用户名: 密码: 验证码:
异丙醇铝中含铁有机物的形成、分离及高纯铝醇盐应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异丙醇铝是制备高技术陶瓷、发光材料、高纯氧化铝纳米粉和功能膜等先进材料的重要前驱体。几年内我国多家新厂建成并以铝为主要原料,将其转化成异丙醇铝后采用醇盐水解法制备高纯超细氧化铝。然而,异丙醇铝在应用中遇到的最大问题是铁、硅、镁等杂质含量高,其中危害最大的是铁。根据文献报道和相关理论,异丙醇与金属铁不发生反应。而实验中发现:在金属铝与异丙醇反应过程中,铝中的铁杂质也参与反应,形成一种低沸点化合物并在异丙醇铝蒸馏纯化过程中随异丙醇铝蒸出,这种现象早在1981年Dobizha E. V.的研究中就有所发现,但未见深入研究的报道。为了弄清铝醇盐中铁杂质的反应与控制规律,获得高纯度铝醇盐及后续产品,本文首先对杂质铁与异丙醇反应的条件进行研究;在此基础上初步探讨了杂质铁转化为低沸点有机物的基本规律;然后研究了异丙醇铝中含铁有机物的分离方法及工艺过程;进一步,以异丙醇铝为前驱体,研究了氧化铝基发光材料的制备及铁杂质对其发光性能的影响,主要研究内容和结果如下:
     1、研究了金属铝中杂质铁与异丙醇反应的条件及规律。在异丙醇与金属铝反应制备异丙醇铝过程中,通过改变铝中铁含量、反应气氛、催化剂种类、铁杂质的形态等,探讨了含铁有机物的生成条件及规律,考察了异丙醇、异丙醇铝在含铁有机物生成反应中的作用。实验采用电感耦合等离子体原子发射光谱(ICP-AES)、紫外-可见吸收光谱(UV-Vis)对产品进行表征。结果表明,异丙醇和异丙醇铝的存在是含铁有物生成的必要条件,同时氧气对其生成具有促进作用,原料铝对其生成具有抑制作用;异丙醇铝合成体系中存在二价、三价两种价态的铁并且两种价态的铁可以在氧气和金属铁的作用下相互转换。
     2、探讨了在异丙醇铝-异丙醇体系中含铁有机物生成的可能机理。基于上述反应条件和规律,利用电化学相关理论,结合EDTA滴定、氢核磁(1HNMR)、元素分析(EA)、红外(FT-IR), X射线光电子能谱(XPS)等分析结果,推测了铁杂质在异丙醇铝-异丙醇体系中发生反应的可能机理,即:铝片在与异丙醇反应后留下的小尺寸铁微粒,由于高的反应活性,和异丙醇直接反应生成二价含铁化合物;该二价含铁化合物被氧气氧化成三价含铁化合物;三价含铁化合物则在异丙醇铝/异丙醇的存在下又被金属铁还原成二价含铁化合物。上述价态转变的过程是不断循环进行的。
     3、研究了异丙醇铝中含铁有机物的分离方法。根据上面推测的反应机理和含铁化合物的传统性质,提出了“螯合-蒸馏法”和“吸附-蒸馏法”两种纯化异丙醇铝中痕量铁的方法,同时考察了精馏对异丙醇铝纯化的效果。实验采用电感耦合等离子体原子发射光谱(ICP-AES)、紫外-可见吸收光谱(UV-Vis)对产品进行表征。结果表明:氧配位螯合剂——配体-O是采用“螯合-蒸馏法”有效脱除异丙醇铝中痕量铁的螯合剂;吸附剂(S)使铝片反应后留下的小尺寸铁被吸附发生团聚,失去反应活性从而达到纯化的目的;精馏对异丙醇铝也具有很好的纯化效果,但是存在对设备要求较高,能耗大等缺点。
     4、以异丙醇铝为原料,采用模板水热辅助溶胶凝胶法制备γ-Al2O3:Eu3+发光粉,采用葡萄糖水热碳球为模板,利用醇盐水蒸气水解,制备中空γ,δ,α-Al2O3球和中空γ-Al2O3:Eu3+发光粉。借助于热重(TG/DTG)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和荧光分光光度计等表征手段,对产物的形成过程、结构、形貌以及光谱性能进行了分析,同时考察了铁杂质对γ-Al2O3:Eu3+发光粉及中空γ-Al2O3:Eu3+发光粉发光性能的影响。结果表明,制备的γ-Al2O3:Eu3+发光粉为立方晶型,激发光谱呈现典型的Eu3+离子特征发光,铁杂质的存在对其具有发光猝灭效应;制备的中空γ,δ,α-Al2O3球具有光滑的表面形貌,颗粒形态好、大小均匀;制备的中空γ-Al2O3:Eu3+发光粉为立方晶型,激发光谱呈现典型的Eu3+离子特征发光,原料中的铁杂质对其发光性能也具有猝灭作用。
Aluminum isopropoxide (AIP) is an important precursor of ceramic materials, phosphors, high purity alumina nanomaterials, functional membranes and so on. In newly found factories, aluminum alkoxide is used as starting material to prepare high purity and ultrafine alumina via Sol-Gel technique. However, the biggest problem restricting the utilization of aluminum alkoxide is the high impurity content in products, such as iron, silicon, and magnesium, especially the iron impurity. According to the reported references and the relevant theories, iron can not react with isopropanol. However, it was definitely found that the low boiling-point iron-containing compounds were distilled accompanied with AIP, which means that iron impurity in Al can take part in the reaction. Though Dobizha E. V. reported this phenomenon in 1981, it did not draw further attention. With the aim to elucidate the control regulation of iron impurity in aluminum alkoxide and obtain high purity aluminum alkoxide as well as downstream products, the reaction conditions of iron impurity and isopropanol were investigated firstly. In addition, plausible formation mechanism of iron-containing compound was presumed. On the basis of above results, separation method and technology process of iron-containing compound in the synthesis system of AIP were studied. Furthermore, alumina-based luminescent materials excited by Europium were prepared using aluminum alkoxide as starting materials. The luminescence effect on phosphors arising from iron impurity was studied in this paper. The contents and results in this dissertation are listed below:
     1. The reaction conditions and regulation of iron impurity in Al with isopropanol were studied by changing the factors, such as different iron content of Al, reaction atmosphere, catalyst, morphological iron, etc. The function of isopropanol and AIP on the formation of this compound was also investigated. ICP-AES and UV-Vis adsorption spectra were used to characterize the products. It is found that, AIP and isopropanol are the necessary condition for formation of this compound. Oxygen can enhance the formation of it and Al can inhibit the formation of it. It was proved that there are two kinds of iron valence state (ferrous and ferric) in the system of preparing AIP, which can mutual conversion by the action of oxygen and metal iron.
