用户名: 密码: 验证码:
膨胀性非饱和土的水力—力学性质及其弹塑性本构模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高水平放射性核废料的最终处置已受到世界各国越来越多的关注,目前国际上普遍接受的可行性方案是深层地质处置。膨润土因具有高膨胀性、低渗透性、优良的核素吸附性等被世界各国选作深层地质处置多重工程屏障系统中缓冲和回填材料的基质材料。如何预测膨润土及其与砂混合物的压缩变形、遇水膨胀变形及膨胀压力,是核废料深层地质处置工程在理论上及工程应用中亟待解决的关键技术,需要在深入研究膨润土的变形特性和水力特性及两者耦合特性的基础上,提出能预测包括膨胀变形和水力特性在内的水力-力学特性耦合的弹塑性本构模型。
     本论文在阅读、整理国内外相关文献的基础上,对膨润土及其与砂混合物进行了试验分析和本构模型的研究,具体研究内容和结论如下:
     1、对用不同制样方法得到的饱和膨润土及其与砂混合物进行了压缩试验,得到侧限应力状态下饱和试样的压缩变形特性。饱和膨润土的压缩曲线呈双线性,静止侧向压力系数值较一般黏土的数值要大。对膨润土与砂混合物的击实样进行了由非饱和到饱和状态的浸水试验,并得到试验过程中侧向应力的变化规律。由于浸水饱和的试样和抽真空饱和的试样在较高压力时压缩曲线趋于一致,可采用快速抽真空饱和的方法准备饱和试样,以缩短非饱和混合物击实样浸水饱和所需时间。引入骨架孔隙比的概念,用来判断膨润土与砂混合物中砂颗粒骨架是否形成,得到影响混合物压缩特性的决定因素。
     2、对非饱和膨润土击实试样进行了侧限应力状态下的不排水压缩试验,得到了土样在压缩回弹过程中的变形、饱和度和侧向应力的变化规律。回弹指数与试样的初始状态关系不大;初始含水量相同的试样,屈服应力随初始干密度的提高而增大,在高应力范围,其压缩曲线趋于一致;初始干密度相同的试样,含水量越小,吸力值越大,压缩指数越小,这反映了非饱和膨润土压缩指数随吸力的增大而减小的趋势;总侧向应力与总竖向应力之比σh /σv随竖向应力的增大而增大,饱和度的增加速度越快,σh /σv值增大的趋势也越明显。
     3、研究了非饱和膨润土及其与砂混合物的水力特性。采用滤纸法测得Kunigel V1钠基膨润土的土水特征曲线(SWCC),试验结果表明随着孔隙比的减小,饱和度与吸力间的关系曲线右移;吸力一定时,饱和度与孔隙比间呈线性关系,而且其斜率在不同吸力时相近。采用压力板法和滤纸法对膨润土与砂混合物的低吸力段和高吸力段分别量测了吸力,得到土水特征曲线。两种方法测到的SWCC曲线有较好的一致性。
     4、采用非饱和土固结仪对膨润土与砂混合物进行吸湿试验及常吸力下的压缩试验,研究了膨润土与砂混合物的水力和力学特性。吸湿过程中,初始状态相同的试样膨胀变形量与吸力变化的幅度和吸力路径有关;初始含水量及吸力路径相同的试样,初始孔隙比越小的试样膨胀量越大。压缩试验结果表明,回弹指数可假定为定值;屈服后压缩指数随吸力的增大而减小;初始屈服应力随吸力的增大而增大,这与BBM中的加载-湿陷屈服线趋势相似;初始含水量及吸力路径相同的试样,压缩指数随试样初始干密度的增大而减小,而初始屈服应力随初始干密度的增大而增大;压缩过程中含水量变化不大,饱和度的变化主要与试样体积变化有关;对具有相同初始状态但经历不同吸力路径的试样进行压缩试验,结果表明吸力路径对压缩变形特性有很大的影响,也证实了非饱和膨润土与砂混合物土水特征曲线的滞回特性。
     5、在已有的非膨胀性非饱和土水力特性和力学性质耦合的弹塑性本构模型的基础上,从宏观的角度开发和建立了膨胀性非饱和土水力-力学特性耦合的弹塑性本构模型。本模型考虑了饱和度对应力应变关系的影响及变形对保水特性的影响,可统一预测膨胀性非饱和土的水力特性及应力应变关系。模型共计13个参数,均可通过宏观层次上吸力控制的试验确定。利用本模型对本论文中膨润土与砂混合物的吸湿试验及常吸力下的压缩试验结果进行了预测,还对詹良通和吴宏伟(2006)进行的吸力控制的非饱和膨胀土三轴试验结果进行了预测,预测结果表明本模型能够定量的统一的描述膨胀性非饱和土的水力特性和力学性质。
Many countries are planning to bury high-level radioactive nuclear wasters in sealed repositories located deeply in geology formations. Engineered barriers made up of highly compacted expansive clays are considered for isolating the nuclear wastes at great depth. Bentonite is used as buffer materials or backfill materials because of its low hydraulic conductivity, high swelling property and good self-sealing capacities, etc. Predictions of the compression behaviour and the swelling behaviour of bentonite and sand-bentonite mixtures due to water uptake are the important technical issues to be resolved both in theory and in engineering application for the deep nuclear wastes disposal system. It requires a constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated expansive soil based on the further study to the coupled effect of deformation and water retention behaviour of bentonite and sand-bentonite mixtures.
     In the thesis, on the basis of reading the related literatures, the experiemental study on the hydro-mechanical behaviour of unsaturated bentonite and sand-bentonite mixtures and its constitutive modelling are conducted, and the main conclusions are shown as follows:
     1. The compression tests are completed on saturated bentonite and sand-bentonite mixtures with different preparations. The test results show that the compression curves show a bilinear shape, which is different from that of ordinary normally consolidated clays. The coefficient of lateral earth pressure of saturated bentonite at-rest is obtained by K0-oedometer; and the K0 value is greater than that of ordinary clays. The change in the lateral stress is obtained during the water uptake tests on compacted sand-bentonite mixtures which are transited from unsaturated to saturated states. The compression curves of compacted specimens saturated by the water uptake test and the vacuumized methods tend to be consistent in the relatively high stress range. Thus the vacuumized method for saturating the specimens can be adopted to save time for performing the water uptake test. The concept of skeleton void ratio is used to judge whether the sand skeleton is formed in sand-bentonite mixtures, and to obtain main factors affecting the compression behaviour of the mixtures.
     2. The undrained compression tests are producted on unsaturated bentonite with lateral stress being measured under vertical loading. The deformation characteristics of unsaturated bentonite and the change in lateral stress during tests are obtained under K0-compression stress state. According to the test results, the swelling index trends to be constant independent on the initial state; and for specimens with equivalent initial water content the yield stress increases with increasing suction and the compression curves tend to be consistent in the relatively high stress range; and to specimens with equivalent initial dry density the compression indexes increase with increasing water content; moreover, the relationships between the ratio of total lateral stress to total vertical stress with the degree of saturation and total vertical stress are obtained.
