用户名: 密码: 验证码:
基于碳纳米管材料的磺胺电化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米功能材料在电化学催化和分析中的应用已成为当前电化学传感器领域的一个研究热点。相较于宏观颗粒,纳米材料由于表面与界面效应、量子尺寸效应、宏观量子隧道效应和小尺寸效应而被赋予独特的物理、化学性质。纳米材料应用于电化学传感器的研究具有广阔前景。
     目前,抗菌药残留超标已成为食品生产领域的一大公害。动物源性食品中磺胺类抗菌药阳性几率大。常用的磺胺类抗菌药残留检测主要采用气质联用(GC-MASS)、高效液相色谱(HPLC)等精密仪器分析技术。尽管检测灵敏度很高,但存在仪器设备昂贵、分析程序繁琐、维护困难、分析成本高、分析周期长等弊端。随着社会对食品安全问题的关注,研究一种简便、成本较低、分析速度快、灵敏度高、适合现场分析的磺胺类抗菌药残留检测的方法是社会的迫切需求。电化学传感器具有选择性好、灵敏度高、易于小型化和批量生产、非常适合用于现场分析等优点。
     本文研究了磺胺抗菌药在碳纳米管(MWCNTs)修饰电极上电化学行为,讨论了MWCNTs对磺胺抗菌药的电催化氧化机理和电流增敏机理,利用MWCNTs和OPPF6离子液体、全氟磺酸酯阳离子交换树脂Nafion、大环金属配合物钴酞菁(CoⅡPc)等功能材料的协同作用,构建用于磺胺类抗菌药检测的电化学传感器,解决了传感器在实际应用中所面临的选择性不好、灵敏度不足、使用寿命短、基体干扰等问题。并成功地将传感器用于磺胺类药物、人尿液中磺胺类抗菌药残留的检测。本论文的主要研究内容及结果如下:
     1)首次以MWCNTs为电极修饰材料,制备电化学传感器,用于磺胺药物的电化学检测,显著降低了磺胺药物的电化学氧化电位,明显提高了磺胺药物的阳极电流响应,为实现磺胺类药物的高灵敏电化学检测提供科学依据。
     2)分别以Pt、GC电极为基础,制备了MWCNTs修饰电极,研究了磺胺在修饰电极的电化学行为,对磺胺在修饰电极上的电极反应机理进行了探讨;对磺胺在MWCNTs修饰电极上的定量分析特性进行了探索,其线性响应范围、检测限、重现性、稳定性等指标均令人满意。
     3)以OPPF6室温离子液体为MWCNTs的分散剂和固定剂,制备MWCNTs/OPPF6-GC修饰电极;MWCNTs/OPPF6-GC修饰电极有效降低了电化学测试时的背景电流,并解决了修饰电极上MWCNTs脱落的问题;基于MWCNTs电催化作用和OPPF6的溶解能力,MWCNTs/OPPF6-GC修饰电极不仅降低了抗菌药磺胺嘧啶的阳极过电位,而且使其阳极电流响应显著增强;建立了对磺胺嘧啶的计时安培电流检测方法(i-t),其检测限达到0.21μmol/L的水平;有效地消除干扰物质对检测的干扰,并成功地应用于市售药物磺胺嘧啶混悬液的含量检测,获得了令人满意的效果。
     4)以Nafion为分散剂,制备MWCNTs/Nafion-GC修饰电极,并通过电化学聚合的方式将钴酞菁固定于电极表面,得到poly-CoⅡTAPc/MWCNTs/Nafion-GC修饰电极;新修饰电极制备方法解决了电极表面碳纳米管泄漏、电极使用寿命不足的问题;借助于Nafion膜的离子交换作用,对磺胺嘧啶阳离子交换富集、对阴离子还原剂(抗坏血酸、尿酸、草酸等)选择性排斥,提升了新电极对磺胺抗菌药的选择性;在多种功能材料的协同作用下,新修饰电极对磺胺嘧啶的氧化过电位得到降低,安培电流响应的灵敏度明显提升;新电极应用于磺胺嘧啶的安培电流检测,其阳极电流随系统中磺胺嘧啶浓度的增加线性增大,线性范围为0.5-43.5μmol/L,检测限达到0.17μmoVL,并成功地应用于尿液中微量磺胺嘧啶的检测。
Functional nano materials have now been extremely used for preparation of electrochemical sensors and analytical purpose. Due to their surface and interface effect, the quantum size effect, the macroscopic quantum tunnel effect and the small size effect, functional nano materials possess much fantastic physical and chemical advantages. It will be a promising avenue for application of nano materials in electrochemical sensor research.
     In field of food production, residue of antimicrobial has now been a focus of the society. Because of their broad spectrum antimicrobial effect, sulfonamides are wildly added in feed stuff for treatment of animal diseases, which results in more and more animal product samples are sulfonamides residue positive. Modern instruments methods such as GC-MASS, HPLC, HPLC-FL, etc. have been successfully used for evaluation of the drug residues with the advantageous of high sensitive and accuracy. However these methods also have drawbacks of instrument expensive, procedure tedious, skilled laboratory personnel deeding, cost and time tedious. Hence, searching for rapid detection of sulfonamide residues in animal derived food is of particular significance. Electrochemical detection methods have the advantages of simple, low cost, fast response and easy to use.