     2. A possible mechanism for the formation of iron-containing compound in the system of AIP-isopropanol was presumed. The obtained products were characterized by the means of EDTA titration method,1H NMR, elemental analysis, IR and XPS. According to the present results and electrochemical relevant theories, a plausible mechanism for the reaction of iron with isopropanol in the system of AIP-isopropanol was proposed. It is consisted of three consecutive steps, namely:small size iron particle created by Al reacting with isopropanol have high reactivity and can react with isorpopanol forming ferrous compound. The ferrous compound is immediately oxygenated to ferric compound, and then the ferric compound can be reduced to the ferrous compound in the presence of AIP and isopropanol. The above redox procedure is carried out cycling constantly.
     3. According to the above possible mechanism and the characteristics of iron compound, the separation of iron-containing compound from AIP was studied by exploring "chelate-distillation" and "adsorption-distillation" methods which are effective for removing trace iron from AIP. The effect of rectification on the purification of AIP was further investigated. ICP-AES and UV-Vis adsorption spectra were used to characterize the products. It is found that, O-containing chelating agent——Ligand-O is an effective chelating agent for removing trace iron from AIP with "chelate-distillation" method. Small size iron particles created by Al reacting with isopropanol are agglomerated by sorbent (S) to reduce the reaction activity with the aim of puritification. Although the rectification has good effect on the purification of AIP, it requires expensive equipment and high energy consumption.
     4. Eu3+-dopedγ-Al2O3 phosphor was prepared from aluminum alkoxide via hydrothermal assisted Sol-Gel method,γ,δ,α-Al2O3 hollow microspheres andγ-Al2O3:Eu3+ phosphor with hollow spherical structure were prepared from aluminum alkoxide using carbon microspheres prepared from hydrothermal method of glucose solution as templates. The forming process, structure, morphology and luminescent properties of the obtained products were characterized by means of TG, XRD, TEM, SEM and fluorescence spectrophotometer. The luminescence effect onγ-Al2O3:Eu3+ phosphor and hollow spheres ofγ-Al2O3:Eu3+ phosphor arising from iron impurity was studied in this part. The results indicate that theγ-Al2O3:Eu3+ phosphor shows pure cube phase. Luminescence test indicated that theγ-Al2O3:Eu3+ phosphor emits an intense characteristic luminescence of Eu3+ ions. The results revealed that iron impurity cause the quenching for luminescence ofγ-Al2O3:Eu3+ phosphors. The as-preparedγ-,δ-andα-alumina hollow microspheres with smooth surface show well-defined spherical morphology and narrow size-distribution. The obtainedγ-Al2O3:Eu3+ phosphor with hollow spherical structure shows pure cube phase. Luminescence test indicated that it emits an intense characteristic luminescence of Eu3+ ions. The results reveal that iron impurity cause the quenching of luminescence ofγ-Al2O3:Eu3+ phosphors with hollow sphereical structure as well.
引文
[1]Bradley D C, Mehrotra R C, Gaur D P. Metal Alkoxides. London:Academic Press,1978.
    [2]Ritala M, Kukli K, Rahtu A et al. Atomic Layer Deposition of Oxide Thin Films with Metal Alkoxides as Oxygen Sources. Science,2000,288:319-321.
    [3]Hay J N, Raval H M. Preparation of Inorganic Oxides via a Non-Hydrolytic Sol-Gel Route. Journal of Sol-Gel Science and Technology,1998,13:109-112.
    [4]Veith M, Mathur S, Lecerf N et al. Synthesis of a NdA103/A1203 Ceramic-Ceramic Composite by Single-Source Precursor CVD. Chemistry of Materials,2000,12:271-274.
    [5]Young W G, Hartung W H, Crossley F S. Reduction of Aldehydes with Aluminum Isopropoxide. Journal of the American Chemical Society,1935,58:100-102.
    [6]Kaiser E, Gunther E P. Alcoholysis of Esters with Aluminum Alcoholates. Journal of the American Chemical Society,1956,78:3841-3843.
    [7]Akamanchl K G, Varalakshmy N R. Aluminum Isopropoxide-TFA, a Modified Catalyst for Highly Accelerated Meerwein-Ponndorf-Verley (MPV) Reduction. Tetrahedron Letters, 1995,36:3571-3572.
    [8]Watzke H J, Fendler J H. Quantum Size Effects on in Situ Generated Colloidal Cds Particles in Dloctadecyldimethylammonium Chloride Surfactant Vesicles. Journal of Physical Chemistry,1987,91:845-861.
    [9]Wang X Y, Liao K R, Quan D P et al. Bulk Ring-Opening Polymerization of Lactides Initiated by Ferric Alkoxides. Marcromolecules,2005,38:4611-4617.