     3. The water retention behaviour of unsaturated bentonite and sand-bentonite mixutures are investigated. The filter paper method is adopted to measure the suction of Kunigel V1 Na-bentonite. According to the test results, the soil-water characteristic curves (SWCC) between degree of saturation and suction shift to the right with decreasing void ratio, and the drgree of saturation and void ratio present the good linear relation with almost the same gradient under different constant suctions. To measure the SWCC of the mixture in the wide range of suction, a pressure plate apparatus and the filter papers are used at lower and higher suctions respectively. The obtained SWCC shows that the results obtained from the two methods can be considered as consistent.
     4. By using a suction-controllable oedometer for unsaturated soils, a series of wetting tests at constant net stresses and compression tests at different constant suctions are performed on compacted sand-bentonite mixtures to study the coupled hydraulic and mechanical behaviour of unsaturated expansive soil. The wetting test results indicate that the swelling deformations have the relation with suction variation and suction paths to specimens at the initial state. Moreover the swelling deformation increases with decreasing the void ratio during wetting test for specimens with equivalent initial water content and the same suction path. The compression test results indicate that the swelling indexes trend to be constant; and the yield stress increases and compression index decreases with increasing the suction. The results also demonstrate that the mixture wetted to saturation and subsequently dried to the target suction has the lower yield stress than that wetted directly to the same suction.
     5. The Barcelona Basic Model (BBM) by Alonso cannot predict the mechanic behaviour of unsaturated expansive soil, and the Barcelona Expansive Model (BExM) for unsaturated expansive soils is complicated and the micro parameters and the coupling function from micro-structural strain to macro-structural strain are difficult to be determined. In this thesis, an elastoplastic constitutive model is developed from the macro-view for predicting hydraulic and mechanical behaviour of unsaturated expansive soils based on the existing hydro-mechanical elastoplastic model for unsaturated non-expansive soil. The model takes into consideration the coupled effect of the degree of saturation and the void ratio. The concept of Equivalent Void Ratio Curve (EVRC) is introduced in the model. The coupled model totally requires 13 parameters which can all be determined from element tests. The predictions are performed on the test results obtained by the previous compression tests and published in the literature by Zhan and Ng (2006), which include the swelling tests under constant net stresses, isotropic compression tests and triaxial shear tests under constant suctions. The comparisons between measured and predicted results indicate that the model can quantitatively predict the hydraulic and mechanical behaviour of unsaturated expansive soils.
引文
【1】AECL. The disposal of Canada’s nuclear fuel waste: engineered barriers alternatives [R]. AECL-1078COG-93-8, 1994.
    【2】Agus S S, Schanz T. Swelling pressure and total suction of compacted bentonite–sand mixtures[C]. In: Bilsel H, Nalbantoglu Z. (Eds.). Proceeding of International Conference on Problematic Soils, GEOPROB 2005, Eastern Mediterranean University Press, Famagusta, 2005, 1: 61–70.
    【3】Agus S S. An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures [D]. Bauhaus-University Weimar (BUW). 2005.
    【4】Aitchison G D, Richards B G. A broad-scale study of moisture conditions in pavement subgrades throughout Australia. In: Moisture equilibrium and moisture changes in soils beneath covered areas[C]. In: Aitchison G D. (Eds.), Moisture Equlibria and Moisture Changes in Soils Beneath Covered Areas, A Symposium in Print, Sydney, Australia. Butterworths & Co. Ltd. 1965: 184-236.
    【5】Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils [J]. Geotechnique, 1990, 40 (3): 405-430.
    【6】Alonso E E, Gens A, Yuk Gehling W K. Elasto-plastic model for unsaturated expansive soils [C]. Proceeding of 3rd European Conference on Numerical Methods in Geotechnical Engineering, Manchester, 1994:11-18.
    【7】Alonso E E. Modelling expansive soil behaviour [C]. In Proceedings of the 2nd International Conference on Unsaturated Soils, Beijing, China, 1998, 2: 37-70.
    【8】Alonso E E, Vaunat J, Gens A. Modelling the mechanical behaviour of expansive clays [J]. Engineering Geology, 1999, 54: 173-183.
    【9】Alonso E E, Romero E, Hoffmann C, Garcia-Escudero E. Expansive bentonite/sand mixtures in cyclic controlled-suction drying and wetting [C]. In: Proceeding of the 6th International Workshop on Key Issues in Waste Isolation Research (KIWIR 2001),Paris, Ecole National des Ponts et Chaussées, Paris, 2001: 513-541.
    【10】Alonso E E, Romero E, Hoffmann C, Garcia-Escudero E. Expansive bentonite-sand mixture in cyclic controlled-suction drying and wetting [J]. Engineering Geology, 2005, 81 (2-3): 213-226.
    【11】Al-Khafaf S, Hanks R J. Evaluation of the filter paper method for estimating soil-water potential [J]. Soil Science, 1974, 117(4): 194-199.
    【12】ASTM. Annual Book of Standards. Standard test method for the atmospheric analysis, occupational health and safety, and protective clothing [M]. ASTM International. West Conshohocken. PA. 1997, 11(03).
    【13】Bendani K, Missoum H, Khelafi H, Laredj N. Modelling the Hydro-Mechanical Behaviour of Highly Expansive Clays [J]. Asian Journal of Applied Sciences. 2008, 1 (3): 206-216.
    【14】Bishop A W. The principle of effective stress [C]. Tek. Ukeblad, 1959, 39: 859-863.
    【15】Boonsinsuk P, Pulles B C, Kjartanson B H, et al. Prediction of compactive effort for a bentonite-sand mixture[C]. 44th Canadian Geotechnical Conference. Alberta, 1991, 2: 64.1–64.12.
    【16】Brackley I J. Swell pressure and free swell in compacted clay[C]. Proceedings, 3rd International Conference of Expansive Soils, Haifa, 1973, 1:169–176.
    【17】Brackley I J. Swell under load [C]. Proceedings, 6th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Durban, 1975, 1: 65-70.
    【18】Brooks R H, Corey A T. Hydraulic properties of porous media [C]. Fort Collins: Colorado State University, Hydrology Paper, 1964, 3: 27.
    【19】Buisson M S R, Wheeler S J. Inclusion of hydraulic hysteresis in a new elastoplastic framework for unsaturated soils [C]. In: Tarantino A, Mancuso C. (Eds.), Experimental Evidence and Theoretical Approaches in Unsaturated Soils, 2000: 109–119.
    【20】Chandler R J, Gutierrez C I. The filter paper method of suction measurement [J]. Geotechnique, 1986, 36: 265-268.
    【21】Chandler R J, Crilly M S, Montgomery-Smith G. A low cost method of assessing claydesiccation for low-rise buildings [C]. Proceedings of the Institution of Civil Engineer, 1992, 92(2): 82-89.