     In this dissertation, we aim at developing an electrochemical sensor based on carbon nanotubes (MWCNTs) functional materials for determination of sulfonamides residues. Electrocatalytic effect and high current reponse of sulfonamides on MWCNTs based electrochemical sensor were thoroughly discussed. Incorporation of MWCNTs, OPPF6ionic liquid, Nafion and cobalt phthalocyanine (CoⅡPc), high performance electrochemical sensors were designed and discussed. Shortcoming such as insufficient of selectivity and sensitivity, short working life and matrix interference were successfully resolved. And the new sensors were successfully used for the determination of sulfadiazine in drug and urine samples. In brief, the major results of the research were listed below.
     1. Based on Pt disk electrode, we produced a MWCNTs-Pt modified electrode. Due to the electrocatalytic effect of MWCNTs, the over voltage of sulfanilamide oxidation was negtively shifted dramaticly, but the anode current response was highly sensitive response. And the mechanism of electrochemical reaction of sulfanilamide was also discussed.
     2. Based on glassy carbon (GC) disk electrode, a MWCNTs-GC modified electrode was prepared. Due to the electrocatalytic effect of MWCNTs, the over voltage of sulfanilamide oxidation was negtively shifted dramaticly, but the anode current response was highly sensitive response. And pleased performances such as linear range, detection limit, repeatability, stability were obtained by MWCNTs-GC in sulfanilamide determination, wich would be useful for new sensor designing.
     3. A MWCNTs/OPPF6-GC modified electrode was produced by using OPPF6ionic liquid as the dispersing and binding agent of MWCNTs. Owing to the performance of OPPF6ionic liquid, troubles of MWCNTs releasing and high noise current were resolved completely. Due to the electrocatalytic effect of MWCNTs and the extractive function, the anodic current of sulfadiazine was highly increased while the anodic potential dropped clearly. Hydrodynamic amperometric method (i-t) was selected for the analysis of sulfadiazine. The aodic currents obtained on MWCNTs/OPPF6-GC modified electrode were linearly responsed against the concentration of sulfadiazine in system in the range of3.3-35.4μmol/L with detection limit of0.21μmol/L. And the interference of matrix was eliminated by background subtraction. A sales sulfadiazine drug was tested by this method.
     4. Nation was used as dispersive agent and binder of MWCNTs for producing MWCNTs/Nafion-GC. CoⅡTAPc was electrochemically deposited onto the surface of MWCNTs/Nafion-GC to form poly-CoⅡTAPc/MWCNTs/Nafion-GC. The new modified electrode owns advantages such as preventing MWCNTs releasing, long working life, enrichment of sulfadiazie by cation exchanging, avoiding interference of anions (ascorbic acid, urine acid, oxalic acid, etc.) by electrostatic repulsion, reducing the overvoltage of sulfadiazine. The mechanism of synergistic catalytic effect of MWCNTs, CoⅡTAPc and Nafion was discussed strictly. Hydrodynamic amperometric method (i-t) was selected for the analysis of sulfadiazine. The aodic currents obtained on poly-CoⅡTAPc/MWCNTs/Nafion-GC were linearly responsed against the concentration of sulfadiazine in system in the range of0.5-43.5μmol/L with the detection limit of0.17μmol/L. And the interference of matrix was eliminated by background subtraction. Trace level of sulfadiazine in urine samples was tested successfully by this method.
引文
[1]J.F. Price, R.P. Baldwin, Preconcentration and determination of ferrocenecarboxaldehyde at a chemically modified platinum electrode, Analytical Chemistry,52 (1980) 1940-1945.
    [2]A.P. Brown, F.C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface, Analytical Chemistry,49 (1977) 1589-1594.
    [3]J.P. Collman, M. Marrocco, P. Denisevich, C. Koval, F.C. Anson, Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes, Journal of Electroanalytical Chemistry,101 (1979) 117-122.
    [4]B.M. Jelenkovic, K. Rozsa, A.V. Phelps, Oscillations of low-current electrical discharges between parallel-plane electrodes. Ⅱ. Pulsed discharges in H2, Physical Review E,47 (1993) 2816-2824.
    [5]李景虹,程广金,董绍俊,自组装膜技术在电分析化学中的研究与应用,分析化学,9(1996)1093-1099.
    [6]陆琪,庞代文,胡深,DNA修饰电极的研究:共价键合吸附DNA-SAM Au修饰电极的制备和表征,中国科学B辑,29(1999)341-347.
    [7]C.R. Raj, T. Ohsaka, Facilitated electrochemical oxidation of NADH and its model compound at gold electrode modified with terminally substituted electro inactive self-assembled mono layers, Bioelectrochemistry,53 (2001) 251-256.
    [8]S. Kozlovskaja, G. Baltrunas, A. Malinauskas, Response of hydrogen peroxide, ascorbic acid and paracetamol at a platinum electrode coated with microfilms of polyaniline, Microchimica Acta,166 (2009) 229-234.