    [10]O'keefe B J, Monnier S. M, Hillmyer M A et al. Rapid and Controlled Polymerization of Lactide by Structrally Characterized Ferric Alkoxides. Journal of the American Chemical Society,2001,123:339-340.
    [11]Campbell E J, Zhou H Y, Nguyen S T. Catalytic Meerwein-Pondorf-Verley Reduction by Simple Aluminum Complexes. Organic Letters,2001,3(15):2391-2393.
    [12]Mascarenhas C M, Duffey M O, Liu S Y et al. Simple Metal Alkoxides as Effective Catalysts for the Hetero-Aldol-Tishchenko Reaction. Organic Letters,1999,1(9):1427-1429.
    [13]Palomares E, Clifford J N, Hague S A. et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society,2003,125:475-482.
    [14]Jones A C, Leedham T J, Wright P J et al. Synthesis and Characterisation of Two Novel Titanium Isopropoxides Stabilised with a Chelating Alkoxide:Their Use in the Liquid Injection MOCVD of Titanium Dioxide Thin Films. Journal of Materials Chemistry,1998, 8:1773-1777.
    [15]Brian T H, Christopher F B, Andreas S. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. Science,1998,281:538-540.
    [16]Peng J, Jane F B, Vicki L C. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science,2001,291:453-457.
    [17]Bradley D C. Metal Alkoxides as Precursors for Electronic and Ceramic Materials. Chemical Reviews,198989:1317-1322.
    [18]Chandler C D, Riger C, Hanpden-Smith M J. Chemical Aspects of Solution Routes to Perovskite-Phase Mixed-Metal Oxides from Metal-Organic Precursors. Chemical Reviews, 1993,93:1205-1241.
    [19]周建国,赵凤英,李工安等.Al2O3:Eu3+,Tb3+发光陶瓷的合成及发光行为.河南师范大学学报(自然科学版),1998,26(2):109-112.
    [20]王兴军,曹保胜,雷明凯.Sol-gel法制备Er3+-Yb3+共掺杂Al2O3粉末光致发光特性.光子学报,2004,33(8):935-938.
    [21]Kimata M, Nakagawa D, Hasegawa M. Preparation of Monodisperse Magnetic Particles by Hydrolysis of Iron Alkoxide. Powder Technology,2003,132:112-118.
    [22]Sun T, Ying J Y. Synthesis of Microporous Transition-metal-oxide Molecular Sieves by a Supramolecular Templating Mechanism. Nature,1997,389:704-706.
    [23]杨云霞,徐志珍,袁双龙等.发光材料用纳米Al2O3的研究.中国稀土学报,2002,20(6):643-645.
    [24]宁桂玲.Al2O3纳米粉的制备过程及不同形状纳米颗粒形成机理的研究:(博士学位论文),大连:大连理工大学,1996.
    [25]Okorn M, Peter L S, Piyasan P et al. Synthesis of Thermally Stable Micro Spherical x-alumina by Thermal Decomposition of Aluminum Isopropoxide in Mineral Oil. Inorganic Chemistry Communications,2003,6:930-934.
    [26]Frederic V, Khodabandeh S, Davis M E. Synthesis of Pure Aalumina Mesoporous Materials. Chemistry of Materials,1996,8:1451-1464.
    [27]黄传真,张树生,王宝友.溶胶—凝胶法制备纳米氧化铝粉末的研究.金刚石与磨料磨具工程,2002,1(127):22-25.
    [28]刘祖武.现代无机合成,第二版,北京:化学工业出版社,2001.
    [29]杨雪峰,宁桂玲,李艳凤等.铁杂质在Eu2+, Dy3+激活的铝酸锶发光粉中发光淬灭研究,大连理工大学学报,2007,47(3):329-332.
    [30]李艳凤.铁和铜对有激活发光材料发光性能的淬灭研究: (硕士论文),大连:大连理工大学,2006.
    [31]任凤莲,游玉萍,石磊等.微波消解萃取光度法测定高纯氧化铝中Fe2O3的研究,冶金分析,2005,25(5):24-27.
    [32]Eisenbach W, Lehmkuhl H, Wike G. Process for the Electrochemical Synthesis of Organic Metal Compounds, US Pat 4104140,1978[Chem. Abstr.1978,88,160737]
    [33]傅玉普.林青松.物理化学,第三版,大连:大连理工大学出版社,2001.
    [34]Dobizha E V, Ekgol'm E A. Determination of Trace Contaminants in Aluminum, Titanium and Zirconium Alkoxides. Khimicheskaya Promyshlennost, Seriya:Reaktivy i Osobo Chistye Veshchestva,1981,1:30-31.
    [35]Mehrotra R C. Synthesis and Reactions of Metal Alkoxide. Journal Non-Crystalline Solids, 1998,100:1-15.
    [36]Adkins H, Cox F W. Electronics of colloidal Nanometer Particles Relative Oxidation-Reduction Reactivities of Ketones and Aldehydes and Applications in Synthesis. Journal of the American Chemical Society,1938,60:1151-1159.
    [37]Shiner V J, Whittaker D. A Kinetic Study of the Meerwein-Ponndorf-Verley Reaction. Journal of the American Chemical Society,1969,91(2):394-398.
    [38]Young D W, Kellog H B. Polymerization Catalysts. US Pat. NO.2440498.1948
    [39]Dislich H, Hinz P, Kaufmann R. Preparation of Transparent, Vitreous, Crystalline Inorganic Multiple Component Materials, especially in Thin Layers, at Temperatures far below Their Melting Points. US Pat. NO.3759683.1973.
    [40]Tripp T G. Electrolytic manufacture of alkoxides. US Pat. NO.3730857.1973.
    [41]Turova N Y, Turevskaya E P, Kessler V G et al. The Chemistry of Metal Alkoxides, New York:Kluwer Academic Pubilshers,2002.