    【22】Chapman D L. A contribution to the theory of electro-capillarity [J]. Philosophical Magazine, 1913, 25(6): 475-481.
    【23】Chu T Y, Mou C H. Volume change characteristics of expansive soils determined by controlled suction test [C]. Proceedings of 3rd International Conference on Expansive Soils, Haifa, 1973, 1:177-185.
    【24】Collins K, McGown A. The form and function of microfabric features in a variety of natural soils [J]. Géotechnique, 1974, 24: 223-254.
    【25】Collins K. Characterisation of expansive soil microfabric [C]. 5th International Conference on Expansive Soils, Adelaide, 1984: 37-43.
    【26】Crilly M S, Schreiner H D, Gourley C S. A Simple Field Suction Measurement Probe [C]. Proceedings of the 10th African Regional Conference on Soil Mechanics and Foundation Engineering, Lesotho, 1991: 291–298.
    【27】Croney D, Coleman J D, Lewis W A. Calculation of the Moisture Distribution beneath Structures [J]. Civil Engineering, London, 1950, 45: 524.
    【28】Croney D, Coleman J D. Pore pressure and suction in soil [C]. In: Proceedings of Conference on Pore Pressure and Suction in Soils. Butterworths, London, 1961: 31-37.
    【29】Cui Y J. Etude Du Comportement D’un Limon Compacte Non Sature Et De Modelisation Dans Un Cadre Elasto-Plastique [D]. These De Doctorate. I’Ecole Nationale des Ponts et Chausse’es, Centre d’Enseignement et de Recherche en Mecanique des Sols, Paris, 1993.
    【30】Cui Y J, Delage P. Yielding and plastic behaviour of unsaturated compacted silt [J]. Géotechnique, 1996, 46(2):291–311.
    【31】Cui Y J, Yahia-Aissa M, Delage P. A model for the volume change behavior of heavily compacted swelling clays [J]. Engineering Geology, 2002, 64: 233-250.
    【32】Deka R N, Wairiu M, Mtakwa P W, Mullins C E, Veenendaal E M, Townend J. Use and accuracy of the filter-paper technique for measurement of soil matric potential [J].European Journal of Science, 1995, 46: 233-238.
    【33】Delage P, Lefebvre G. Study of the structure of sensitive Champlain clay and of its evolution during consolidation [J]. Canadian Geotechnical Journal, 1984, 21: 21–35.
    【34】Delage P, Howat M D, Cui Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay [J]. Engineering Geology. 1998, 50: 31–48.
    【35】Dif A E, Bluemel W F. Expansive soils under cyclic drying and wetting [J]. Geotechnical Testing Journal, 1991, 14 (1): 96–102.
    【36】DOE. Yucca mountain science and engineering report. Technical information [R]. U.S. Department of Energy (DOE), Office of Civilian Radioactive Management (OCRWM). Report Revision 1 No. DOE/RW-0539-1, 2002.
    【37】ENRESA. FEBEX project—full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock [R]. Nuclear Science and Technology, project report EUR 19147, Luxembourg, 2000: 354.
    【38】Fawcett R G, Collis-George N. A filter paper method for determining the moisture characteristics of soil [J]. Australian Journal of Experimental Agriculture and Animal Husbandry, 1967, 7: 162-167.
    【39】Fleureau J M, Verbrugge J C, Huergo P J, Correia A G, Kheirbek-Saoud S. Aspects of the behaviour of compacted clayey soils on drying and wetting paths[J]. Canadian Geotechnical Journal, 2002, 39: 1341-1357.
    【40】Fredlund D G, Morgenstern N R. Stress state variable for unsaturated soils [J]. Journal of Geotechnical Engineering, 1977, 103(5): 447-466.
    【41】Fredlund D G. Appropriate concepts and technology for unsaturated soils [J]. Canadian Geotechnical Journal, 1979, 16(1): 121-139.
    【42】Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. John Wiley & Sons Inc., NY. 1993.
    【43】Fredlund D G, Xing A. Equations for soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31: 521-532.
    【44】Gallipoli G, Gens A, Sharma R, Vaunat J. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour [J], Geotechnique, 2003, 53(1): 123-135.
    【45】Gallipoli D, Wheeler S J, Karstunen M. Modeling the variation of degree of saturation in a deformationable unsaturated soil [J]. Geotechnique, 2003b, 53(1):105-112.
    【46】Gardner R. A method of measuring the capillary tension of soil moisture over a wide moisture range [J]. Soil Science, 1937, 43: 227-283.
    【47】Gens A, Alonso E E, Josa A. Elasto-plastic modelling of partially saturated soils [M]. Numerical Models in GeomechanicsⅢ, Elsevier, London, 1989: 163-170.
    【48】Gens A, Alonso E E. A framework for the behaviour of unsaturated clay [J]. Canadian Geotechnical Journal. 1992, 29:1013–1032.
    【49】Gens A. Constitutive modelling: application to compacted soil [J]. Unsaturated soils, Rotterdam, Balkema. 1996, 3: 1179-1200.
    【50】Gens A, Sanchez M, Sheng D C. On constitutive modelling of unsaturated soils [J]. Acta Geotechnica, 2006, 1(3): 137-147.
    【51】Gouy G. Sur la constitution de la chargeélectrique a la surface d'un electrolyte [J]. Physique, 1910, 9: 457-468.
    【52】Gouy G. Sur la fonctionélectrocapilaire [M]. Annales de Physique (Paris), Série 9. 1917, 7: 129-184.
    【53】Graham J, Oswell J M, Gray M N. The effective stress concept in saturated sand-clay buffer [J]. Canadian Geotechnical Journal. 1992, 29: 1033-1043.
    【54】Gratchev I B, Sassa K, Osipov V I, Fukuoka H, Wang G. Undrained cyclic behavior of bentonite–sand mixtures and factors affecting it [J]. Geotechnical and Geological Engineering. 2007, 25: 349–367.
    【55】Greacen E L, Walker G R, Cook P G. Evaluation of the filter paper method for measuring soil water suction [C]. In Proceedings of the International Conference on Measurement of Soil and Plant Water Status, 1987: 137-143.
    【56】Griffiths F J, Josi R C. Change in the pore size distribution due to consolidation ofclays [J]. Géotechnique, 1989, 39(1): 159–167.
    【57】Grim R E. Clay Mineralogy [M]. 2nd Edition, McGraw-Hill, NY, 1968.
    【58】Grimsel. The Grimsel test site. Official Website. www.grimsel.com. 2003.
    【59】Hamblin A P. Filter paper method for routine measurement of field water potential [J]. Journal of Hydrology, 1981, 53: 355-360.
    【60】Harrison B A, Blight G E. The Effect of Filter Paper and Psychrometer Calibration Techniques on Soil Suction Measurements [C]. Second International Conference on Unsaturated Soils, Beijing, China, 1998: 362–367.
    【61】Hilf J W. An investigation of pore water pressure in compacted cohesive soils [D]. PhD dissertation. US Bureau of Reclamation. Technical Memo, Denver, Colorado. No.654, 1956.
