectronics,2014,51:76-81.
    [25] YANG JIANJUN, JIN ZHENSHENG, WANG XIAODONG, et al. Study oncomposition, structure and formation process of nanotube Na2Ti2O4(OH)2[J].Dalton Transactions,2003,0(20):3898-3901.
    [1] RAPPAPORT F., EICHHORN E. A rapid titrimetric method for determination ofblood-sugar [J].American journal of clinical pathology,1950,20(9):834-836.
    [2] YANG JIANG, JIANG LIAO CHUAN, ZHANG WEI DE, et al. A highlysensitive non-enzymatic glucose sensor based on a simple two-stepelectrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbonnanotube arrays [J]. Talanta,2010,82(1):25-33.
    [3] CASELLA INNOCENZO G., GATTA MARIA, GUASCITO MARIA R., et al.Highly-dispersed copper microparticles on the active gold substrate as anamperometric sensor for glucose [J]. Analytica Chimica Acta,1997,357(1-2):63-71.
    [4] LEE S. H., KARIM M. M., Recent Chemiluminescence Applications for GlucoseSensing, in Glucose Sensing, C. Geddes and J. Lakowicz, Editors.2006, SpringerUS. p.311-322.
    [5] WILSON A. M., WORK T. M., BUSHWAY A. A., et al. HPLC Determination ofFructose, Glucose, and Sucrose in Potatoes [J]. Journal of Food Science,1981,46(1):300-301.
    [6] BAUER BEVERLY A., YOUNATHAN EZZAT S. Gas chromatographicdetermination of the anomers of blood glucose in normal and diabetic rats [J].Biochemical Medicine,1980,24(3):293-299.
    [7] SUNEESH P. V., CHANDHINI K., RAMACHANDRAN T., et al. Tantalum oxidehoneycomb architectures for the development of a non-enzymatic glucose sensorwith wide detection range [J]. Biosensors and Bioelectronics,2013,50(0):472-477.
    [8] STUART DOUGLAS A., YONZON CHANDA RANJIT, ZHANG XIAOYU, etal. Glucose Sensing Using Near-Infrared Surface-Enhanced RamanSpectroscopy: Gold Surfaces,10-Day Stability, and Improved Accuracy [J].Analytical Chemistry,2005,77(13):4013-4019.
    [9] SINGH BALJIT, LAFFIR FATHIMA, MCCORMAC TIMOTHY, et al. PtAu/Cbased bimetallic nanocomposites for non-enzymatic electrochemical glucosedetection [J]. Sensors and Actuators B: Chemical,2010,150(1):80-92.
    [10] SUN YIPENG, BUCK HARVEY, MALLOUK THOMAS E. CombinatorialDiscovery of Alloy Electrocatalysts for Amperometric Glucose Sensors [J].Analytical Chemistry,2001,73(7):1599-1604.
    [11] LI YING, SONG YAN YAN, YANG CHEN, et al. Hydrogen bubble dynamictemplate synthesis of porous gold for nonenzymatic electrochemical detection ofglucose [J]. Electrochemistry Communications,2007,9(5):981-988.
    [12] PARK SEJIN, CHUNG TAEK DONG, KIM HEE CHAN. NonenzymaticGlucose Detection Using Mesoporous Platinum [J]. Analytical Chemistry,2003,75(13):3046-3049.
    [13] LIU YIXIN, DING YU, ZHANG YUCHAN, et al. Pt–Au nanocorals, Ptnanofibers and Au microparticles prepared by electrospinning and calcination fornonenzymatic glucose sensing in neutral and alkaline environment [J]. Sensorsand Actuators B: Chemical,2012,171–172(0):954-961.
    [14] YE JIAN SHAN, WEN YING, DE ZHANG WEI, et al. Nonenzymatic glucosedetection using multi-walled carbon nanotube electrodes [J]. ElectrochemistryCommunications,2004,6(1):66-70.
    [15] ZHANG YUCHAN, LIU YIXIN, SU LIANG, et al. CuO nanowires basedsensitive and selective non-enzymatic glucose detection [J]. Sensors andActuators B: Chemical,2014,191(0):86-93.
    [16] REITZ ELIOT, JIAWENZHAO, GENTILE MICHAEL, et al. CuO NanospheresBased Nonenzymatic Glucose Sensor [J]. Electroanalysis,2008,20(22):2482-2486.
    [17] WANG WEN, ZHANG LILI, TONG SHENGFU, et al. Three-dimensionalnetwork films of electrospun copper oxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics,2009,25(4):708-714.
    [18] JIANG LIAO CHUAN, ZHANG WEI DE. A highly sensitive nonenzymaticglucose sensor based on CuO nanoparticles-modified carbon nanotube electrode[J]. Biosensors and Bioelectronics,2010,25(6):1402-1407.