    [9]K.T. Potts, D.A. Usifer, A. Guadalupe, H.D. Abruna,4-Vinyl-,6-vinyl-, and 4'-vinyl-2,2':6',2"-terpyridinyl ligands:their synthesis and the electrochemistry of their transition-metal coordination complexes, Journal of American Chemical Society,109 (1987) 3961-3967.
    [10]R.M. Kellett, T.G. Spiro, Cobalt(I) porphyrin catalysts of hydrogen production from water, Inorganic Chemistry,24 (1985) 2373-2377.
    [11]A.A. Ensafi, H. Karimi-Maleh, Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator, Journal of Electroanalytical Chemistry, (2010).
    [12]H. Xiong, H. Xu, L. Wang, S. Wang, Characterization and sensing properties of a carbon nanotube paste electrode for acetaminophen, Microchimica Acta,167 (2009) 129-133.
    [13]董绍俊,许丽娟,马跃,化学修饰电极的研究V:铁卟啉修饰电极对氧的催化还原,化学学报,41(1983)809-816.
    [14]R. Jasinski, A new fuel cell cathode catalyst, Nature,210 (1964) 1212-1213.
    [15]L.M. Santos, R.P. Baldwin, Electrocatalytic resoponse of cobalt phthalocyanine chemically modified electrodes toward oxalic acid and a-keto acids, Analytical Chemistry,58 (1986) 848-852.
    [16]J. Wang, T. Golden, R. Li, Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity, Analytical Chemistry,60 (1988) 1642-1645.
    [17]A.A. Ciucu, C. Negulescu, R.P. Baldwin, Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system, Biosensors and Bioelectronics,18 (2003) 303-310.
    [18]L. Ozcan, Non-enzymatic glcose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate, Biosensors and Bioelectronics,24 (2008) 512-517.
    [19]H.R. Zare, A. Nasirizadeh, Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode, Electroanalysis,18 (2006) 507-512.
    [20]K. Zhao, H.Y. Song, S.Q. Zhuang, L.M. Dai, P.G. He, Y.Z. Fang, Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes, Electrochemistry Communications,9 (2007) 65-70.
    [21]J. Zhao, M. Zhu, M. Zheng, Y. Tang, Y. Chen, T. Lu, Electrocatalytic oxidation and detection of hydrazine at carbon nanotube supported palladium nanoparticles in strong acidic solution conditions, Electrochimica Acta,56 (2011) 4930-4936.
    [22]B. Habibi, N. Delnavaz, Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate, International Journal of Hydrogen Energy,35 (2010) 8831-8840.
    [23]J. Xu, X.-W. Wei, X.-J. Song, X.-J. Lu, C.-C. Ji, Y.-H. Ni, G.-C. Zhao, Synthesis and electrocatalytic activity of multi-walled carbon nanotubes/Cu-Ag nanocomposites, Journal of Material Science,42 (2007) 6972-6976.
    [24]F. Xiao, F. Zhao, J. Li, R. Yan, J. Yu, B. Zeng, Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes, Analytica Chimica ACTA,596 (2007) 79-85.
    [25]J.-M. Zen, A.S. Kumar, J.-C. Chen, Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode, Analytical Chemistry,73 (2001) 1169-1175.
    [26]J.-M. Zen, J.-S. Tang, Flow injection amperometric detection of hydrazine by electrocatalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode, Analytical Chemistry,67 (1995) 208-211.
    [27]J. Wang, T. Tangkuaram, S. Loyprasert, Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrode, Analytica Chimica ACTA,581 (2007) 1-6.
    [28]X. Cui, L. Hong, X. Lin, Electrocatalytic oxidation of hydroxylamine on glassy carbon electrodes modified by hybrid copper-cobalt hexacyanoferrate films, Analytical Sciences,18 (2002) 543.
    [29]C.M. Yu, J.W. Guo, H.Y. Gu, Electrocatalytical oxidation of nitrite and its determination based on Au@Fe3O4 nanoparticles, Electroanalysis,22 (2010) 1005-1011.
    [30]R. Antiochia, I. Lavagnini, F. Magno, Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes:kinetic considerations for use of a redox mediator in solution and dissolved in the paste, Analytical and Bioanalytical Chemistry,381 (2005) 1355-1361.
    [31]H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Analytical Chemistry,73 (2001) 915-920.
    [32]K. Kan, T. Xia, Y. Yang, H. Bi, H. Fu, K. Shi, Functionalization of multi-walled carbon nanotube for electrocatalytic oxidation of nitric oxide, Journal of Applied Electrochemistry,40 (2010) 593-599.
    [33]J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, Journal of American Chemical Society,125 (2003) 2408-2409.
    [34]Y.-C. Tsai, J.-M. Chen, F. Marken, Simple cast-deposited multi-walled carbon nanotube/Nafion thin film electrodes for electrochemical stripping analysis, Microchimica Acta,150 (2005) 269-276.