    【62】Hodges F N. Development of a backfill for confinement of high level nuclear waste [C]. International symposium on the scientific basis for nuclear waste management V, Material Research Society. Boston, MA, USA, 1982: 641.
    【63】Hoffmann C, Alonso E E, Romero E. Hydro-mechanical behaviour of bentonite pellet mixtures [J]. Physics and Chemistry of the Earth, 2007, 32: 832-849.
    【64】Holtz W G, Gibbs H J. Engineering properties of expansive soils [J]. Transaction of the American Society of Civil Engineers, 1956, 121: 641-677.
    【65】Houlsby G T. The work input to an unsaturated granular materials [J]. Geotechnique, 1997, 47: 193-196.
    【66】IAEA. Classification of radioactive waste-A safety guide [R]. Safety Series No. 111-G-1.1. International Atomic Energy Agency (IAEA), Vienna, 1994.
    【67】Jennings J E B, Burland J B. Limitation to the use of effective stress in partly saturated soils [J]. Geotechnique, 1961, 12(2): 125-144.
    【68】JNC. Project to establish the scientific and technical basis for HLW disposal in Japan. Project overview report [R]. Japan Nuclear Cycle Development Institute (JNC), JNC TN 1400 99-020, 1999a.
    【69】JNC. Project to establish the scientific and technical basis for HLW disposal in Japan.Supporting report 2: Repository Design and Engineering Technology [R]. Japan Nuclear Cycle Development Institute (JNC), JNC TN 1400 99-022, 1999b.
    【70】JNC. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan. Support Report 2: Repository Designing and Engineering Technology [R]. Japan Nuclear Cycle Development Institute, JNC TN 1410 2000-001, 2000.
    【71】John M A, Robert B G. Accelerated swell-shrink test for predicting vertical movement in expansive soils [C]. Proceedings of the Fourth International Conference on Unsaturated Soils, 2006: 1764-1774. Carefree, AZ, United States. Publisher: American Society of Civil Engineers.
    【72】Justo J L, Delgado A, Ruiz J. The influence of stress–path in the collapse–swelling of soils at the laboratory [C]. Proc. 5th Int. Conf. on Expansive Soils, Institution of Engineers of Australia, Adelaide, 1984: 67–71.
    【73】Karube D, Kato S. Yield functions of unsaturated soils [J]. Proc of the 12th ICSMFE, Rio de Janeiro, 1989: 615-618.
    【74】Kassiff G, Ben Shalom A. Experimental relationship between swell pressure and suction [J]. Géotechnique, 1971, 21 (3): 245–255.
    【75】Kassiff G, Baker R, Ovadia Y. Swell-pressure relationships at constant suction changes [C]. Proc. 3rd International Conference Expansive Soils, Haifa, 1973, 1: 201–208.
    【76】Khalili N, Habte M A, Zargarbashi S. A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses [J]. Computers and Geotechnics, 2008, 35(6): 872-889.
    【77】Komine H, Ogata N. Experimental study on swelling characteristics of compacted bentonite [J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490.
    【78】Komine H, Ogata N. Prediction for swelling characteristics of compacted bentonite [J]. Canadian Geotechnical Journal, 1996, 33(1), 11–22.
    【79】Komine H, Ogata N. Experimental study on swelling characteristics of sand–bentonite mixture for nuclear waste disposal [J]. Soils and Foundations, 1999, 39 (2): 83–97.
    【80】Komine H, Ogata N. New equations for swelling characteristics of bentonite-based buffer materials [J]. Canadian Geotechnical Journal, 2003, 40: 460-475.
    【81】Komine H. Simplified evaluation on hydraulic conductivities of sand-bentonite mixture backfill [J]. Applied Clay Science, 2004a, 26(1): 13-19.
    【82】Komine H. Simplified evaluation for swelling characteristics of bentonites [J]. Engineering Geology, 2004b, 71: 265–279.
    【83】Komine H, Ogata N. Predicting swelling characteristics of bentonites [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 818-829.
    【84】Komine H. Theoretical equations on hydraulic conductivities of bentonite-based buffer and backfill for underground disposal of radioactive wastes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 497-508.
    【85】Komornik A, Zeitlen J G. An apparatus for measuring lateral soil swelling pressure in the laboratory [C]. Proc. 6th ICMSFE. Toronto University Press, Montreal, 1965, 1: 278–281.
    【86】Kohgo Y, Nakano M, Miyazaki T. Theoretical aspects of constitutive modelling for unsaturated soils [J]. Soils and Foundations, 1993, 33(4): 49-63.
    【87】Lajudie A, Raynal J, Petit J C, et al. Clay-based materials for engineered barriers: a review [C]. Materials Research Society Symposium Proceedings, 1994, 353: 221-230.
    【88】Leong E C, Rahardjo H. Review of soil-water characteristic curve equations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1106-1117.
    【89】Leong E C, He L, Rahardjo H. Factors affecting the filter paper method for total and matric suction measurements [J]. Geotechnical Testing Journal, 2002, 25(3): 1-12.
    【90】Lewis R W, Schrefler B A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media [M]. Wiley and Sons, Chichester, 1987.
    【91】Li J, Sun D A, Sheng D C, et al. Preliminary study on soil-water characteristics of Maryland clay [C]. Proceeding of the 3rd Asian Conference on Unsaturated Soils, 2007:569-574.
    【92】Lloret A, Alonso E E. State surfaces for partially saturated soils [C]. Proc. 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Balkema A A, 1985, 2: 557-562.
    【93】Lloret A, Villar M V, Sanchez M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes [J]. Geotechnique, 2003, 53(1): 27–40.
    【94】Lloret A, Romero E, Villar M V. FEBEX II project. Final Report on Thermo-Hydro-Mechanical Laboratory Tests [R]. Publicación Técnica ENRESA, Madrid. 2004, 10(4): 180.
    【95】Lytton R L. Foundations and Pavements on Unsaturated Soils [C]. Proceedings of the 1st International Conference on Unsaturated Soils, Rotterdam, Balkema. 1995, (3): 1201-1220.
    【96】Marcial D, Delage P, Cui Y J. On the high stress compression of bentonites [J]. Canadian Geotechnical Journal, 2002, 39: 812-820.
    【97】Mariano A D, Farulla C A, Valore C. Retention curves and 1-D behaviour of a compacted tectonised unsaturated [C]. Proceedings: An international workshop on unsaturated soils, 2000: 47-64.
    【98】Matsuoka H, Yao Y P, Sun D A. The Cam-clay model revised by the SMP criterion [J]. Soils and Foundations, 1999, 39(1): 81-95.
    【99】Matsuoka H, Sun D A. The SMP Concept-based 3D Constitutive Models for Geomaterials [M].Taylor & Francis. 2006.3.
    【100】Meilani I, Rahardjo H, Leong E C, Fredlund D G. Mini suction probe for matric suction measurements [J]. Canadian Geotechnical Journal, 2002, 39: 1427-1432.