    [19] SUN XIAOMING, LI YADONG. Synthesis and Characterization ofIon-Exchangeable Titanate Nanotubes [J]. Chemistry–A European Journal,2003,9(10):2229-2238.
    [20] BAVYKIN DMITRYV, LAPKIN ALEXEIA, PLUCINSKI PAWELK, et al.Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes [J]. Topicsin Catalysis,2006,39(3-4):151-160.
    [21] BAVYKIN D. V, FRIEDRICH J. M, WALSH F. C. Protonated Titanates and TiO2Nanostructured Materials: Synthesis, Properties, and Applications [J]. AdvancedMaterials,2006,18(21):2807-2824.
    [22] BURKE L. D., BRUTON G. M., COLLINS J. A. The redox properties of activesites and the importance of the latter in electrocatalysis at copper in base [J].ElectrochimicaActa,1998,44(8-9):1467-1479.
    [23] ZHANG S., PENG L. M., CHEN Q., et al. Formation Mechanism ofH_{2}Ti_{3}O_{7} Nanotubes [J]. Physical Review Letters,2003,91(25):256103.
    [24] LE WEN ZHI, LIU YOU QIN. Preparation of nano-copper oxide modifiedglassy carbon electrode by a novel film plating/potential cycling method and itscharacterization [J]. Sensors and Actuators B: Chemical,2009,141(1):147-153.
    [25] YOU TIANYAN, NIWA OSAMU, TOMITA MASATO, et al. Characterizationand electrochemical properties of highly dispersed copper oxide/hydroxidenanoparticles in graphite-like carbon films prepared by RF sputtering method [J].Electrochemistry Communications,2002,4(5):468-471.
    [26] CASELLA INNOCENZO G., CATALDI TOMMASO R. I., GUERRIERIANTONIO, et al. Copper dispersed into polyaniline films as an amperometricsensor in alkaline solutions of amino acids and polyhydric compounds [J].Analytica Chimica Acta,1996,335(3):217-225.
    [27] KANG XINHUANG, MAI ZHIBIN, ZOU XIAOYONG, et al. A sensitivenonenzymatic glucose sensor in alkaline media with a coppernanocluster/multiwall carbon nanotube-modified glassy carbon electrode [J].Analytical Biochemistry,2007,363(1):143-150.
    [28] WANG XUE, HU CHENGUO, LIU HONG, et al. Synthesis of CuOnanostructures and their application for nonenzymatic glucose sensing [J].Sensors and Actuators B: Chemical,2010,144(1):220-225.
    [29] ZHUANG ZHENJING, SU XIAODONG, YUAN HONGYAN, et al. Animproved sensitivity non-enzymatic glucose sensor based on a CuO nanowiremodified Cu electrode [J].Analyst,2008,133(1):126-132.
    [30] LUO SHENGLIAN, SU FANG, LIU CHENGBIN, et al. A new method forfabricating a CuO/TiO2nanotube arrays electrode and its application as asensitive nonenzymatic glucose sensor [J]. Talanta,2011,86(0):157-163.
    [31] BATCHELOR MCAULEY CHRISTOPHER, DU YI, WILDGOOSEGREGORY G., et al. The use of copper(II) oxide nanorod bundles for thenon-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide [J].Sensors and Actuators B: Chemical,2008,135(1):230-235.
    [32] MENG FEIHONG, SHI WEI, SUN YANAN, et al. Nonenzymatic biosensorbased on CuxO nanoparticles deposited on polypyrrole nanowires for improvingdetectionrange [J]. Biosensors and Bioelectronics,2013,42(0):141-147.
    [33] ZHANG LI, NI YONGHONG, LI HUA. Addition of porous cuprous oxide to aNafion film strongly improves the performance of a nonenzymatic glucosesensor [J]. Microchimica Acta,2010,171(1-2):103-108.
    [1] NAGARAJA P., VASANTHA R. A., SUNITHA K. R. A sensitive and selectivespectrophotometric estimation of catechol derivatives in pharmaceuticalpreparations [J]. Talanta,2001,55(6):1039-1046.
    [2] CUI HUA, ZHANG QUNLIN, MYINT AUNG, et al. Chemiluminescence ofcerium(IV)–rhodamine6G–phenolic compound system [J]. Journal ofPhotochemistry and PhotobiologyA: Chemistry,2006,181(2–3):238-245.
    [3] GHANEM MOHAMED A. Electrocatalytic activity and simultaneousdetermination of catechol and hydroquinone at mesoporous platinum electrode[J]. Electrochemistry Communications,2007,9(10):2501-2506.