    [35]K. Niwa, K. Doblhofer, The interrelation between the electrochemical behaviour of a polymer-coated electrode and the ion exchange properties of the coating, Electrochimica Acta, (1986) 549-553.
    [36]R. Lange, K. Doblhofer, Membrane transport associated with double-layer charging of polymer modified electrodes, Journal of Electroanalytical Chemistry, 216 (1987)241-248.
    [37]B.R. Shaw, K.E. Creasy, C.J. Lanczycki, J.A. Sargeant, M. Tirhado, Voltammetric response of zeolite-modified electrodes, Journal of Electrochemistry Society,135 (1988)869-876.
    [38]S.J. Updike, G.P. Hicks, Reagentless substrate analysis with immobilized enzymes, Science,158 (1967) 270-272.
    [39]P.P. Joshi, S.A. Merchant, Y. Wang, D.W. Schmidtke, Aperometric biosensors based on redox polymer-carbon nanotube-enzyme composites, Analytical Chemistry,77 (2005) 3183-3188.
    [40]G. Liu, Y. Lin, Biosensor based of self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents, Analytical Chemistry,78 (2006) 835-843.
    [41]R.E. Ionescu, C. Gondran, L.A. Gheber, S. Cosnier, R.S. Marks, Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film, Analytical Chemistry,76 (2004) 6808-6813.
    [42]D. Hernandez-Santos, M. Diaz-Gonzalez, M.B. Gonzalez-Garcia, A. Costa-Garcia, Enzymatic genosensor on streptavidin-modified screen-printed carbon electrodes, Analytical Chemistry,76 (2004) 6887-6893.
    [43]S. Iijima, Helical microtubules of graphitic carbon, Nature,354 (1991) 56-58.
    [44]K.J. Huang, D.F. Luo, W.Z. Xie, Y.S. Yu, Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode, Colloid Surface B,61 (2008) 176-181.
    [45]A. Thess, R. Lee, P. Nikolaev, Crystalline ropes of metallic carbon nanotubes, Science,273(1996)483-487.
    [46]P.J. Britto, K.V. Santhanam, A. Rubio, Improved charge transfer at carbon nanotube electrodes, Advanced Materials,11 (1998) 154-157.
    [47]R. Saito, M. Fujita, G. Dresselhaus, Electronic-structure and growth-mechanism of carbon tubules, Mat. Sci. Eng.,19 (1993) 185-191.
    [48]I. Streeter, G.G. Wildgoose, L.D. Shao, R.G Compton, Cyclic voltammetry on electrode surfaces covered with porous layers:An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes, Sensors and Actuators B-Chemical,133 (2008) 462-466.
    [49]T.N. Rao, B.V. Sarada, D.A. Tryk, A. Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, Journal of Electroanalytical Chemistry,491 (2000) 175-181.
    [50]A. Preechaworapun, S. Chuanuwatanakul, Y. Einaga, K. Grudpan, S. Motomizu, O. Chailapakul, Electroanalysis of sulfonamides by flow injection system/high-performance liquid chromatography coupled with amprometric detection using boron-doped diamond electrode, Talanta,68 (2006) 1726-1731.
    [51]M.L. Morrison, R.A. Buchanan, P.K. Liaw, C.J. Berry, R.L. Brigmon, L. Riester, H. Abernathy, C. Jin, R.J. Narayan, Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films, Diamond and Related Materials, 15 (2006) 138-146.
    [52]N. Spataru, B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Voltammetric determination of L-cysteine at conductive diamond electrodes, Analytical Chemistry,73 (2001) 514-519.
    [53]E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes, Science,277 (1997) 1971-1975.
    [54]G Overney, W. Zhong, D. Tomanek, Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Zeitschrift Fur Physik D,27 (1993) 93-96.
    [55]B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes instabilities beyond linear response, Physical Review Letters,76 (1996) 2511-2514.
    [56]W. Zhu, C. Brower, O. Zhou, Large current density from carbon nanotube field emitters, Ally Physical Letters,75 (1999) 873-875.
    [57]W.A.d. Heer, A. Chatelain, D. Ugarte, A carbon nanotubes field-emission electron source, Science,270 (1995) 1179-1180.
    [58]P.G. Collins, A. Zettl, Unique characteristics of cold cathode carbon-nanotube-matrix field emitters, Physical Review B,55 (1997) 9391-9399.
    [59]成会明,碳纳米管-制备、结构、物性及应用,北京.化学工业出版社,(2002).
    [60]J.J. Zhao, X.S. Chen, J.R.H. Xie, Optical properites and photonic devices of doped carbon nanotubes, Analytica Chimica ACTA,568 (2006) 161-170.
    [61]M. Ichida, S. Mizuno, Y. Tani, Y. Saito, A. Nakamura, Exciton effects of optical transitions in single-wall carbon nanotubes, Journal of the Physical Society of Japan,68(1999)3131-3113.
    [62]A.G. Rinzler, J.H. Hafner, P. Nikolaev, Unraveling nanotubes:field emission from an atomic wire, Science,269 (1995) 1550-1553.
    [63]M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, Band gap fluorescence from individual single-walled carbon nanotubes, Science,297 (2002) 593-596.