    【101】Mesri G, Pakbaz M C, Cepeda-Diaz A F. Meaning, measurement and field application of swelling pressure of clay shales [J]. Geotechnique, 1994, 44(1): 129-145.
    【102】Mitchell J K. Fabric, structure and property relationships. Fundamentals of Soil Behavior [M]. 1st Edition. John Wiley and Sons, New York, NY, 1976: 222–252.
    【103】Mitchell J K. Fundamentals of Soil Behavior [M]. 2nd Edition. John Wiley and SonsInc., New York, NY, 1993.
    【104】Mollins L H, Stewart D I, Cousens T W. Predicting the properties of bentonite–sand mixtures [J]. Clay Miner, 1996, 31: 243–252.
    【105】Moss M, Molecke M A. Thermal conductivity of bentonite/quartz high level waste package backfill [C]. Conference: 6. International symposium on the scientific basis for nuclear waste management V, Material Research Society. Boston, MA, USA, 1982.11.
    【106】Nagaraj T S, Miura N. Soft clay behaviour-analysis and assessment [C]. Balkema, Rotterdam, 2001.
    【107】Ng C W W, Pang Y W. Influence of stress state on soil-water characteristics and slope stability [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(2): 157-166.
    【108】Ng C W W, Zhan L T, Cui Y J. A new simple system for measuring volume changes in unsaturated soils [J]. Canadian Geotechnical Journal, 2002, 39(2): 757–764.
    【109】Nuth M, Laloui L. Advances in modelling hysteretic water retention curve in deformable soils [J]. Computers and Geotechnics, 2008, 34(6): 835-844.
    【110】Ogata N, Kosaki A, Ueda H, Asano H, Takao H. Execution techniques for high level radioactive waste disposal: IV. Design and manufacturing procedure of engineered barriers [J]. Journal of Nuclear Fuel Cycle and Environment, 1999, 5 (2): 103– 121(in Japanese with English abstract)
    【111】Ohmaki S. Stress–strain behaviour of anisotropically, normally consolidated cohesive soil [C]. Proc. 5th International Symposium on Numerical Models in Geomechanics, Balkema, Zurich, 1982: 250–269.
    【112】Ophori D U, Maharjan B. First approximations of soil moisture retention curves using the filter-paper method [J]. Hydrological Processes. 2000.14: 1131-1138.
    【113】Padilla J M, Perera Y Y, Houston W N, et al. A new soil-water characteristic curve device [C]. Proceeding Symposium on Advanced Experimental Unsaturated Soils Mechanics, 2005: 15-22.
    【114】Padilla M J, Perera Y Y, Houston W N, et al. Quantification of air diffusion through high air-entry ceramic disks [C]. Proceeding of the 4th International Conference on Unsaturated Soils, 2006: 1852-1863.
    【115】Perez-Garcia N, Houston S L, William N, et al. An oedometer-type pressure plate SWCC apparatus [J]. Geotechnical Testing Journal, 2008, 31(2): 1-9.
    【116】Phillip R. On solving the unsaturated flow equation [J]. Soil Science, 1973, 116(5): 328-335.
    【117】PNC. International workshop on Research & Development of Geological Disposal [R]. PNC TN 1100 94-003, 1993.
    【118】Pousada E. Deformabilidad de arcillas expansivas bajo succion controlada [D]. Doctoral Thesis, Universidad Politecnica de Madrid, Spain. 1984.
    【119】Pusch R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products [J]. Nuclear Technology, 1979, 45: 153-157.
    【120】Pusch R. Permeability of highly compacted bentonite [R]. SKBF KBS Teknisk rapport, Stockholm, Sweden, 1980: 16-80.
    【121】Pusch R. Unsaturated and saturated flow in swelling clay [C]. Proc. 10th Internal Conf. SM & FE, 1981: 369.
    【122】Pusch R, Eriksen T, Jacobsson A. Ion/water migration phenomenon in dense bentonite [C]. International symposium on the scientific basis for nuclear waste management V, Material Research Society. Boston, MA, USA, 1982: 649.
    【123】Radhakrishna H S. Thermal properties of buffer/backfill materials and their effects on near-field thermal in a nuclear fuel waste disposal vault [C]. Proceedings of OECD/NEA Workshop on Near-field phenomena in Geologic Repositories for Radioactive Waste, 1984: 246.
    【124】Richards B G. Measurement of the free energy of soil moisture by the psychrometric technique using thermistors [C]. In: Aitchison G D. (Eds.), Moisture Equlibria and Moisture Changes in Soils beneath Covered Areas, A Symposium in Print, Sydney, Australia. Butterworths & Co. Ltd. 1965: 35-46.
    【125】Rifat B, Warren W K. Free energy of water-suction-in filter papers [J]. Geotechnical Testing Journal, 2005, 28(4): 1-9.
    【126】Romero E, Vaunat J. Retention curves of deformable clays [C]. Experimental Evidence and Theoretical Approaches in Unsaturated Soils. In: Tarantino A, Mancuso C. (Eds.), Proceedings of an international workshop on unsaturated soils, Trento, Italy, 2000: 91-106.
    【127】Romero E, Gens A, Lloret A. Suction effects on a compacted clay under non-isothermal conditions [J]. Géotechnique, 2003, 53(1): 65-81.
    【128】Roscoe K H, Schofield A N, Thurairajoh A. Yielding of clay in state wetter than critical [J]. Geotechnique, 1963, 13(3):211–240.
    【129】Sanchez M, Gens A, Guimaraes L, Olivewlla S. A double structure generalized plasticity model for expansive materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29: 751-787.
    【130】Sheng D C, Sloan S W, Gens A. A constitutive model for unsaturated soils: thermomechanical and algorithmic aspects [J]. Computational Mechanics, 2004, 33: 453-465.
    【131】Sheng D C, Gens A, Fredlund D G, Sloan S W. Unsaturated soil: From constitutive modelling to numerical algorithms [J]. Computers and Geotechnics, 2008, 35(6): 810-824.
    【132】Shuai F S, Fredlund D G. Model for the simulation of swelling pressure measurements on expansive soils [J]. Canadian Geotechnical Journal, 1998, 35: 96-114.
    【133】Slatter E E, Fityus S G. Measuring lateral pressures during suction-controlled one-dimensional consolidation [C]. Proceedings of the International Symposium on Advanced Experimental Unsaturated Soil Mechanics. Trento, Balkema, 2005:117-123.
    【134】Sridharan A, Choudhury D. Swelling pressure of sodium bentonites [J]. Géotechnique, 2002, 52 (6): 459–462.
    【135】Stewart D I, Cousens T W, Studds P G, Tay Y Y. Design parameters for bentonite-enhanced sands as a landfill liner [C]. Proceedings of Institution of CivilEngineers Geotechnical Engineering, 1999, 137: 189-195.
