用户名: 密码: 验证码:
长江口滨岸潮滩营养盐环境地球化学过程及生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口滨岸潮滩是一个典型的海陆交互作用地带,是一个多功能的复杂生态系统,具有独特的生态价值和资源潜力。由于受海陆交互作用的影响,河口滨岸潮滩环境中的各种物理、化学和生物因子复杂多变,具有径流、波浪和潮流等水动力作用强烈、泥沙运移和物质交换频繁、理化要素梯度变化大、生物多样性丰富等独特的环境特征。同时,河口滨岸潮滩又是地球表面圈层结构中物质循环最为活跃的区域之一,营养元素的生物地球循环对维持河口生态系统高生产力和高生物量具有极其重要的生态意义。因此,研究这一复杂巨系统内营养盐的迁移转化过程及其影响机制已经成为当前自然地理学和河口近岸环境地球化学等领域内的热点问题之一。
     近年来,在国家自然科学基金项目:“长江口滨岸潮滩复杂环境条件下物质循环研究”与“长江口滨岸沉积物-水界面氮磷动态交换机制及环境效应”,以及教育部高等学校骨干教师计划项目“长江口滨岸环境污染物动态交换、模型及环境效应”的资助下,围绕“长江河口滨岸潮滩界面营养盐的环境生物地球化学过程及其生态效应”这一重大科学问题,开展了一系列的研究工作,取得了以下主要认识和研究成果:
     (1) 长江河口潮滩沉积物有机质中稳定碳、氮同位素具有明显的季节性变化,7月份稳定碳同位素值普遍低于2月份的稳定碳同位素值,其变化范围分别为-29.8‰~-23.7‰和-27.3‰~-25.6‰;7月份和2月份稳定氮同位素分别为1.0‰~5.5‰和1.7‰~7.8‰。研究区域内,稳定碳、氮同位素的地区分布和季节变化特征揭示,有机质中稳定碳、氮同位素组成不仅受陆源和海源有机质输入量之间消长变化的影响,同时一系列的生物地球化学过程、人为有机质的输入和沉积物粒度与叶绿素含量对碳、氮同位素组成均存在一定的改造作用。此外,利用稳定碳同位素质量平衡混合模型,还对陆源有机质输入量的贡献率进行了初步定量估算,结果表明,研究区域内沉积物中有机质的陆源输入量略高于海源输入量,约占有机质总输入量的54.85%,而且有机质的陆源输入也存在明显的时空变化差异,在浒浦与白龙港之间的淡水区域内大部分岸段有机质的陆源输入明显高于海源输入,其中7月份和2月份有机质的陆源输入量分别占总
    
    输入量的7:3.670rk和52.45%,反映了洪水季节(7月份)陆源输入占绝对优势,
    这与长汪径流量和年输沙量的季节分配相吻合;而在朝阳农场与奉新之间的咸水
    区域内,大部分岸段有机质的陆源输入低于海源输入,其中7月份和2月份有机
    质的陆源输入量分别占有机质总输入量的40.57%和46.140k。
     (2)潮滩沉积物一水界面附近营养盐的时空分布与累积特征揭示了,在理化
    因子变化剧烈的长江口滨岸潮滩环境系统内,因受长江径流、滨岸带河流及工业
    废水、生活污水排放的影响,沉积物一水界面附近营养盐的时空分布与累积变化
    比较复杂。利用潮滩沉积物一水界面间营养盐的浓度梯度,并依据Fick,S第一定
    律对沉积物的源一汇效应进行了研究和探讨。结果表明,NHn+一N扩散通量的时空
    分布比较复杂,孔隙水中NH.+一N的再生过程是控制其界面扩散通量的主要因素。
    在潮滩环境系统内,NH4+一N的界面扩散以负通量为主,即NH4+一N主要由沉积物向
    l几覆水中扩散,反映了沉积物是上覆水中NH#+一N的重要来源之一。对Nox一N而言,
    其界面扩散以正通量为主,即Nox一N主要自上覆水向沉积物中扩散,说明沉积物
    是上覆水中Nox一N的重要蓄积库(汇),对削减上覆水中高含量的Nox一N具有重
    要的环境意义。Nox一N界面扩散通量的空间分布显示,在浒浦至石洞口采样岸段,
    N()户N的界面扩散通量较小,而在吴淞口至芦潮港采样岸段,Nox一N的界面扩散
    通量普遍较高,并且研究发现上覆水与孔隙水之间的Nox一N浓度梯度是控制
    N。、一N界面扩散时空变化差异的主要因素。研究区域内,TDP的界面扩散以负通
    量为主,并且发现潮滩表层孔隙水中TDP含量是影响TDP界面扩散的控制性因素。
    在淡水区域内,D工P的界面扩散为正通量,而在较高盐度区域内DIP的界面扩散
    为负通量,其中水体盐度和孔隙水中的DIP含量共同控制着DIP的界面扩散过程。
     (3)实验模拟研究了长江河口滨岸潮滩表层沉积物对上覆水体中P叮一P的
    吸附特征,结果表明沉积物对P043一P的吸附是一个复合动力学过程,可划分为
    快吸附和慢吸附两个过程,其中快吸附过程主要发生在O一10h内,尔后基本上
    达到了一种慢吸附的动态平衡过程,在O一0.sh之内沉积物对P叮一P的吸附速
    率最大,达到10.14一56.40mg·kg一‘.h一‘,且其吸附速率与细颗粒物含量之间存在
    明显的正相关关系,反映了在快吸附过程中以物理吸附为主。沉积物对P043一P
    的等温吸附曲线符合Langmuir方程,根据Langmuir等温吸附方程计算,潮滩表
    层沉积物中P叮一P的吸附容量为26.32一204.08mg/kg,且TOC和F广含量是控
    