    [64]J.E. Riggs, Z. Guo, D.L. Carroll, Y.-P. Sun, Strong luminescence of solubilized carbon nanotubes, Journal of American Chemical Society,122 (2000) 5879-5880.
    [65]日本炭素材料学会编中国金属学会碳材料专业委员会编译,新炭材料入门,(2000)1-4.
    [66]J.Z. Luo, L.Z. Cao, Y.L. Leung, The decomposition of NO on CNTs and 1% Rh/CNTs, Catalysis Letters,66 (2000) 91-97.
    [67]J.M. Planeix, N. Coustel, B. Coq, Application of carbon nanotubes as supports in heterogeneous catalysis, Journal of American Chemical Society,116 (1994) 7935-7936.
    [68]彭峰,江剑成,雷建光,Fe/La2O3纳米催化剂制备碳纳米管,无机化学学报,20(2002)190-193.
    [69]G. Wei, L.H. Wang, Y.J. Lin, Novel ruthenium catalyst (K-Ru/C60/70) for ammonia synthesis, Chinese Chemical Letters,10 (1999) 433-434.
    [70]P. Chen, X. Wu, J. Lin, High H2 uptake by alkali-doped carbon nanotubes under Aambient pressure and moderate temperatures, Science,285 (1999) 91-93.
    [71]C.M. Lieber, One-dimensional nanostructures:chemistry, physics & application, Solid State Communications,107 (1998) 607-616.
    [72]W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon,40 (2002) 791-794.
    [73]B. Rajesh, T.K. Ravandranathan, J.M. Bonard, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan, Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the sopport for electrooxidation of methanol, Journal of Physical Chemistry B,107 (2003) 2701-2708.
    [74]A.C. Dillon, K.M. Jones, T.A. ekkedahl, Storage of hydrogen in single-walled carbon nanotubes, Nature,386 (1997) 377-379.
    [75]Y. Ye, C.C. Ahn, C. Witham, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Applied Physics Letters,74 (1999) 2307-2309.
    [76]S. Hynek, W. Fuller, J. Bentley, Hydrogen storage by carbon sorption International, Journal of Hydrogen Energy,22 (1997) 601.
    [77]S.M. Lee, Y.H. Lee, Hydrogen storage in single-walled carbon nanotubes, Applied Physics Letters,76 (2000) 2877-2879.
    [78]X. Qin, X.P. Gao, H. Liu, H.T. Yuan, Electrochemical hydrogen storage of multiwalled carbon nanotubes, Electrochemical and Solid State Letters,3 (2000) 532-535.
    [79]尚学府,几种复杂固体光学性质的密度泛函研究及碳纳米管模型场发射研究,浙江大学博士学位论文,(2010).
    [80]Y. Cai, G Jiang, J. Liu, Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol, Analytical Chemistry,75 (2003) 2517-2521.
    [81]C. Basheer, A.A. Alnedhary, B.S.M. Rao, Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectroscopy, Analytical Chemistry,78 (2006) 2853-2858.
    [82]Y.Q. Cai, GB. Jiang, J.F. Liu, Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography, Analytica Chimica ACTA,494 (2003) 149-156.
    [83]R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, Journal of American Chemical Society,123 (2001) 2058-2059.
    [84]Q.L. Li, D.X. Yuan, Study of properties of multi-walled carbon nanotubes (CNTs) as gas chromatographic column packing material, Acta Chimica Sinica,60 (2002) 1876-1882.
    [85]M. Karwa, S. Mitra, Gas chromatography on self-assembled, single-walled carbon nanotubes, Analytical Chemistry,78 (2006) 2064-2070.
    [86]Y.Y. Zhong, W.F. Zhou, H.B. Zhu, X.L. Zeng, M.L. Ye, P.M. Zhang, Y. Zhu, A single pump column-switching technique coupled with polystyrene-divinylbenzene-carbon nanotubes column for the determination of trace anions in different concentrated organic matrices by ion chromatography, Analytica Chimica ACTA,686 (2011) 1-8.
    [87]P.J. Britton, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochemistry and Bioenergetics,41 (1996) 121.
    [88]Z.H. Wang, Y.M. Wang, G.A. Luo, Carbon nanotube-modified electrodes for the simulaneous determination of dopamine and ascorbic acid, Analyst,127 (2002) 653.
    [89]Z.H. Wang, Q.I. Liang, G.A. Luo, Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid, Journal of Electroanalytical Chemistry,540 (2003) 129-134.
    [90]王宗花,罗国安,肖素芳,环糊精复合碳纳米管电极对异构体的电催化行为,高校化学学报,24(2003)811-815.
    [91]J. Wang, M. Li, Z. Shi, N. Li, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Analytical Chemistry,74 (2002) 1993-1997.
    [92]J. Wang, D.K. Xu, A.N. Kamde, Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Analytical Chemistry, 73(2001)5576-5581.
    [93]J. Wang, M. Pumera, Dual conductivity/amperometric detection system for microchip capillary electrophoresis, Analytical Chemistry,74 (2002) 5919-5923.