    【136】Studds P G, Stewart D I, Cousens T W. The effects of salt solutions on the properties of bentonite-sand mixtures [J]. Clay Minerals, 1998, 33: 651-660.
    【137】Sun D A, Matsuoka H, Yao Y P, Ichihara W. An elastoplastic model for unsaturated soil in three-dimensional stresses [J]. Soils and Foundations, 2000, 40(3): 17-28.
    【138】Sun D A, Matsuoka H, Cui H B, Xu Y F. Three-dimensional elastoplastic model for unsaturated compacted soils with different initial densities [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(10): 1079-1098.
    【139】Sun D A, Matsuoka H, Xu Y F. Collapse behavior of compacted clays by suction-controlled triaxial tests [J]. Geotechnical Testing Journal, ASTM, 2004, 27(4): 362-370.
    【140】Sun D A, Sheng D C. An elastoplastic hydro- mechanical model for unsaturated compacted soils [C]. Proc. International Symposium on Advanced Experimental Unsaturated Soil Mechanics, Trento, Balkema, 2005: 249-255.
    【141】Sun D A, Sheng D C, Sloan S W. Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated compacted soils [J]. Mechanics of Materials, 2007a, 39(3): 212-221.
    【142】Sun D A, Cui H B, Matsuoka H, Sheng D C. A three-dimensional elastoplastic model for unsaturated compacted soil with hysteresis [J]. Soils and Foundations, 2007b, 47(2): 253-264.
    【143】Sun D A, Sheng D C, Cui H B, Sloan S W. A density dependent elastoplastic hydro-mechanical model for unsaturated compacted soil [J]. International Journal for Numerical and Analytical Method in Geomechanics, 2007c, 31(11): 1257-1279.
    【144】Sun D A, Sheng D C, Xu Y F. Collapse behaviour of unsaturated compacted soils with different initial densities [J]. Canadian Geotechnical Journal, 2007d, 44(6): 673-686.
    【145】Sun D A, Xiang L. An elastoplastic hydro-mechanical model for unsaturated soils [C]. International Conference on Computational Science, 2007, PART 3, LNCS 4489: 1138-1145.
    【146】Sun D A, Sheng D C, Xiang L, Sloan S W. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions [J]. Computers and Geotechnics, 2008, 35(6): 845-852.
    【147】Sun D A, Cui H B, Sun W J. Swelling of compacted sand-bentonite mixtures [J]. Applied Clay Science, 2009, 43(3): 485-492.
    【148】Swarbrick G E. Measurement of Soil Suction Using the Filter Paper Method [C]. In: Alonso E E, Delage P. (Eds.), Unsaturated Soils: Proceedings 1st International Conference on Unsaturated Soils, Paris, 1995: 797–804.
    【149】Tamagnini R. An extended Cam-clay model for unsaturated soils with hydraulic hysteresis [J]. Geotechnique, 2004, 54 (3): 223–228.
    【150】Tang G X, Graham J, Blatz J, et al. Suctions, stresses and strengths in unsaturated sand–bentonite [J]. Engineering Geology, 2002, (64): 147–156.
    【151】Terzaghi K. Principles of soil mechanics, II-Compressive strength of clay [J]. Engineering News-Record 95, 1925, 20 (95): 796-800.
    【152】Tripathy S, Sridharan A, Schanz T. Swelling pressures of compacted bentonites from diffuse double layer theory [J]. Canadian Geotechnical Journal, 2004, 41: 437–450.
    【153】Van Geet M, Bastiaens W, Volckaert G, Vallejan B, Gens A. Reconnaissance study of EDZ around a large scale shaft sealing demonstration test (RESEAL) [C]. Proceedings of the excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories of a European Commission CLUSTER conference, Luxembourg, 2003.
    【154】Van Geet M, Bastiaens W, Volckaert G, Vallejan B(SCK·CEN, Belgium), Gens A,Villar M V(UPC and CIEMAT, Spain), Caron-Charles M, Imbert Ch, Plas F(CEA and ANDRA, France). Large Scale In Situ Demonstration Test for Repository Sealing in an Argillaceous Host Rock. The RESEAL Project, 2003: 1-5.
    【155】van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    【156】van Olphen H. An introduction to clay colloid chemistry [M]. 2nd Edition, WileyInterscience, NY, 1977.
    【157】Vaunat J, Romero E, Jommi C. An elastoplastic hydromechanical model for unsaturated soils [C]. In: Tarantino A, Mancuso C. (Eds.), Experimental Evidence and Theoretical Approaches in Unsaturated Soils, 2000: 121–138.
    【158】Villar M V, Rivas P. Hydraulic properties of montmorillonite quartz and saponite-quartz mixtures [J]. Applied Clay Science, 1994, 9: 1–9.
    【159】Villar M V. thermo-hydro-mechanical characterization of a bentonite from Cabo de Gata [C]. A Study Applied to the Use of Bentonite as Sealing Material in High Level Radioactive Waste Repositories. Publicación Técnica ENRESA01, Madrid, 2002: 258.
    【160】Villar M V, Lloret A. Influence of temperature on the hydromechanical behaviour of a compacted bentonite [J]. Applied Clay Science, 2004, 26: 337–350.
    【161】Villar M V, Garcia-Sineriz J L, Barcena I, Lloret A. State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository [J]. Engineering Geology, 2005, 80: 175-198.
    【162】Villar M V, Lloret A. Influence of dry density and water content on the swelling of a compacted bentonite [J]. Applied Clay Science, 2008, 39: 38-49.
    【163】Viswanadham B V S, Phanikumar B R, Mukherjee R V. Swelling behaviour of a geofiber-reinforced expansive soil [J]. Geotextiles and Geomembranes, 2009, 27(1): 73-76.
    【164】Vu H Q, Fredlund D G. The prediction of one-, two-, and three-dimensional heave in expansive soils [J]. Canadian Geotechnical Journal, 2004, 41: 713-737.
    【165】Wei C F, Kong L W, Wang J L. A comprehensive approach to modeling the constitutive behavior of unsaturated soils [C]. Proc. 4th Asian Joint Symposium on Geotechnical and Geo-environmental Engineering, Dalian, 2006: 113-118.
    【166】Westsik J H. Permeability, swelling and radionuclide retardation properties of candidate backfill materials [C]. International symposium on the scientific basis for nuclear waste management V, Material Research Society. Boston, MA, USA, 1982: 329.
    【167】Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil [J]. Geotechnique, 1995, 45(1): 35-53.
    【168】Wheeler S J, Karube D. Sate of the art report: constitutive modelling [J]. Unsaturated soils, Rotterdam, Balkema, 1996, 3: 1323-1356.
    【169】Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils [J]. Geotechnique, 2003, 53(1): 41-54.
    【170】Wu W H, Li X K, Charlier R, Collin F. A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils [J]. Computers and Geotechnics, 2004, 31: 155–167.
    【171】Yang C, Cui Y J, Pereira J M, Huang M S. A constitutive model for unsaturated cemented soils under cyclic loading [J]. Computers and Geotechnics, 2008, 35(6): 853-859.