    [4] ZHANG XIN, XIAO KUI, DONG CHAOFANG, et al. In situ Ramanspectroscopy study of corrosion products on the surface of carbon steel insolution containing Cl and [J]. Engineering Failure Analysis,2011,18(8):1981-1989.
    [5] YIN HUANSHUN, ZHANG QINGMING, ZHOU YUNLEI, et al.Electrochemical behavior of catechol, resorcinol and hydroquinone atgraphene–chitosan composite film modified glassy carbon electrode and theirsimultaneous determination in water samples [J]. Electrochimica Acta,2011,56(6):2748-2753.
    [6] CUI HUA, HE CAIXIA, ZHAO GUIWEN. Determination of polyphenols byhigh-performance liquid chromatography with inhibited chemiluminescencedetection [J]. Journal of ChromatographyA,1999,855(1):171-179.
    [7] LI MAOGUO, NI FANG, WANG YINLING, et al. Sensitive and FacileDetermination of Catechol and Hydroquinone Simultaneously UnderCoexistence of Resorcinol with a Zn/Al Layered Double Hydroxide FilmModified Glassy Carbon Electrode [J]. Electroanalysis,2009,21(13):1521-1526.
    [8] ZHANG YA, ZHENG JIAN BIN. Comparative investigation on electrochemicalbehavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modifiedcarbon paste electrode and carbon paste electrode [J]. Electrochimica Acta,2007,52(25):7210-7216.
    [9] HU FANGXIN, CHEN SHIHONG, WANG CHENGYAN, et al. Study on theapplication of reduced graphene oxide and multiwall carbon nanotubes hybridmaterials for simultaneous determination of catechol, hydroquinone, p-cresol andnitrite [J]. Analytica Chimica Acta,2012,724(0):40-46.
    [10] ZHANG DONGDONG, PENG YAGE, QI HONGLAN, et al. Application ofmultielectrode array modified with carbon nanotubes to simultaneousamperometric determination of dihydroxybenzene isomers [J]. Sensors andActuators B: Chemical,2009,136(1):113-121.
    [11] YU JINGJING, DU WEI, ZHAO FAQIONG, et al. High sensitive simultaneousdetermination of catechol and hydroquinone at mesoporous carbon CMK-3electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72carbon electrodes [J]. Electrochimica Acta,2009,54(3):984-988.
    [12] GUO QIAOHUI, HUANG JIANSHE, CHEN PUQING, et al. Simultaneousdetermination of catechol and hydroquinone using electrospun carbon nanofibersmodified electrode [J]. Sensors and Actuators B: Chemical,2012,163(1):179-185.
    [13] RAO C. N R, SOOD A. K, SUBRAHMANYAM K. S, et al. Graphene: The NewTwo-Dimensional Nanomaterial [J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [14] LOH KIAN PING, BAO QIAOLIANG, ANG PRISCILLAKAILIAN, et al. Thechemistry of graphene [J]. Journal of Materials Chemistry,2010,20(12):2277-2289.
    [15] LI Y., DENG C., YANG M. J. Facilely prepared composites of polyelectrolytesand graphene as the sensing materials for the detection of very low humidity [J].Sensors and Actuators B-Chemical,2014,194:51-58.
    [16] WANG J. W., SINGH B., PARK J. H., et al. Dielectrophoresis of graphene oxidenanostructures for hydrogen gas sensor at room temperature [J]. Sensors andActuators B-Chemical,2014,194:296-302.
    [17] HAN H. S., YOU J. M., SEOL H., et al. Electrochemical sensor forhydroquinone and catechol based on electrochemically reducedGO-terthiophene-CNT [J]. Sensors and Actuators B-Chemical,2014,194:460-469.
    [18] LI Z., HE M. Y., XU D. D., et al. Graphene materials-based energy acceptorsystems and sensors [J]. Journal of Photochemistry and PhotobiologyC-Photochemistry Reviews,2014,18:1-17.
    [19] PARK J. W., PARK S. J., KWON O. S., et al. Polypyrrole Nanotube EmbeddedReduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2Biosensor [J].Analytical Chemistry,2014,86(3):1822-1828.
    [20] DU JIAO, YUE RUIRUI, REN FANGFANG, et al. Novel graphene flowersmodified carbon fibers for simultaneous determination of ascorbic acid,dopamine and uric acid [J]. Biosensors and Bioelectronics,2014,53(0):220-224.
    [21] WANG MINGYAN, HUANG JUNRAO, WANG MENG, et al. Electrochemicalnonenzymatic sensor based on CoO decorated reduced graphene oxide for thesimultaneous determination of carbofuran and carbaryl in fruits and vegetables[J]. Food Chemistry,2014,151(0):191-197.