    制PO43一P吸附容量的主要因素。沉积物对P氏3一P的吸附效率为21 .55一248.30
    L/kg,并且P叮一P的吸附效率主要取决于沉积物中TOC的含量。此外,研究还
    发现,环境因子(PH、盐度和温度等)对沉积物吸附P043一P的作用影响比较显
    著。随pH变化,沉积物对P0护一P的吸附量呈“U”形变化曲?
The estuarine and coastal tidal flat, as a typical transitional zone between land and ocean, is a multifunctional and complex ecosystem with special ecological values and potential resources. Due to the interaction of land and ocean, the estuarine and coastal tidal flat is characterized by intense hydrodynamic conditions, frequent sediment transport and material exchange, steep physiochemical gradients and high biodiversity. In addition, the estuarine and coastal tidal . flat is one of important regions where the biogeochemical cycling is very intense within the ecosystems on the earth's surface. The biogeochemical cycling of nutrient has the important ecological significance to sustaining higher productivity and biomass in the estuarine and coastal tidal ecosystem. Therefore, to study the nutrient biogeochemical cycling in the complex ecosystem has recently become one of headline scientific problems in the fields of physical geography and estuarine and coastal environmental geochemistry. In recent years, th
    e important scientific problem on environmental geochcmical processes across the intertidal sediment-water interface and ecological significance in the Yangtze Estuary has been studied, which was funded by the National Natural Science Foundation of China and the Foundation for University Key Teacher by the Ministry of Education. The main findings are as following.
    (1)Based on the analysis of stable carbon and nitrogen isotopes in the surface tidal flat sediments from the Yangtze estuary, it was found that the ratios of stable carbon and nitrogen isotopes were respectively 29.80% ~ -23. 7% and 1.0% ~ 5.5% in the flood seasons, while they were -27.3% ?-25. 6% and 1.6% ~ 7.7% in the dry seasons respectively,indicating the seasonal distribution of discharges from the
    
    
    Yangtze river has significantly affected the seasonal variation of stable carbon and nitrogen isotopes in sedimentary organic matter. In general, the distribution of stable carbon and nitrogen isotopes revealed the mixing inputs of terrigenous and marine organic matter controlled the stable carbon and nitrogen isotope compositions in sedimentary organic matter. However, a series of physical, chemical and biogeochemical processes occurring in the local environments had also the significant influence on the stable carbon and nitrogen isotope compositions in organic matter. In addition, the contribution of terrigenous input to sedimentary organic matter was quantitatively estimated in light of the mixing balance model of stable carbon isotope. It was revealed that the inputs of terrigenous organic matter occupying about 54.85% of total organic mater inputs was slightly higher than marine inputs in the intertidal sediments, and had the apparent seasonal and spatial difference in the study area. Terrigenous inputs far exceeded marine inputs in the freshwater areas from Station Xupu to Bailonggang, and were respectively 73. 67% and 52. 45% of total organic matter inputs in July and February, which was consistent with the seasonal distribution of water discharge and sediment discharge from the Yangtze River. However, terrigenous inputs obviously decreased in the saltwater areas from Station Chaoyang Farm to Luchao, and were 40. 57% and 46.14% of total organic matter inputs in July and February, respectively.
    (2)The spatial and temporal distribution of nutrients showed that due to the effects of water discharge from the Yangtze Estuary, coastal rivers and industrial and domestic sewage, there was complex spatial and temporal distribution of nutrient near the intertidal sediment-water interface in the Yangtze estuarine and coastal ecosystem. The diffusive fluxes of nutrient across the intertidal sediment-water interface in the Yangtze Estuary were estimated, using Pick's first law. The spatio-temporal
    