    [42]Bradley D C, Multani R K, Wardlaw W. Structural Chemistry of the Alkoxides. X. Primary Alkoxides of Tervalent Iron. Journal of the Chemical Society,1958,126-129.
    43] Bradley D C, Multani R K,Wardlaw W. Structural Chemistry of the Alkoxides. XI. Branched-chain Alkoxides of Iron(Ⅲ). Journal of the Chemical Society,1958, 4153-4155.
    [44]Sharma P P, Mehrotra. R C. Reactions of Ferric Isopropoxide wit Organic Ester. Journal of the Indian Chemical Society,1968,45(8):736-738.
    [45]Mehrotra R C, Singh A, Sogani S. Recent Advance in the Chemistry of Homo-and Heterometallic Alkoxides of p-Block Metal(loid)s. Chemical Reviews,1994,94: 1643-1660.
    [46]王凤武,朱传高,周幸福等.采用金属阳极溶解法合成纳米MgO前驱体.华中科技大学学报(自然科学版),2004,32(5):99-101.
    [47]周幸福,韩爱杰,褚道葆等.电化学合成镍配合物的研究.有机化学,2002,22(8):571-574.
    [48]Kovsman E P, Andruseva S I, Solovjeva L L et al. Electrochemical Synthesis of Metal Alkoxides. Prospects of Commercial Alkoxides Production. Journal of the Sol-Gel Science and Technology,1994,2:61-66.
    [49]褚道葆,周幸福,林昌健等.电化学合成金属醇盐的研究.高等学校化学学报,2001,21(1):133-135.
    [50]Veith M, Mathur S, Mathur C. New Perspectives in the Tailoring of Hetero(bi-and tri-) Metallic Alkoxide Derivatives. Polyhedron,1998,17(5-6):1005-1034.
    [51]Meese-Marktscheffel J A, Weimann R,Schumann H et al. Potassium Aluminu Alkoxides: Characterization of Polymeric [(PriOH)2K(μ-OPri)2Al(μ-OPri)2]. Inorganic Chemistry, 1993,32:5894-596.
    [52]Veith M, Yu E C, Huch V. Synthesis and Structures of Alkali(Alkoxy) Antimonates and Bismuthates. Chemistry-A European Journal,1995,1(1):26-32.
    [53]Veith M, Mathur S. and Huch V. Synthesis and Characterization of New Alkoxotitanates of Yttrium, Barium, and Copper:Single Crystal X-ray Diffraction Structures of Cl2Y{Ti2(OPri)9},{Ti(OPri)5}Ba{Ti2(OPri)9}, and ClCu{Ti2(OPri)9}. Inorganic Chemistry, 1997,36:2391-2399.
    [54]姚兰芳,沈军,吴广明等.常压下低折射率纳米多孔二氧化硅薄膜的制备.同济大学学报.2003,31:1123-1126.
    [55]Paul A W, John L R, Anthony C J. Novel Mononuclear Alkoxide Precursors for the MOCVD of ZrO2 and HfO2 Thin Film. Chemical Vapor Deposition,2002,8:163-170.
    [56]刘树信,霍冀川,李伟罡.多孔材料合成制备进展.化工新型材料,2004,32:13-17.
    [57]肖志国,蓄光型发光材料及其制备.北京:化学工业出版社,2002.
    [58]Tsugoshi T, Furukawa M, Ohashi M et al. Comparison of Capillay and Skimmer Interfaces in Evolved Gas Analysis-Mass Spectrometry (EGA-MS) with Regard to Impurities in Ceramic Raw Materials. Journal of Thermal Analysis and Calorimetry,2001,64:1127-1132.
    [59]邱志光.超微粉体的特性及其制造技术的开发.北京工业大学学报,1987,13(2):107-115.
    [60]廖荣,刘英,王慧等.氧化铝粉体对氧化铝陶瓷制品性能的影响.现代技术陶瓷,2001,90:35-38.
    [61]Borse P H, Deshmukh N, Shinde R F et al. Luminescence Quenching in ZnS Nanoparticles Due to Fe and Ni Doping. Journal of Materials Science,1999,34:6087-6093.
    [62]Pascoal H B, Pontuschka W M, Rechenberg H. Luminescence Quenching by Iron in Calcium Aluminoborate Glasses. Journal of Non-Crystalline Solids,1999,258:92-97.
    [63]杨雪峰,宁桂玲,于晶杰等.纳米包覆法制备SrAl2O4:Eu2+, Dy3+发光粉及铁杂质猝灭研究.纳米科技,2007,1:8-11.
    [64]李艳凤,宁桂玲,杨雪峰.铁(Ⅱ,Ⅲ)对邻苯二甲酸铕(Ⅲ)荧光性能的猝灭研究.光谱实验室,2006,23(2):398-400.
    [65]梁维军,马爱增,潘锦程.铁对Pt-Sn连续重整催化剂催化性能的影响.石油炼制与化工,2004,35(11):15-19.
    [66]贾玉宝.陶瓷原料铁杂质类型及除铁方法.陶瓷.2004,1:32-33.
    [67]钟朝位,张树人,李志刚等.高性能95BeO陶瓷材料的研究.真空电子技术,2004,4:77-78.
    [68]唐志阳.化学法去除高岭土中铁杂质.佛山陶瓷,2005,3:16-17.
    [69]边华英,王学涛,刘永川等.白刚玉陶瓷磨具增白工艺研究.现代技术陶瓷,2005,2:9-12.
    [70]吴军,王文生,郑龙熙等.圆筒型三相交流磁选机去除耐火材料中铁杂质的研究.硅酸盐学报,1998,26(3):407-410.
    [71]Takagi K, Oiand T, Fukazawa T et al.高纯ZnWO4晶体的生长.压电与声光,1982,4(3):81-83.