    [22] SANGHAVI BANKIM J., KALAMBATE PRAMOD K., KARNA SHASHI P.,et al. Voltammetric determination of sumatriptan based on a graphene/goldnanoparticles/Nafion composite modified glassy carbon electrode [J]. Talanta,2014,120(0):1-9.
    [23] KUNG CHIH CHIEN, LIN PO YUAN, BUSE FREDERICK JOHN, et al.Preparation and characterization of three dimensional graphene foam supportedplatinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide basedelectrochemical biosensors [J]. Biosensors and Bioelectronics,2014,52(0):1-7.
    [24] DA SILVA H LDER, PACHECO JO O G., MCS MAGALH ES J LIA, et al.MIP-graphene-modified glassy carbon electrode for the determination oftrimethoprim [J]. Biosensors and Bioelectronics,2014,52(0):56-61.
    [25] HUMMERS WILLIAM S., OFFEMAN RICHARD E. Preparation of GraphiticOxide [J]. Journal of theAmerican Chemical Society,1958,80(6):1339-1339.
    [26] HUANG XIAO, YIN ZONGYOU, WU SHIXIN, et al. Graphene-BasedMaterials: Synthesis, Characterization, Properties, and Applications [J]. Small,2011,7(14):1876-1902.
    [27] SAKAMOTO JUNJI, VAN HEIJST JEROEN, LUKIN OLEG, et al.Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?[J].Angewandte Chemie International Edition,2009,48(6):1030-1069.
    [28] COMPTON OWEN C., NGUYEN SONBINH T. Graphene Oxide, HighlyReduced Graphene Oxide, and Graphene: Versatile Building Blocks forCarbon-Based Materials [J]. Small,2010,6(6):711-723.
    [29] GUO SHAOJUN, DONG SHAOJUN. Graphene nanosheet: synthesis, molecularengineering, thin film, hybrids, and energy and analytical applications [J].Chemical Society Reviews,2011,40(5):2644-2672.
    [30] DU HAIJUN, YE JIANSHAN, ZHANG JIAQI, et al. A voltammetric sensorbased on graphene-modified electrode for simultaneous determination ofcatechol and hydroquinone [J]. Journal of Electroanalytical Chemistry,2011,650(2):209-213.
    [31] LIU ZHIMIN, WANG ZHENLING, CAO YANYAN, et al. High sensitivesimultaneous determination of hydroquinone and catechol based ongraphene/BMIMPF6nanocomposite modified electrode [J]. Sensors andActuators B: Chemical,2011,157(2):540-546.
    [32] ZHOU XIBIN, HE ZHIFANG, LIAN QIANWEN, et al. Simultaneousdetermination of dihydroxybenzene isomers based on graphene-graphene oxidenanocomposite modified glassy carbon electrode [J]. Sensors and Actuators B:Chemical,2014,193(0):198-204.
    [33] ZHENG LONGZHEN, XIONG LEYAN, LI YINDI, et al. Facile preparation ofpolydopamine-reduced graphene oxide nanocomposite and its electrochemicalapplication in simultaneous determination of hydroquinone and catechol [J].Sensors and Actuators B: Chemical,2013,177(0):344-349.
    [34] WANG LINPING, MENG YUE, CHEN QIONG, et al. Dihydroxybenzeneisomers based on the hydrophilic carbon nanoparticles and ferrocene-derivative
    mediator dual sensitized graphene composite [J]. Electrochimica Acta,2013,
    92:216-225.
    [1] BRYAN NATHAN S. Nitrite in nitric oxide biology: Cause or consequence?: Asystems-based review [J]. Free Radical Biology and Medicine,2006,41(5):691-701.
    [2] CAMMACK RICHARD, JOANNOU C. L., CUI XIAO-YUAN, et al. Nitrite andnitrosyl compounds in food preservation [J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1999,1411(2–3):475-488.
    [3] BRODER TESSA L., SILVESTER DEBBIE S., ALDOUS LEIGH, et al.Electrochemical Oxidation of Nitrite and the Oxidation and Reduction of NO2inthe Room Temperature Ionic Liquid [C2mim][NTf2][J]. The Journal of PhysicalChemistry B,2007,111(27):7778-7785.
    [4] DANIEL MARIE CHRISTINE, ASTRUC DIDIER. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, andApplications toward Biology, Catalysis, and Nanotechnology [J]. ChemicalReviews,2003,104(1):293-346.
    [5] CHENG X. R., HAU B. Y. H., ENDO T., et al. Au nanoparticle-modified DNAsensor based on simultaneous electrochemical impedance spectroscopy andlocalized surface plasmon resonance [J]. Biosensors&Bioelectronics,2014,53:513-518.
    [6] YANG L., ZHANG Y. J., CHU M., et al. Facile fabrication of network filmelectrodes with ultrathin Au nanowires for nonenzymatic glucose sensing andglucose/O2fuel cell [J]. Biosensors&Bioelectronics,2014,52:105-110.