    [94]孙炎一,吴康兵,胡胜水,多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺,高等学校化学学报,23(2002)2067-2068.
    [95]J. Xu, Y. Wang, K. Tanaka, Preparation of mutiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography, Talanta,60 (2003) 1123-1130.
    [96]J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, Journal of American Chemical Society,125 (2003) 2408-2409.
    [97]J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Analytical Chemistry,75 (2003) 2075-2079.
    [98]J. Wang, M. Musameh, Carbon nanotube/Teflon conposite electrochemical sensors and biosensors, Analytical Chemistry,75 (2003) 2075-2079.
    [99]S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Analytical Chemistry,76 (2004) 1083-1088.
    [100]D.E. Reed, F.M. Hawkridge, Direct electron transfer reactions of cytochrome c at silver electrodes, Analytical Chemistry,59 (1987) 2334-2339.
    [101]I. Taniguchi, K. Watanabe, M. Tominaga, Direct electron transfer of horse heart myoglobin at an indium oxide electrode, Journal of Electroanalytical Chemistry, 333(1992)331-335.
    [102]J.J. Davis, R.J. Coles, H. Allen, O. Hill, Protein electrochemistry at carbon nanotube electrodes, Journal of Electroanalytical Chemistry,440 (1997) 279-282.
    [103]Y. Zhao, W. Zhang, H. Chen, Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode, Sensors and Actuators B:Chemical, 87(2002)168-172.
    [104]J. Yang, Y. Xu, R.Y. Zhang, Direct electrochemistry and electrocatalysis of the hemoglobin imobilized on diazonium-functionalized aligned carbon nanotubes electrode, Electroanalysis,21 (2009) 1672-1677.
    [105]S.F. Wang, F. Xie, GD. Liu, Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes, Talanta,77 (2009) 1343-1350.
    [106]J. Wang, Carbon-nanotube based electrochemical biosensors:a review, Electroanalysis,17 (2005) 7-14.
    [107]J. Wang, M. Musameh, Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes, Analytica Chimica ACTA,511 (2004) 33-36.
    [108]M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Analytical Chemistry, 76 (2004) 5045-5050.
    [109]V.G. Gavalas, S.A. Law, J.C. Ball, R. Andrews, L.G. Bachas, Carbon nanotube aqueous sol-gel composites:enzyme-friendly platforms for the development of stable biosensors, Analytical Biochemistry,329 (2004) 247-252.
    [110]Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano Letters,4 (2004) 191-195.
    [111]K.A. Williams, P.T.M. Veenhuizen, B.G.d.l. Torre, R. Eritja, C. Dekker, Carbon nanotubes with DNA recognition, Nature,420 (2002) 761.
    [112]J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyapan, Carbon nanotube nanoelectrode array for ultrasensitive DNA detection., Nano Letters,3 (2003) 597-602.
    [113]J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA:carbon nanotube derived amplification of recognition and transduction events, Journal of American Chemical Society,126 (2004) 3010-3011.
    [114]Y.Z. Zhang, H.Y. Ma, K.Y. Zhang, An improved DNA biosensor biult by layer-by laryer covalent attachment of multi-walled carbon nanoutbes and gold nanoparticles, Electrochimica Acta,54 (2009) 2385-2391.
    [115]庄无忌,各国食品和饲料中农药兽药残留限量大全,中国对外经济贸易出版社,北京,1995.
    [116]刘建华,周明达,文莉,乘子罚函数分光光度法测定小儿安中磺胺二甲嘧啶和磺胺脒的含量,华西药学杂志,15(2000)462-465.
    [117]GF. Pang, Y.Z. Cao, C.L. Fan, J.J. Zhang, X.M. Li, Z.Y. Li, GQ. Jia, Liquid chromatography-fluorescence detection for simultaneous analysis of sulfonamide desidues in honey, Analytical and Bioanalytical Chemistry,376 (2003) 534.
    [118]B. Chiavarino, M.E. Crestoni, A. Dimarizio, S. Fornarini, Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection, Journal of Chromatography B,706 (1998) 269.
    [119]张毅军,王敏灿,张书胜,响应曲面法用于高效液相色谱优化分离磺胺的研究,分析实验室,26(2007)25-30.
    [120]A. Gobel, C.S. McArdell, M.J.-F. Suter, W. Giger, Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry, Analytical Chemistry,76 (2004) 4756-4764.
    [121]J.M. Conley, S.J. Symes, S.A. Kindelberger, S. Richards, Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of Pharmaceuticals in surface water, Journal of Chromatography A, 1185(2008)206.
    [122]J. Liu, A.G Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, R.e. Smalley, Fullerene pipes, Science,280 (1998) 1253-1256.
    [123]H. Zhou, W. Yang, C. Sun, Amperometric sulfite sensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites, Talanta,77 (2008) 366-371.
    [124]R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G Davies, A. Russell, R.G Compton, Carbon nanotube-ionic liquid composite sensors and biosensors, Analytical Chemistry,81 (2009) 435-442.
    [125]Y. Liu, L. Huang, S. Dong, Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode, Biosensors and Bioelectronics,23 (2007) 35-41.