    [72]杨始堃.铁对聚氯乙烯热稳定性影响.聚氯乙烯,1981,9(4):16-20.
    [73]孙仲田,潘贤家,王松顺等.含硼人造金刚石中铁杂质的穆斯堡尔谱研究.金刚石与磨料磨具工程,1985,16(3):13-15.
    [74]孙春宝,吕继有,李浩然.大洋多金属锰结核酸贵液中铁锰元素的脱除,2006,16(3):542-549.
    [75]赵永,蒋开喜,王德全等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁.有色金属(冶炼部分),2005,56(5):13-15.
    [76]刘俊峰,易平贵,陈安国.硫酸锌生产除铁工艺及其比较,2001,33(1):35-37.
    [77]刘晨宏.煤系高岭土精选除铁新工艺的开发与应用.煤炭加工与综合利用,1998,16(2):37-39.
    [78]姜润田,张振伟,袁美龙等.硫酸铜除铁工艺的研究.济南大学学报,2003,17(3):289-291.
    [79]宋焕笔,胡业藏.用黄钾铁矾法从某铀矿浓酸浸出液中除铁的研究.铀矿冶,1997,16(1):13-18.
    [80]吴建宁,蔡会武,郭红梅等.从含铁硫酸铝中除铁.湿法冶金,2005,24(3):155-158.
    [81]马建民,曹智战.一种生产优质硫酸铝的新方法.信阳师范学院学报(自然科学版),1999,12(2):228-230.
    [82]梅永进,陆英英.工业硫酸铝除铁试验.鹭江职业大学学报,2002,10(1):73-75.
    [83]黄伦光,庄海兴,溶剂萃取法从含铁硫酸铝溶液中除铁的工艺研究.湿法冶金,1998,(2):1-10.
    [84]Bradley D C. Philosophical Transactions of the Royal Society of London,1990, A330: 167-171.
    [85]Martin G. (executive editor) Encyclopedia of Chem. Tech.,1978,3th ed, Vol.2,1-5.
    [86]宁桂玲.高等无机合成,第一版,上海:华东理工大学出版社,2007.
    [87]Child W C, Adkins H. The Condensation of Aldehydes to Esters by Aluminum Ethoxide. Journal of the American Chemical Society,1923,45(12):3013-3023.
    [88]Giesbrecht G R, Gordon J C, Clark D L, et al. Salt-Free Synthesis of Samarium-Aluminum Mixed-Metal Alkoxides:X-ray Crystal Structures of {[(i-Pr-O) (i-Bu)Al(μ-O-i-Pr)2Sm(O-i-Pr) (HO-i-Pr)] (μ-O-Pr)}2, [(THF)2Sm(O-t-Bu)2(μ-O-t-Bu)2Al(i-Bu)2], Sm(OAr)3(THF)3 (Ar=2,4,6-Me3C6H2), [Nd(μ-OAr) (OAr)2 (py)2]2 (Ar= 2,4,6-Me3C6H2), and (ArO) 3Sm [(μ-O-t-Bu) 2Al2 (O-t-Bu)4] (Ar=2,6-i-Pr2C6H3). Inorganic Chemistry,2002,41:6372-6379.
    [89]Kodokura H, Ishii T. Process for gallium alkoxide. US 2001023299. A1.2001.
    [90]Suzuki T, Kuroki M, Nakamura K, Purification of Tantalum Alkoxide, High-Purity Tantalum Alkoxide, and Vapor-Phase Deposition Using It. JP 062200699.1994.
    [91]Suzuki T, Kuroki M, Nakamura K. Purification of Chlorine-Contaminated Tantalum Alkoxide for Manufacture of Integrated Circuit. JP 06192148.1994.
    [92]Tanaka M, Nakayama M, Yokoyama H. Method for Purification of Tantalum Alkoxide. JP 2002161059.2002.
    [93]Sugiyama I, Setsuda Y. Purification of Metal Alkoxides. JP 47028962.1972.
    [94]Reuter K, Zell F, Ebner M. Production of High Purity Zirconium-, Hafnium-, Tantalum-, and Niobium Alkoxides. DE 102005052444.2007.
    [95]居明丽,络和-结晶法脱异丙醇铝及氧化铝纳米粉体中痕量铁的研究:(硕士论文).大连:大连理工大学,2004.
    [96]杨咏来,张强,宁桂玲等.萃取—络合法纯化异丙醇铝的研究.大连理工大学学报,1999,39(1):53-55.
    [97]Dubois P H, Jerome R, Teyssie P H. Kinetics of Block Adsorption. Macromolecules,1991,24: 2266-2270.
    [98]Dubois A, Florjanczyk Z, Hofman A et al. Living Pseudoanionic Polymerization of i-Caprolaction. Poly(i-Caprolaction) Free of Cyclic and with Controlled End Groups. Macromolecules,1990,23:1640-1646.
    [99]董占能,赵兵,郭玉忠.金属醇盐的物化特性.昆明理工大学学报,2002,25(2):58-61.
    [100]Turova N Ya, Kozunov V A. Physico-Chemical and Structural Investigation of Aluminium Isopropoxide. Journal of Inorganic and Nuclear Chemistry,1979,41:5-11.
    [101]Folting K, Streib W E, Caulton K G. Characterization of Aluminium Isopropoxide and Aluminosiloxanes. Polyhedron,1991,10(14):1639-1646.
    [102]Mehrotra R C, Goel S, Goel A B. Preparation and Characterization of Some Volatile Double Isopropoxides of Aluminium with Alkaline Earth Metals. Inorganic Chimica Acta,1978.29:131-136.
    [103]Mehrotra R C, Aggrawal M M, Mehrotra A. Double Isopropoxides of Lantanons with Aluminum. Tri(diisopropoxoaluminum di-u-isopropox)Lanthanon(Ⅲ). Synthesis and Reactivity in Inorganic and Metal-Orgnic Chemistry,1973,3(2):181-191.