    [7] WANG L., HUAE. H., LIANG M., et al. Graphene sheets, polyaniline and AuNPsbased DNA sensor for electrochemical determination of BCR/ABL fusion genewith functional hairpin probe [J]. Biosensors&Bioelectronics,2014,51:201-207.
    [8] ALTINTAS ZEYNEP, KALLEMPUDI SREENIVASA SARAVAN, GURBUZYASAR. Gold nanoparticle modified capacitive sensor platform for multiplemarker detection [J]. Talanta,2014,118(0):270-276.
    [9] JIA K., KHAYWAH M. Y., LI Y. G., et al. Strong Improvements of LocalizedSurface Plasmon Resonance Sensitivity by Using Au/Ag BimetallicNanostructures Modified with Polydopamine Films [J]. ACS Applied Materials&Interfaces,2014,6(1):219-227.
    [10] WANG C., ZOU X. C., WANG Q., et al. A nitrite and hydrogen peroxide sensorbased on Hb adsorbed on Au nanorods and graphene oxide coated bypolydopamine [J]. Analytical Methods,2014,6(3):758-765.
    [11] KURNIAWAN FREDY, TSAKOVA VESSELA, MIRSKY VLADIMIR. GoldNanoparticles in Nonenzymatic Electrochemical Detection of Sugars [J].Electroanalysis,2006,18(19-20):1937-1942.
    [12] GUO SHAOJUN, WANG ERKANG. Synthesis and electrochemical applicationsof gold nanoparticles [J]. Analytica Chimica Acta,2007,598(2):181-192.
    [13] WANG Z. X., MA L. N. Gold nanoparticle probes [J]. Coordination ChemistryReviews,2009,253(11-12):1607-1618.
    [14] KONG FEN-YING, GU SAI-XI, LI WEI-WEI, et al. Apaper disk equipped withgraphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modifiedscreen-printed electrode: Toward whole blood glucose determination [J].Biosensors and Bioelectronics,2014,56(0):77-82.
    [15] REZAEI B., LOTFI FORUSHANI H., ENSAFI A. A. Modified Aunanoparticles-imprinted sol–gel, multiwall carbon nanotubes pencil graphiteelectrode used as a sensor for ranitidine determination [J]. Materials Science andEngineering: C,2014,37(0):113-119.
    [16] CUI HAN FENG, CHENG LIN, ZHANG JIE, et al. An electrochemical DNAsensor for sequence-specific DNA recognization in a homogeneous solution [J].Biosensors and Bioelectronics,2014,56(0):124-128.
    [17] WU HUI XIA, CAO WEI MAN, LI YAN, et al. In situ growth of coppernanoparticles on multiwalled carbon nanotubes and their application asnon-enzymatic glucose sensor materials [J]. Electrochimica Acta,2010,55(11):3734-3740.
    [18] BAVYKIN DMITRYV, LAPKIN ALEXEIA, PLUCINSKI PAWELK, et al.Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes [J]. Topicsin Catalysis,2006,39(3-4):151-160.
    [19] KANG Q., YANG L. X., CAI Q. Y. An electro-catalytic biosensor fabricated withPt-Au nanoparticle-decorated titania nanotube array [J]. Bioelectrochemistry,2008,74(1):62-65.
    [20] CHEN JIN, ZHANG WEI-DE, YE JIAN-SHAN. Nonenzymatic electrochemicalglucose sensor based on MnO2/MWNTs nanocomposite [J]. ElectrochemistryCommunications,2008,10(9):1268-1271.
    [21] JIANG LIAO CHUAN, ZHANG WEI DE. Electrodeposition of TiO2Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen PeroxideSensing [J]. Electroanalysis,2009,21(8):988-993.
    [22] RAO C. N R, SOOD A. K, SUBRAHMANYAM K. S, et al. Graphene: The NewTwo-Dimensional Nanomaterial [J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [23] RAMESH G. V., POREL S., RADHAKRISHNAN T. P. Polymer thin filmsembedded with in situ grown metal nanoparticles [J]. Chemical Society Reviews,2009,38(9):2646-2656.
    [24] SHIJU N. R., GULIANTS V. V. Recent developments in catalysis usingnanostructured materials [J]. Applied Catalysis a-General,2009,356(1):1-17.
    [25] GENG RONG, ZHAO GUOHUA, LIU MEICHUAN, et al. A sandwichstructured SiO2/cytochrome c/SiO2on a boron-doped diamond film electrode asan electrochemical nitrite biosensor [J]. Biomaterials,2008,29(18):2794-2801.
    [26] LIU YANG, ZHOU JIE, GONG JIN, et al. The investigation of electrochemicalproperties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite[J]. Electrochimica Acta,2013,111(0):876-887.