    [126]D. Ragupathy, A.I. Gopalan, K.-P. Lee, Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor, Electrochemistry Communications, 11(2009)397-401.
    [127]H. Strathmann, Ion-exchange Membrane Separation Process, Elsevier, Amsterdam,2004.
    [128]Y. Kanemitsu, S. Imamura, Photocarrier generation, injection, and trapping at the interface in a layered organic photoconductor:metal-free phthalocyanine molecularly doped polymer, Journal of Appled Physics,67 (1990) 3728-3736.
    [129]Y. Fujimaki, H. Tadokoro, Y. Oda, Near-infrared sensitive electrophotographic photoconductors using oxotitanium phthalocyanine, Journal of Imaging Technology,17(1991)202-206.
    [130]S.R. Kim, S.A. Choi, J.D. Kim, The characteristics of metallophthalocyanine mono layer, multilayer and applicaiton to a gas sensor for NO2, Synthetic Metals, 71 (1995)2293-2294.
    [131]S. Besbes, V. Plichon, J. Simon, J. Vaxuvuere, Electrochomism of octaalkoxy methylsubstituted lutetium diphthalocyanine, Journal of Electroanalytical Chemistry,237(1987)61-68.
    [132]M. Hosda, T. Wada, T. Yamamoto, Enhancement of third-order opticla nonlinearities of soluble vanadyl phthalocyanines in doped polymer films, Journal of Appled Physics,31 (1992) 1071.
    [133]V.G. Kozlov, Laser action in organic semiconductor waveguide and double-heterostructure devices, Nature,389 (1997) 362.
    [134]R.F. Parton, I.F.J. Vankelecom, M.J.A. Casselman, An efficient mimic of cytochrome P-450 from a zeolite-encaged Fe complex in a polymer membrane, Nature,370(1994)541-545.
    [135]J. Zagal, R. Sen, E. Yeager, Oxygen reduction by Co(Ⅱ) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface, Journal of Electroanalytical Chemistry,83 (1977) 207-213.
    [136]K. Wang, J. Xu, H.Y. Chen, A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite, Biosensors and Bioelectronics,20 (2005) 1388-1396.
    [137]M. Boujtita, J.P. Hart, R. Pittson, Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer, Biosensors and Bioelectronics,15 (2000) 257-263.
    [138]M.A.T. Gilmartin, B.J. Birch, J.P. Hart, Development of amperometric sensors for uric acid based on chemically modified graphite-epoxy resin and screen-printed electrodes containing cobalt phthalocyanine, Analyst,119 (1994) 243-252.
    [139]M.A.T. Gilmartin, J.P. Hart, Fabrication and characterization of a screen-printed, disposable, amperometric cholesterol biosensor, Analyst,119 (1994) 2331-2336.
    [140]A.A. Ciucu, C. Negulescu, R.P. Baldwin, Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system, Biosensors and Bioelectronics,18 (2003) 303-310.
    [141]E.I. Iwuoh, A. Rock, M.R. Smyth, Amperometric L-Lactate Biosensors:1. Lactic Acid Sensing Electrode Containing Lactate Oxidase in a Composite Poly-L-lysine Matrix, Electroanalysis,11 (1999) 367-373.
    [142]张改平,刘庆堂,磺胺二甲基嘧啶残留快速检测阻断ELISA试剂盒的研制及其性能测定[中国预防兽医学报,31(2009)51-55.
    [143]J.D. Voorhies, P.N. Adams, Voltammetry at solid electrodes:Anodic Polarography of Sulfa Drugs, Analytical Chemistry,30 (1958) 346.
    [144]X.-j. Tian, J.-f. Song, X.-j. Luan, Y.-y. Wang, Q.-z. Shi, Determination of metformin based on amplification of its voltammetric response by a combinaiton of molecular wire and carbon nanotubes, Analytical and Bioanalytical Chemistry, 386(2006)2081-2086.
    [145]A. Abbaspour, R. Mirzajani, Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode, Journal of Pharmaceutical and Biomedical Analysis,44 (2007) 41-48.
    [146]贺亮,李继昌,徐世文等,磺胺二甲嘧啶残留检测ELISA方法的研究,中国预防兽医学报,29(2007)965-968.
    [147]T.H. Henning, F. Salam, Carbon in the universe, Science,282 (1998) 2204-2207.
    [148]I. Streeter, GG Wildgoose, L. Shao, R.G Compton, Cyclic voltammetry on electrode surfaces covered with porous layers:an analysis of electron transfer kinetics at single-walled carbon annotube modified electrodes, Sensors and Actuators B:Chemical,133 (2008)462-466.
    [149]马曾燕,李将渊,向伟,聚吡咯/多壁碳纳米管修饰电极对多巴胺的测定,化学研究与应用,20(2008)1570-1574.
    [150]G. Wang, J. Sun, W. Zhang, S. Jiao, B. Fang, Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode, Microchimica Acta,164 (2009) 357-362.
    [151]许春萱,王百木,谢宛珍,李在顺,苏莉,多壁碳纳米管-Nafion修饰电极测定左旋氧氟沙星,化学研究与应用,22(2010)700-703.