    [104]肖纪美,霍明远.中国稀土理论与应用研究.北京:高等教育出版社,1992.
    [105]Wang J H, Ye J W, Lin Y et al. Synthesis and Luminescence of Hollow Spherical Eu3+-or Tb3+-doped MgAl2O4 Phosphor, Journal of Nanoscience and Nanotechnology,2010,10: 574-578.
    [106]Yang X F, Ning G L, Li X et al. Synthesis and Luminescence Properties of a Novel Eu3+-doped γ-LiAlO2 Phosphor, Materials Letters,2007,61:4694-4696.
    [107]Krebs J K, Feofilov S P, Kaplyanskii A A et al. Non-Radiative Relaxation of Yb3+ in Highly Porous γ-Al2O3 Journal of Luminescence,1999,83-84:209-213.
    [108]Okabayashi T, Fujimoto T, Yamamoto I et al. High Sensitive Hydrocarbon Gas Sensor Utilizing Cataluminescence of γ-Al2O3 Activated with Dy3+. Sensors and Actuators B, 2000,64:54-58.
    [109]石涛,周箭,申乾宏等.溶胶-凝胶法制备纳米晶γ-Al2O3:Tb3+粉末及其发光性能.硅酸盐通报,2009,28(2):224-228.
    [110]Monteiro M A F, Brito H F, Felinto M C F C M et al. Photoluminescence Behavior of Eu3+ Ion Doped into γ-and α-Alumina Systems Prepared by Combustion, Ceramic and Pechini Methods. Microporous and Mesoporous Materials,2008,108:237-246.
    [111]石涛,周箭,申乾宏等.溶胶-凝胶法制备纳米晶γ-Al2O3:Eu3+发光粉及发光性能.电子元件与材料,2009,28(3):35-37,41.
    [112]Wakef ield G, Keron H A, Dobson P J et al. Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles. Journal of Colloid and Interface Science,1999,215:179-182.
    [113]Feof ilov S P, Kaplyanskii A A, Kulinkin A B et al. Sol-Gel Synthesis and Optical Studies of Rare Earth and Transition Metal Ions Doped Nanocrystalline Aluminum and Yttrium Oxides. Journal of Sol-Gel Science and Technology,2001,21:135-145.
    [114]Cong Y, Li B, Yue S M et al. Characterization and Photoluminescence Properties of Eu3+ Doped 3CdO-Al2O3-8Si02. Amorphous System for White Light-Emitting Diodes. Journal of Physical Chemsitry Letters,2009,113:493-495.
    [115]Tanner P A, Pan Z, Rakov N et al. Luminescence of Eu3+ in α-Al2O3 Powders. Journal of Alloys and Compounds,2006,424:347-349.
    [116]Barros V S M, Azevedo W M, Khourya H J et al. Combustion Synthesis:A Suitable Method to Prepare Al2O3 Doped Materials for Thermoluminescent Dosimetry. Radiation Measurements,2008,43:345-348
    [117]Ozuna 0, Hirata G A, McKittrick J. Luminescence Enhancement in Eu3+-Doped α-and γ-Al2O3 Produced by Pressure-Assisted Low-Temperature Combustion Synthesis. Applied Physics Letters,2004,84:1296-1298.
    [118]Hirata G, Perea N, Tejeda M et al. Luminescence Study in Eu-Doped Aluminum Oxide Phosphors. Optical Materials,2005,27:1311-1315.
    [119]刘世江,孙洪巍,黄淼淼等.共沉淀法制备Al2O3:Eu红色荧光粉及其发光性能研究.中国陶瓷,2007,43(3):22-25,28.
    [120]Zhu Y F, Shi J L, Shen W H et al. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie International Edition,2005,44:5083-5087.
    [121]Yu J G, Wang G H, Hydrothermal Synthesis and Photocatalytic Activity of Mesoporous Titania Hollow Microspheres. Journal of Physics and Chemistry of Solids,2008,69: 1147-1151.
    [122]Yu J G, Yu X X. Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres. Environemental Science & Technology,2008,42(13):4902-4907.
    [123]Lee C W, Lee K W, Lee J S. Optoelectronic Poperties of β-Fe2O3 Hollow Nnoparticles. Materials Letters,2008,62:2664-2666.
    [124]Sun X M, Liu J F, Li Y D. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chemistry-A European Journal,2006,12: 2039-2047.
    [125]Sun X M, Liu J F, Li Y D. Ga2O3 and GaN Semiconductor Hollow Spheres. Angewandte Chemie International Edition,2004,43:3827-3831.
    [126]Sun X M, Li Y D.Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angewandte Chemie,2004,116:607-611.
    [127]Wang D B, Song C X, Lin Y S et al, Preparation and Characterization of TiO2 Hollow Spheres. Materials Letters,2006,60:77-80.
    [128]Titirici M M, Thomas A, Antonietti M. Replication and Coating of Silica Templates by Hydrothermal Carbonization. Advanced Functional Materials,2007,17:1010-1018.
    [129]Ohara P C, Leff D V, Heath J R et al. Crystallization of Opals from Polydisperse Nanoparticles. Physical Review Letters,1995,75:3466-3469.
    [130]Peng Q, Dong Y, Li Y, ZnSe Semiconductor Hollow Microspheres. Angewandte Chemie International Edition,2003,42:3027-3030.
    [131]Luo C, Xue D F, Mild, Quasireverse Emulsion Route to Submicrometer Lithium Niobate Hollow Spheres. Langmuir,2006,22:9914-9918.
    [132]Buchold D H M, Feldmann C, Nanoscale γ-AlO(OH) Hollow Spheres:Synthesis and Container-Type Functionality. Nano Letters,2007,7:3489-3492.