    [27] CUI LILI, PU TAO, LIU YING, et al. Layer-by-layer construction ofgraphene/cobalt phthalocyanine composite film on activated GCE for applicationas a nitrite sensor [J]. Electrochimica Acta,2013,88(0):559-564.
    [28] WANG CUN, YUAN RUO, CHAI YAQIN, et al. Non-covalentiron(III)-porphyrin functionalized multi-walled carbon nanotubes for thesimultaneous determination of ascorbic acid, dopamine, uric acid and nitrite [J].ElectrochimicaActa,2012,62(0):109-115.
    [29] LIN AI JING, WEN YING, ZHANG LI JUN, et al. Layer-by-layer constructionof multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integratedcomposite electrode for nitrite detection [J]. Electrochimica Acta,2011,56(3):1030-1036.
    [30] WANG PO, MAI ZHIBIN, DAI ZONG, et al. Construction of Au nanoparticleson choline chloride modified glassy carbon electrode for sensitive detection ofnitrite [J]. Biosensors and Bioelectronics,2009,24(11):3242-3247.
    [31] HUANG XUE, LI YONGXIN, CHEN YUANLI, et al. Electrochemicaldetermination of nitrite and iodate by use of goldnanoparticles/poly(3-methylthiophene) composites coated glassy carbonelectrode [J]. Sensors and Actuators B: Chemical,2008,134(2):780-786.
    [1] NOWALL WILBUR B., KUHR WERNER G. Detection of hydrogen peroxideand other molecules of biologicl importance at an electrocataltic surface on acarbon fiber microelectrode [J]. Electroanalysis,1997,9(2):102-109.
    [2] SOHAL RAJINDAR S., MOCKETT ROBIN J., ORR WILLIAM C. Mechanismsof aging: an appraisal of the oxidative stress hypothesis [J]. Free Radical Biologyand Medicine,2002,33(5):575-586.
    [3] ROSSI DERRICK J., JAMIESON CATRIONA H. M., WEISSMAN IRVING L.Stems Cells and the Pathways to Aging and Cancer [J]. Cell,2008,132(4):681-696.
    [4] LUO YONGPING, LIU HAIQING, RUI QI, et al. Detection of ExtracellularH2O2Released from Human Liver Cancer Cells Based on TiO2Nanoneedleswith Enhanced Electron Transfer of Cytochrome c [J]. Analytical Chemistry,2009,81(8):3035-3041.
    [5] SRIKUN DUANGKHAE, ALBERS AARON E., NAM CHRISTINE I., et al.Organelle-Targetable Fluorescent Probes for Imaging Hydrogen Peroxide inLiving Cells via SNAP-Tag Protein Labeling [J]. Journal of the AmericanChemical Society,2010,132(12):4455-4465.
    [6] LEI WU, D RKOP AXEL, LIN ZHIHONG, et al. Detection of Hydrogen Peroxidein River Water via a Microplate Luminescence Assay with Time-Resolved(“Gated”) Detection [J]. MicrochimicaActa,2003,143(4):269-274.
    [7] PINKERNELL ULRICH, EFFKEMANN STEFAN, KARST UWE. SimultaneousHPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide [J].Analytical Chemistry,1997,69(17):3623-3627.
    [8] YUE HONGFEI, BU XIN, HUANG MING-HSING, et al. Quantitativedetermination of trace levels of hydrogen peroxide in crospovidone and apharmaceutical product using high performance liquid chromatography withcoulometric detection [J]. International Journal of Pharmaceutics,2009,375(1–2):33-40.
    [9] WANG BINGQUAN, DONG SHAOJUN. Sol–gel-derived amperometricbiosensor for hydrogen peroxide based on methylene green incorporated inNafion film [J]. Talanta,2000,51(3):565-572.
    [10] HAN LIJUAN, TRICARD SIMON, FANG JIAN, et al. Prussian blue@platinum nanoparticles/graphite felt nanocomposite electrodes: Application ashydrogen peroxide sensor [J]. Biosensors and Bioelectronics,2013,43(0):120-124.
    [11] WANG Z., SUGANO E., ISAGO H., et al. Notch signaling pathway regulatesproliferation and differentiation of immortalized Müller cells under hypoxicconditions in vitro [J]. Neuroscience,2012,214(0):171-180.
    [12] ZHAO H. Y., ZHENG W., MENG Z. X., et al. Bioelectrochemistry ofhemoglobin immobilized on a sodium alginate-multiwall carbon nanotubescomposite film [J]. Biosensors and Bioelectronics,2009,24(8):2352-2357.