    【172】Yong R N, Boonsinsuk P, Wong G. Formulation of backfill material for nuclear fuel waste disposal vault [J]. Canadian Geotechnical Journal, 1986, 23: 216–228.
    【173】Zhan L T. Field and laboratory study of an unsaturated expansive soil associated with rain-induced slope instability [D]. Ph. D. Dissertation, Hong Kong University of Science and Technology, 2003: 302-354.
    【174】Zhang X, Lytton R L. Modified state-surface approach to the study of unsaturated soil behaviour. Part 1: basic concept [J]. Canadian Geotechnical Journal, 2009, 46: 536-552.
    【175】Zhang X, Lytton R L. Modified state-surface approach to the study of unsaturated soil behaviour. Part 2: general formulation [J]. Canadian Geotechnical Journal, 2009, 46: 553-570.
    【176】核燃料サイクル開発機構.わが国における高レベル放射性廃棄物地層処分の技術的信頼性-地層処分研究開発第2次取りまとめ-分冊2地層処分の工学技術[R].日本茨城県:核燃料サイクル開発機構, JNC TN 1400 99-022, 1999b.
    【177】加藤一行,菅野毅,植田浩義.緩衝材の高圧圧密三軸試験 [J].土木学会北海道支部年次研究発表会講演論文集,札幌, 2002.1.
    【178】小峯秀雄,緒方信英.ベントナイト緩衝材埋め戻し材の透水特性と簡易評価法の提案[J].土木学会論文集, 2002, No. 708/Ⅲ-59: 133-144.
    【179】崔紅斌,孫徳安,松岡元.ベントナイトと砂との混合材の三軸応力条件下での浸水膨潤変形特性[C].第38回地盤工学研究発表会, 2003: 901-902.
    【180】崔紅斌,孫徳安,松岡元,徐永福.ベントナイトと砂との混合材の一次元的な浸水変形特性[J].土木学会論文集, 2004, No.764/Ⅲ-67: 275-285.
    【181】崔紅斌.膨潤と非膨潤不飽和土の変形と强度特性とその構成式[D]. (日本)名古屋工业大学博士论文, 2006.02.
    【182】崔紅斌,孫徳安,松岡元.等方および異方応力状態でのベントナイトと砂との混合材の浸水変形特性[J].土木学会論文集C, 2006, 62(3): 657-666.
    【183】鈴木英明,柴田雅博,山形順二,広瀨郁郎,寺門一馬.緩衝材の特性試驗(I) [R]. 動燃技術資料, PNC 8410 92-057, 1992.
    【184】鈴木英明,谷口航.緩衝材の熱物性試驗(II) [R].サイクル機構公開資料, JNC TN8340 99-006, 1999.
    【185】鈴木英明,千々松正和,藤田朝雄.温度勾配による緩衝材内の水分移動と膨潤応力の測定[R].核燃料サイクル開発機構, JNC TN8400 99-020, 1999.
    【186】鈴木英明,藤田朝雄,菅野毅.緩衝材の水分ポテンシャルと水分拡散係数[R]. 動燃技術資料, PNC TN8410 96-117, 1996.
    【187】孫徳安,松岡元,成瀨浩之,內田光彥.密度と配合割合の異なる砂と粘土の混合土の変形·強度特性[C].第33回地盤工学研究発表会講演集, 1998: 687-688.
    【188】竹内真司,原啓二,中野政詩.圧縮ベントナイトの水分特性曲線及び水分拡散係数と水の移動形態 [J].地盤工学会論文報告集, 1995, 35(3): 129-137.
    【189】千々松正和,藤田朝雄,鈴木英明,松本一浩.緩衝材の水理特性[R].サイクル機構技報. 1999(5): 51-58.
    【190】中岡健一,山本修一,納多勝.放射性廃棄物地層処分へのCode Brightの適用研究—TRU廃棄物処分概念を対象とした熱水応力ガス連成解析[C].第41回地盤工学研究発表会講演集, 2006.
    【191】內藤靖博,永野宏,植田浩義,山中裕美子,加藤一行. CIP成形した圧縮ベソトナィトの高圧圧密試験 [C].日本原子力学会(春の年会), 1998: 594.
    【192】松本一浩,菅野毅,藤田朝雄,鈴木英明.緩衝材の飽和透水特性[R].動燃技術資料, PNC TN 8410 97-296, 1997.
    【193】山本修一,中岡健一,納多勝.放射性廃棄物地層処分へのCode Brightの適用研究—Code Brightの概要と要素試験のシミュレーション[C].第41回地盤工学研究発表会講演集, 2006.
    【194】山本修一,中岡健一,納多勝, Alonso E E.人工バリアシステムの熱水応力ガス連成解析[C].土木学会第62回年次学術講演会, 2007.
    【195】山本修一,小峯秀雄. THM連成解析におけるベントナイトの膨潤特性の構成モデルに関する一考察[C].土木学会第63回年次学術講演会, 2008: 205-206.
    【196】Xu Y F, Sun D A, Matsuoka H, Cui H B. Swelling characteristics of sand-bentonite mixture due to sucking of water [C].第36回地盤工学研究発表会講演集, 2001: 221-222.
    【197】Yong R N, Warkentin B P.土質工学の基礎 [M].山崎不二夫,山田豊聡監訳,鹿島出版社, 1972.
    【198】Alonso E E, Gens A, Josa A,杨代泉.非饱和土弹塑性应力应变特性模拟[J].岩土工程学报, 1995, 17(6): 42-51.
    【199】曹雪山.非饱和膨胀土的弹塑性本构模型研究[J].岩土工程学报, 2007, 27(7): 832-837.
    【200】陈宝,钱丽鑫,叶为民,崔玉军,王驹. Soil-water Characteristic Curves of Gaomiaozi Bentonite[J].石力学与工程学报, 2006, 25(4): 788-793.
    【201】陈正汉,周海清, Fredlund D G.非饱和土的非线性模型及其应用[J].土工程学报, 1999, 21(5): 603-608.
    【202】程金茹,沈珍瑶,李满喜.滤纸吸力率定曲线的研究[J].岩土力学, 2002, 23(6): 800-802.
    【203】崔玉军,陈宝.高放核废物地质处置中工程屏障研究新进展[J].岩石力学与工程学报, 2006, 25(4): 842-847.
    【204】Fredlund D G, Rahardjo H.陈仲颐等译.非饱和土土力学[M].北京:中国建筑工业出版社, 1997: 92-97.
    【205】龚晓南.高等土力学[M].第2版.浙江:浙江大学出版社, 1998.10: 157-160.
    【206】蒋刚,王钊,邱金营.国产滤纸吸力-含水量关系率定曲线的研究[J].岩土力学, 2000, 21(1):72-75.
    【207】李广信,司韦,张其光.非饱和土清华弹塑性模型[C].第一届全国岩土本构理论研讨会论文集,北京, 2008.11: 219-224.