    [133]Ebina W Y, Takada K, Sasaki T. Ultrathin Films and Hollow Shells with Pillared Architectures Fabricated via Layer-by-Layer Self-Assembly of Titania Nanosheets and Aluminum Keggin Ions. Journal of Physical Chemistry B.2004,108(4):4283-4288.
    [134]Wang L Z, Sasaki T, Ebina Y et al. Fabrication of Controllable Ultrathin Hollow Shells by Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates. Chemistry Materials,2002,14:4827-4832.
    [135]Geng J, Zhu J J, Lu DJ et al. Hollow PbW04 Nanospindles via a Facile Sonochemical Route. Inorganic Chemistry,2006,45:8403-8407.
    [136]Hu Y, Chen J, Chen W M et al. Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres. Advanced Materials,2003,15:726-729.
    [137]Devaraju M K, Yin S, Sato T. A Fast and Template Free Synthesis of Tb:Y2O3 Hollow Microspheres via Supercritical Solvothermal Method. Crystal Growth & Design, 2009,9(6):2944-2949.
    [138]Wang H Y, Wang R J, Sun X M et al. Synthesis of Red-Luminescent Eu3+-doped Lanthanides Compounds Hollow Spheres. Materials Research Bulletin,2005,40:911-919.
    [139]Jia G, Yang M, Song Y H et al. General and Facile Method To Prepare Uniform Y2O3:Eu3+ Hollow Microspheres. Crystal Growth & Design,2009,9(1):301-307.
    [140]Liu G X, Hong G Y, Dong X T et al. Synthesis of Y203:Eu3+ Hollow Sphelles Using Silica as Templates. Journal of Rare Earths,2007,25:407-411.
    [141]Mao Y B, Huang J Y, Ostroumov R et al. Synthesis and Luminescence Properties of Erbium-doped Y2O3 Nanotubes. The Journal of Phyical Chemistry C,2008,112:2278-2285.
    [142]Yu M, Lin J, Fang J. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors. Chemistry of Materials, 2005,17:1783-1791.
    [143]Liu G X, Hong G Y, Wang J X et al. Hydrothermal Synthesis of Spherical and Hollow Gd2O3:Eu3+ phosphors. Journal of Alloys and Compounds,2007,432:200-204.
    [144]Koo H Y, Jung D S, Ju S H et al. Effect of Preparation Temperature on the Characteristics of Eu-doped Borate Phosphor Particles in the Spray Pyrolysis. Materials Letters, 2006,60:3091-3095.
    [145]Guan M Y, Sun J H, Han M et al. Synthesis and Luminescence of CePO4 and CePO4:Tb Hollow and Core-Shell Microspheres Composed of Single-Crystal Nanorods. Nanotechnology, 2007,18:415602-415607.
    [146]程能林.溶剂手册.第二版.北京:化学工业出版社,2001.
    [147]Young W G, Hartung W H, Crossley F S. Reduction of Aldehydes with Aluminum Isopropoxide. Journal of the American Chemical Society,1936,58 (1):100-102.
    [148]王明艳,异丙醇铝中痕量硅杂质分离纯化研究:(硕士论文).大连:大连理工大学,2005.
    [149]幸松民,王一璐.有机硅合成工艺及产品应用.第一版.北京:化学工业出版社,2000:140-142.
    [150]Shiser V J, Whittaker D, Fernan V P. The Structures of Some Aluminum Alkoxides. Journal of the American Chemical Society,1963,2318-2322.
    [151]Nunes G G, Bottini R C R, Reis D M et al. New Fell Starting Materials:Preparation, Characterisation and Structural Features of Iron Halide Complexes with Alcohol Ligands. Inorganica Chimica Acta,2004,357:1219-1228.
    [152]慕伟意,杜继红,李争显等.铝在高温水蒸气中表面氧化膜的性能.表面技术,2004,33(2):55-57.
    [153]Scala A. Action of Distilled Water on Impure Aluminium. Rendiconti,1973,22(1):43-47.
    [154]Underhill P R, Rider A N, DuQuesnay D L. Warm Water Treatment of Aluminum for Adhesive Bonding. International Journal of Adhesion & Adhesives,2003,23(4):307-313.
    [155]Carl C G, Garnerville N Y, Kelly B T et al. Activated Preparation of Metal Alkoxides, US 4670573.1987.
    [156]Turova N Ya, Turevskaya E P, Kessler V G. Oxoalkoxides-Ture Precursors of Complex Oxides. Journal of the Sol-Gel Science and Technology,1994,2:17-23.
    [157]董占能,赵兵,郭玉忠.金属醇盐的合成(Ⅰ).云南化工,1997,(3):45-49.
    [158]大连理工大学无机化学教研室.无机化学.第四版.北京:高等教育出版社,2001.
    [159]马文展,刚典臣,胡建.异丙醇铝生产工艺及安全.安全工程,1997,6:43-45.
    [160]张志焜,崔作林.纳米技术与纳米材料.第一版.北京:国防工业出版社,2000.
    [161]Kobayashi Y, Kawashima D, Tomita A. Preparation of a γ-Alumina Film Doped with Fine γ-Iron(III) Oxide Particles. Chemistry of Materials,1997,9:1887-1892.
    [162]Seisenbaeva G A, Gohil S, Suslova E V et al. The Synthesis of Iron (Ⅲ) Ethoxide Revisited:Characterization of the Metathesis Products of Iron (Ⅲ) Halides and Sodium Ethoxide. Inorgnica Chimica Acta,2005,358:3506-3512.
    [163]Adams R W, Bishop E, Martin R L et al. Magnetism, Electronic Spectra and Structure of Transition Metal Alkoxide. I Methoxides and Ethoxides of Chromium(Ⅱ), Manganese(Ⅱ), Iron(Ⅱ), Cobalt (Ⅱ),Nickel(Ⅱ), Copper(Ⅱ), Titanium(Ⅲ), Chromium(Ⅲ), and Iron(Ⅲ). Australian Journal of Chemistry,1966,19:207-210.