    [13] GUO SHAOJUN, WEN DAN, DONG SHAOJUN, et al. Gold nanowireassembling architecture for H2O2electrochemical sensor [J]. Talanta,2009,77(4):1510-1517.
    [14] KISHI AKIRA, INOUE MITSUHIRO, UMEDA MINORU. ScanningElectrochemical Microscopy Study of H2O2Byproduct during O2Reduction atPt/C-Nafion Composite Cathode [J]. The Journal of Physical Chemistry C,2009,114(2):1110-1116.
    [15] SPERLING R. A., RIVERA GIL P., ZHANG F., et al. Biological applications ofgold nanoparticles [J]. Chemical Society Reviews,2008,37(9):1896-1908.
    [16] WANG Z. X., MA L. N. Gold nanoparticle probes [J]. Coordination ChemistryReviews,2009,253(11-12):1607-1618.
    [17] ALTINTAS ZEYNEP, KALLEMPUDI SREENIVASA SARAVAN, GURBUZYASAR. Gold nanoparticle modified capacitive sensor platform for multiplemarker detection [J]. Talanta,2014,118(0):270-276.
    [18] CHENG X. R., HAU B. Y. H., ENDO T., et al. Au nanoparticle-modified DNAsensor based on simultaneous electrochemical impedance spectroscopy andlocalized surface plasmon resonance [J]. Biosensors&Bioelectronics,2014,53:513-518.
    [19] PANDEY P., ARYA S. K., MATHARU Z., et al. Polythiophene goldnanoparticles composite film for application to glucose sensor [J]. Journal ofApplied Polymer Science,2008,110(2):988-994.
    [20] ZHANG JINTAO, LIU PENGPENG, MA HOUYI, et al. Nanostructured PorousGold for Methanol Electro-Oxidation [J]. The Journal of Physical Chemistry C,2007,111(28):10382-10388.
    [21] GUO SHAOJUN, WANG ERKANG. Synthesis and electrochemical applicationsof gold nanoparticles [J]. Analytica Chimica Acta,2007,598(2):181-192.
    [22] EUSTIS S., EL-SAYED M. A. Why gold nanoparticles are more precious thanpretty gold: Noble metal surface plasmon resonance and its enhancement of theradiative and nonradiative properties of nanocrystals of different shapes [J].Chemical Society Reviews,2006,35(3):209-217.
    [23] ZHAO WEI, WANG HUICAI, QIN XIA, et al. A novel nonenzymatic hydrogenperoxide sensor based on multi-wall carbon nanotube/silver nanoparticlenanohybrids modified gold electrode [J]. Talanta,2009,80(2):1029-1033.
    [24] LU WENBO, LUO YONGLAN, CHANG GUOHUI, et al. Synthesis offunctional SiO2-coated graphene oxide nanosheets decorated with Agnanoparticles for H2O2and glucose detection [J]. Biosensors and Bioelectronics,2011,26(12):4791-4797.
    [25] LI LIMIAO, DU ZHIFENG, LIU SHUANG, et al. A novel nonenzymatichydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite [J].Talanta,2010,82(5):1637-1641.
    [26] ZHANG LIHUA, ZHAI YUEMING, GAO NA, et al. Sensing H2O2withlayer-by-layer assembled Fe3O4–PDDA nanocomposite film [J].Electrochemistry Communications,2008,10(10):1524-1526.
    [27] BO XIANGJIE, BAI JING, WANG LIXIA, et al. In situ growth of copper sulfidenanoparticles on ordered mesoporous carbon and their application asnonenzymatic amperometric sensor of hydrogen peroxide [J]. Talanta,2010,81(1–2):339-345.
    [28] CHEN HUIHUI, ZHANG ZHE, CAI DONGQING, et al. A hydrogen peroxidesensor based on Ag nanoparticles electrodeposited on natural nano-structureattapulgite modified glassy carbon electrode [J]. Talanta,2011,86(0):266-270.
    [29] HOCEVAR SAMOB, OGOREVC BOZIDAR, SCHACHL KLEMENS, et al.Glucose Microbiosensor Based on MnO2and Glucose Oxidase Modified CarbonFiber Microelectrode [J]. Electroanalysis,2004,16(20):1711-1716.
    [1] LI J., XIAO L. T., LIU X. M., et al. Amperometric biosensor with HRPimmobilized on a sandwiched nano-Au polymerized m-phenylenediamine filmand ferrocene mediator [J]. Analytical and Bioanalytical Chemistry,2003,376(6):902-907.
    [2] LIU Y. G., FENG X. M., SHEN J. M., et al. Fabrication of a novel glucosebiosensor based on a highly electroactive polystyrene/polyaniline/Aunanocomposite [J]. Journal of Physical Chemistry B,2008,112(30):9237-9242.