    [152]K.J. Huang, X. Liu, W.Z. Xie, Electrochemical behavior and boltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion, Colloids and Surfaces B:Bio interfaces,64 (2008) 269-274.
    [153]A. Salimi, L. Miranzadeh, R. Hallaj, Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives, Talanta,75 (2008) 147-156.
    [154]B. Fang, C. Zhang, W. Zhang, G. Wang, A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochimica Acta,55 (2009) 178-182.
    [155]刘英菊,袁锐昌,黎艳玲,DNA在纳米碳管上的检测及甘草素-Cu(Ⅱ)对DNA的损伤研究,化学研究与应用,19(2007)603-607.
    [156]Y. Lin, W. Yantasee, J. Wang, Carbon nanotubes for the development of electrochemical biosensors, Frontiers in Bioscience,10 (2005) 492-505.
    [157]V.A. Momberg, B.M. Carrera, D.v. Baer, The oxidative voltammetric behavior of some sulphonamides at the glassy carbon electrode, Analytica Chimica ACTA, 159(1984) 119-127.
    [158]R. Antiochia, L. Gorton, Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages, Biosensors and Bioelectronics,22 (2007) 2611-2617.
    [159]H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryong, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, Journal of American Chemical Society,97 (1975) 3264-3265.
    [160]D.L. Compton, J.A. Laszlo, Direct electrochemical reduction of hemin in imidazolium-based ionic liquids, Journal of Electroanalytical Chemistry,520 (2002) 71-78.
    [161]T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aidal, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes, Science,300 (2003) 2072-2074.
    [162]F. Zhao, X. Wu, M.K. Wang, Y. Liu, L.X. Gao, S.J. Dong, Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials, Analytical Chemistry,76 (2004) 4960-4967.
    [163]Q. Wang, Y. Yun, J. Zheng, Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid, Microchimica Acta,167 (2009) 153-157.
    [164]K. Hasebe, J. Osteryoung, Differential pulse polarographic determination of some carcinogenic nitrosamines, Analytical Chemistry,47 (1975) 2412.
    [165]J.M.P. Carrazon, P.C. Corona, L.M.P. Diez, Electroanalytical study of sulphadiazine at solid electrodes. Determination in pharmaceutical preparations Electrochimica Acta,32 (1987) 1573.
    [166]C.D. Souza, O.C. Braga, I.C. Vieira, A. Spinelli, Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode, Sensors and Actuators B,135 (2008) 66-73.
    [167]T.G Diaz, A.G Cabanillas, M.I.A. Valenzuela, F. Salinas, Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds, Analyst,121 (1996) 547-552.
    [168]T.A.M. Msagati, J.C. Ngila, Voltammetric detection of sulfonamides at a poly(3-mehtylthiophene) electrode, Talanta,58 (2002) 605-610.
    [169]O.C. Braga, I. Campestrini, I.C. Vieira, A. Spinelli, Sulfadiazine Determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode, Journal of the Brazilian Chemical Society,21 (2010) 813-820.
    [170]I. Campestrini, O.C. de Braga, I.C. Vieira, A. Spinelli, Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine, Electrochimica Acta,55 (2010) 4970-4975.
    [171]D. Du, X. Huang, J. Cai, A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sensors and Actuators B,127 (2007) 531-535.
    [172]Y.-C. Tsai, S.-Y. Chen, H.-W. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and Actuators B,125 (2007) 474-481.
    [173]R.S. Brown, J.H.T. Luong, A regenerable pserdo-reagentless glucose biosensor based on Nafion polymer and 1,1'-dimethylferricinium mediator, Analytica Chimica ACTA,310(1995)419-427.
    [174]D. Sun, Z. Sun, Electrochemical determination of Pb2+using a carbon nanotube/Nafion composite film-modified electrode, Journal of Applied Electrochemistry,38 (2008) 1223-1227.
    [175]Y.C. Bai, W.D. Zhang, Highly Sensitive and Selective Determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode, Electroanalysis,22 (2010) 237-243.
    [176]J. Li, X.Q. Lin, Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode, Sensors and Actuators B,126 (2007) 527-535.
    [177]R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, Journal of American Chemical Society,123 (2001) 3838-3839.
    [178]Y.-H. Tse, P. Janda, H. Lam, A.B.P. Lever, Electrode with electropolymerized tetraaminophthalocyanatocobalt(II) for detection of sulfide ion, Analytical Chemistry,67 (1995) 981-985.
    [179]H. Li, T.F. Guarr, Formation of electrochemically conductive thin films of metal phthalocyanines via electropolymerization, Journal of Chemical Society Chemical Communications,1989 (1989) 832-834.
    [180]T.N. Rao, B.V. Sarada, D.A. Tryk, A. Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, Journal of Electroanalytical Chemistry,491 (2000) 175-181.
    [181]Y. Xiao, C. Guo, C.M. Li, Y. Li, J. Zhang, R. Xue, S. Zhang, Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film, Analytical Biochemistry,371 (2007) 229-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700