    [164]Lahoda E J..Purification of Silicon. US 4428917,1984.
    [165]姚守拙,朱元保,何双娥等.元素化学反应手册.长沙:河南教育出版社,1998.
    [166]Turova N Ya, Kozunov V A, Yanovskii A I et al. Physico-chemical and Structural Investigation of Aluminium Isopropoxide. Journal of Inorganic and Nuclear Chemistry, 1978,41(1):5-11.
    [167]Lynch C T, Mazdiyasni K S, Smith J S et al. Infrared Spectra of Transition Metal Alkoxides. Analytical Chemistry,1964,36(12):2332-2337.
    [168]Athar T, Kwon J O, Seok S. Synthesis and Physico-chemical Studies of Double Alkoxides and Their Allied Compounds. Appllied Organometallic Chemistry,2005,19:964-970.
    [169]文美兰.X射线光电子能谱的应用介绍.化工时刊,2006,20:54-56.
    [170]刘芬,陈萦.含铁化合物的Fe2p和Fe3s电子能谱研究.分析测试技术与仪器,2001,7:166-169.
    [171]Henglein A. Q-Particles:Size Quantization Effects in Colloidal Semiconductors. Progress in Colloid & Polymer Science,1987,73:1-3.
    [172]Henglein A. Electronics of Colloidal Nanometer Particles. Berichte'der Bunsengesellschaft fur Physikalische Chemie,1995,99(7):903-913.
    [173]曹茂盛,关长斌,徐甲强.纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001.
    [174]田玉明,黄平.纳米粉体的特性和制备方法.太原理工大学学报,2000,31(3):316-318.
    [175]张金中,王中林,刘俊等(著),曹茂盛,曹传宝(译).自组装纳米结构,北京:化学工业出版社,2004.
    [176]Tausch-Treml R, Henglein A, Lilie J. Reactivity of Silver Atoms in Aqueous Solution.Ⅱ. A Pulse Radiolysis Study. Berichte der Bunsengesellschaft fur Physikalische Chemie, 1978,82(12):1335-1343.
    [177]Nedeljkovic J M, Nenadovic M T, Micic O I et al. Enhanced Photoredox Chemistry in Quantized Semiconductor Colloids. Journal of Physical Chemistry,1986,90:12-13.
    [178]Heiglein A. The Reactivity of Silver atoms in Aqueous Solutions (a γ-Radiolysis Study). Berichte der Bunsengesellschaft fur Physikalische Chemie,1977,81:556-561.
    [179]蔡剑秋.化工百科全书.第十卷,北京:化学工业出版社,1996.
    [180]Liver N, Nitzan A. Redox Properties of Small Semiconductor Particles. The Journal of Physical Chemistry,1992,96:3366-3373.
    [181]Horanyi G. Comments on the Electrochemical Behavior of Small Metal Particles. Journal of Physical Chemistry,1985,89:2967-2968.
    [182]江龙.量子化尺寸纳米颗粒及其在生物体系中的作用.无机化学学报,2000,2(3):185-194.
    [183]颜肖慈,罗明道.界面化学.北京:化学工业出版社,2004.
    [184]游文,林顺岩.杂质对Al-Ga-Bi-Pb合金电话性能的影响.铝加工,1998,1(5):35-38.
    [185]张志焜,崔作林.纳米技术与纳米材料.第一版,北京:国防工业出版社,2000.
    [186]王治国,李念奎.高纯铝锭冶金质量对高压电解电容器用箔生产工艺和产品质量的影响.轻合金加工技术,1997,25(1):9-13.
    [187]程广禄,上野景平,今村寿明著.有机分析试剂手册北京:地质出版社,1985.
    [188]张毂.无机分析中的有机试剂.第一版,武汉:中国地质大学出版社,1990.
    [189]亚诺什(著),刘士斌(译).络合平衡的分析应用.第一版,长春:吉林大学出版社,1987.
    [190]Brown I M, Mazdiyasni K S, Characterization and Gas Chromatography of Alkoxides of Aluminum and of Some Group IV Elements, Analytical Chemistry,1969,41 (10):1243-1250.
    [191]刘四运,吴新民,陈平等.酚酞指示剂在酸碱溶液中变色复杂性探讨.安庆师范学院学报(自然科学版),2004,10(1):63-65.
    [192]孙洪涛.酚酞指示剂遇无水醇钠醇溶液变色的探讨.辽阳石油化工高等专科学院学报,2001,17(1):8-10.
    [193]慈云祥,周大泽.分析化学中的配位化合物.北京:北京大学出版社,1986.
    [194]张祥麟,康衡.配位化学.长沙:中南工业大学出版社,1985.
    [195]朱洪涛,邓奎琳,杨月辉等.四元螯环配合物稳定性质的研究Ⅰ再论螯环大小对螯合物稳定性质的影响.河北大学学报(自然科学版),1995,15(2):19-24.
    [196]Chen C Y, Li H Y, Burkett S L et al. Studies on Mesoporous Materials II. Synthesis Mechanism of MCM-41. Microporous Materials,1993,2:27-32.
    [197]Demir-Cakan R, Baccile N, Antonietti M et al. Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. Chemistry of Materials,2009,21:484-490.
    [198]Yi Z H, Liang Y G, Lei X F et al. Low-temperature Synthesis of Nanosized Disordered Carbon Spheres as an Anode Material for Lithium Ion Batteries. Materials Letters, 2007,61:4199-4203.
    [199]Watanabe M, Aizawa Y, Iida T et al. Glucose Reactions with Acid and Base Catalysts in Hot Compressed Water at 473 K. Carbohydrate Research,2005,340:1925-1930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700