    [3] VADDIRAJU SANTHISAGAR, TOMAZOS IOANNIS, BURGESS DIANE J., etal. Emerging synergy between nanotechnology and implantable biosensors: Areview [J]. Biosensors and Bioelectronics,2010,25(7):1553-1565.
    [4] TROJANOWICZ M. Enantioselective electrochemical sensors and biosensors: Amini-review [J]. Electrochemistry Communications,2014,38:47-52.
    [5] XU XUAN, JIANG SHUJUAN, HU ZHENG, et al. Nitrogen-Doped CarbonNanotubes: High Electrocatalytic Activity toward the Oxidation of HydrogenPeroxide and Its Application for Biosensing [J]. ACS Nano,2010,4(7):4292-4298.
    [6] KHAN M., PARK S. Y. Liquid Crystal-Based Proton Sensitive Glucose Biosensor[J]. Analytical Chemistry,2014,86(3):1493-1501.
    [7] HOMMA T., ICHIMURA T., KONDO M., et al. Covalent immobilization ofglucose oxidase on the film prepared by electrochemical polymerization ofN-phenylglycine for amperometric glucose sensing [J]. European PolymerJournal,2014,51:130-135.
    [8] WANG JOSEPH. Electrochemical Glucose Biosensors [J]. Chemical Reviews,2007,108(2):814-825.
    [9] CHOPRA N., GAVALAS V. G., HINDS B. J., et al. Functional one-dimensionalnanomaterials: Applications in nanoscale biosensors [J]. Analytical Letters,2007,40(11):2067-2096.
    [10] YANG ZHANJUN, TANG YAN, LI JUAN, et al. Facile synthesis of tetragonalcolumnar-shaped TiO2nanorods for the construction of sensitive electrochemicalglucose biosensor [J]. Biosensors&Bioelectronics,2014,54:528-533.
    [11] WANG Y. L., LIU L., LI M. G., et al. Multifunctional carbon nanotubes for directelectrochemistry of glucose oxidase and glucose bioassay [J]. Biosensors&Bioelectronics,2011,30(1):107-111.
    [12] LI F. H., WANG Z. H., SHAN C. S., et al. Preparation of goldnanoparticles/functionalized multiwalled carbon nanotube nanocomposites andits glucose biosensing application [J]. Biosensors&Bioelectronics,2009,24(6):1765-1770.
    [13] CHU X., DUAN D. X., SHEN G. L., et al. Amperometric glucose biosensorbased on electrodeposition of platinum nanoparticles onto covalentlyimmobilized carbon nanotube electrode [J]. Talanta,2007,71(5):2040-2047.
    [14] LIU QING, LU XIANBO, LI JUN, et al. Direct electrochemistry of glucoseoxidase and electrochemical biosensing of glucose on quantum dots/carbonnanotubes electrodes [J]. Biosensors&Bioelectronics,2007,22(12):3203-3209.
    [15] SHAO YUYAN, WANG JUN, WU HONG, et al. Graphene BasedElectrochemical Sensors and Biosensors: A Review [J]. Electroanalysis,2010,22(10):1027-1036.
    [16] YANG Z. J., REN Y. Y., ZHANG Y. C., et al. Nanoflake-like SnS2matrix forglucose biosensing based on direct electrochemistry of glucose oxidase [J].Biosensors&Bioelectronics,2011,26(11):4337-4341.
    [17] DAI Z. H., SHAO G. J., HONG J. M., et al. Immobilization and directelectrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnOnanostructure for a glucose biosensor [J]. Biosensors&Bioelectronics,2009,24(5):1286-1291.
    [18] TANG S., WANG X. Z., LEI J. P., et al. Pt-dispersed flower-like carbonnanosheet aggregation for low-overpotential electrochemical biosensing [J].Biosensors&Bioelectronics,2010,26(2):432-436.
    [19] SHAN C. S., YANG H. F., HAN D. X., et al. Graphene/AuNPs/chitosannanocomposites film for glucose biosensing [J]. Biosensors&Bioelectronics,2010,25(5):1070-1074.
    [20] YANG L. J., XIONG H. Y., ZHANG X. H., et al. Direct electrochemistry ofglucose oxidase and biosensing for glucose based on boron-doped carbon-coatednickel modified electrode [J]. Biosensors&Bioelectronics,2011,26(9):3801-3805.
    [21] KANG X. H., WANG J., WU H., et al. Glucose Oxidase-graphene-chitosanmodified electrode for direct electrochemistry and glucose sensing [J].Biosensors&Bioelectronics,2009,25(4):901-905.
    [22] PIAO Y., HAN D. J., SEO T. S. Highly conductive graphite nanoparticle basedenzyme biosensor for electrochemical glucose detection [J]. Sensors andActuators B-Chemical,2014,194:454-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700