    【208】李培勇.非饱和土的理论探讨及膨润土加砂混合物的试验研究[D].博士学位论文, 大连,大连理工大学, 2007.
    【209】刘泉声,王志俭.砂-膨润土混合物膨胀力影响因素的研究[J].岩石力学与工程学报, 2002, 21(7): 1054-1058.
    【210】刘月妙,徐国庆,刘淑芬,陈璋如:我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J].铀矿地质, 2001, 17(1): 44-47.
    【211】刘月妙,陈璋如:内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J]. 矿物学报, 2001, 21(3): 541-543.
    【212】刘月妙,温志坚.用于高放射性物质废物深地质处置的粘土材料研究[J].矿物岩石, 2003, 23(4): 42-45.
    【213】卢再华,王权民,陈正汉.非饱和膨胀土本构模型的试验研究及分析[J].地下空间, 2001a, 21(5): 379-385.
    【214】卢再华,陈正汉,曹继东.原状膨胀土的强度变形特性及其本构模型研究[J].岩土力学, 2001b, 22(3): 339-342.
    【215】卢再华,陈正汉.非饱和原状膨胀土的弹塑性损伤本构模型研究[J].岩土工程学报, 2003, 25(4): 422-426.
    【216】缪林昌.非饱和土的本构模型研究[J].岩土力学, 2007, 28(5): 855-860.
    【217】钱家欢,殷宗泽.土工原理与计算[M].第二版.北京:中国水利水电出版社, 1996: 491-532.
    【218】王保田,张福海著.膨胀土的改良技术与工程应用[M].第一版.科学出版社. 2008.12.
    【219】钱丽鑫.用于高放废物深地质处置库缓冲材料的高庙子膨润土研究[D].博士学位论文,上海:同济大学, 2007.
    【220】秦冰,陈正汉,刘月妙,王驹.高庙子膨润土的胀缩变形特性及其影响因素研究[J].岩土工程学报, 2008, 30(7): 1006-1010.
    【221】沈珍瑶,李国鼎,李书绅.高压实膨润土水分特征曲线的测定[J].工程勘察, 1998, (4): 27-28.
    【222】沈珍瑶,程金茹.滤纸吸力率定的初步研究[J].工程勘察, 2001, (4): 9-14.
    【223】沈珍瑶,程金茹,马炳辉.盐溶液测定非饱和膨润土的水分特征曲线[J].水文地质工程地质, 2001, (4): 6-8.
    【224】沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报, 1996, 18(2): 1-8.
    【225】苏坤, Lebon P.法国ANDRA放射性废物地质处置可行性研究综述[J].岩石力学与工程学报, 2006, 25(4): 813-824.
    【226】孙德安.土水特征影响因素的试验研究[C].土工测试新技术-第25届全国土工测试学术研讨会论文集,杭州, 2008: 211-215.
    【227】孙德安.非饱和土的水力和力学特性及其弹塑性描述[J].岩土力学, 2009, 30(11): 1-15.
    【228】田永铭,吴柏林,郭明峰.碎石-膨润土混合物之压实行为[J].岩土工程学报, 2006, 28(7): 829-833.
    【229】王驹,徐国庆,郑华铃,范显华,王承祖,范智文.中国高放废物地质处置研究进展: 1985-2004[J].世界核地质科学, 2005, 22(1): 5-16.
    【230】王钊,龚壁卫,包承钢.鄂北膨胀土坡基质吸力的量测[J].岩土工程学报, 2001, 23(1): 64-67.
    【231】王钊,杨金鑫,况娟娟,安骏勇,骆以道.滤纸法在现场基质吸力量测中的应用[J]. 岩土工程学报, 2003, 25(4): 405-408.
    【232】王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学, 2000, 21(4): 331-334.
    【233】韦昌富,李幻,王吉利.考虑弹塑性变形和毛细循环滞回的非饱和土本构模型[C]. 第一届全国岩土本构理论研讨会论文集, 2008: 259-266.
    【234】温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志, 2005, 24(6): 583-586.
    【235】温志坚. Physical property of China’s buffer material for high-level radioactive waste repositories [J].岩石力学与工程学报, 2006, 25(4): 794-800.
    【236】吴礼舟.非饱和膨胀土的本构模型及在边坡稳定性评价中的应用[D].博士学位论文,成都理工大学, 2006.
    【237】向黎.非饱和土的力学与水力性质及其弹塑性模拟[D].硕士学位论文,上海大学, 2008: 44-62.
    【238】谢定义,姚仰平,党发宁.高等土力学[M].北京:高等教育出版社, 2008.1.
    【239】徐捷,王钊,李未显.非饱和土的吸力量测技术[J].岩石力学与工程学报, 2000, 19(z1): 905-909.
    【240】徐永福,孙德安,董平.膨润土及其与砂混合物的膨胀试验[J].岩石力学与工程学报, 2003, 22(3): 451-455.
    【241】闫威.非饱和膨润土及其掺砂混合物的水力和力学性质[D].硕士学位论文,上海大学, 2009: 28-42.
    【242】叶为民,黄雨,崔玉军,唐益群, Delage P.自由膨胀条件下高压密膨胀粘土微观结构随吸力变化特征[J].岩石力学与工程学报, 2005, 24(24): 4570-4575.
    【243】叶为民,白云,金麒,崔玉军.上海软土土水特征的室内试验研究[J].岩土工程学报, 2006, 28(2): 260-263.
    【244】叶为民, Schanz T,钱丽鑫,王驹, ARIFIN.高压实告庙子膨润土GMZ01的膨胀力特征[J].岩石力学与工程学报, 2007, 26 (增2): 3861-3865.
    【245】叶为民,钱丽鑫,陈宝,郁陈.高压实高庙子膨润土的微观结构特征[J].同济大学学报(自然科学版), 2009, 37(1): 31-35.
    【246】殷宗泽,周建,赵仲辉,袁俊平,张坤勇.非饱和土本构关系及变形计算[J].岩土工程学报, 2006, 28(2): 137-146.
    【247】郁陈.非饱和高庙子膨润土的体变特征及其微观机理[D].硕士学位论文,上海,同济大学, 2006.
    【248】詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报, 2006, 28(2): 196-201.
    【249】詹良通,吴宏伟.吸力对非饱和膨胀土抗剪强度及剪胀特性的影响[J].岩土工程学报, 2007, 29(1): 82-87.
    【250】赵成刚,刘艳,周贵荣,杜修力.非饱和土本构模型研究进展[J].北京工业大学学报, 2008, 34(8): 820-829.
    【251】周建.非饱和土Barcelona模型修正及存在问题探讨[J].浙江大学学报(工学版), 2006, 40(7): 1246-1252.
    【252】周科.重塑上海软土的强度与变形特性[D].硕士学位论文,上海大学, 2008: 41-42.
    【253】朱国平,刘晓东,罗太安.内蒙古高庙子膨润土热学性能研究[J].资源环境与工程, 2005, 19(3): 220-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700