    
    distribution of NHLf-N diffusive flux was very complex which was dominated by NH-N production. NH/-N mainly diffused from the sediments into the overly waters in the Yangtze estuarine and tidal system, indicating sediments was one of potential sources of N
引文
Abd Aziz, S.A., Nedwell, D.B., 1986. The nitrogen cycle of an east coast, U.K. salt marsh: Ⅱ. Nitrogen fixation, nitrification, denitrification, tidal exchange. Estuarine, Coastal and Shelf Science, 22, 689-704.
    Aigars, J., Carman, R., 2001. Seasonal and spatial variations of carbon and nitrogen distribution in the surface sediments of the Gulf of Riga, Baltic Sea. Chemosphere, 43, 313-320.
    Alongi, D.M., Tirendi, F., Dixon, P., et al., 1999. Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed delta. Estuarine, Coastal and Shelf Science, 48, 451-467.
    Alvera-Azcaratea, A., Ferreirab, J.G.,Nunesb, J.P.,2003. Modelling eutrophication in mesotidal and macrotidal estuaries: The role of intertidal seaweeds. Estuarine, Coastal and Shelf Science, 57,715-724.
    An, S., Gardner, W., Kana, T., 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Applied and Environmental Microbiology, 67, 1171-1178.
    An, S., Joye, S.B., 1997. An improved gas chromatographic method for measuring nitrogen, oxygen, argon and methane in gas or liquid samples. Marine Chemistry, 59, 63-70.
    Anderson, F.E., 1983. The northern muddy intertidal: seasonal factors controlling erosion and deposition - a review. Canadian Journal of Fisheries and Aquatic Science, 40(supp. 1), 143-159.
    Andrews, J.E., Greenaway, A. M., Dennis, P.F., 1998. Combined carbon isotope and
    
    C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science, 46, 743-756.
    Andrieux-Loyer, F., Aminot, A., 2001. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas. Estuarine, Coastal and Shelf Science, 52, 617-629.
    Anschutz, P., Zhong, S., Sundby, B., et al., 1998. Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnology and Oceanography, 43, 53-64.
    Anschutz, p., Sundby, B., Lefrancois, L., et al., 2000. Interaction becteria between metal oxides and species of nitrogen and iodine in bioturbated marine sediments. Geochimica et Cosmochimica Acta , 64, 2751-2763.
    Asmus, R.M., Jensen, M.H., Jensen, K.M., et al., 1998. The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments. Estuarine, Coastal and Shelf Science, 46, 221-232.
    Babu,K.N.,Ouseph, P.P.,Padmalal,D.,2000. Interstitial water- sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries: a case from the Southwest coast of India. Environmental Geology, 39, 633-640.
    Balls, P. W., Brockie, N., Dobson, J., et al., 1996. Dissolved oxygen and nitrification in the upper Forth estuary during summer(1982-1992): patterns and trends. Estuarine, Coastal and Shelf Science, 42, 117-134.
    Balls, P.W.,1994. Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine process on inputs into the North sea. Estuarine, Coastal and Shelf Science, 39, 329-352.
    Bebout, B.M., Paerl, H.W., Crocker, K.M., etal., 1987. Dielinteractionsofoxygen photosynthesis and N_2-fixation (acetylene reduction) in a marine microbial mat community. Applied and Environmental Microbiology, 53, 2353-2362.
    Bennett, A., Bianchi, T.S. and Means, J.C., 2000. The effects of PAHcontamination and grazing on the abundance and composition of microphytobenthos in salt marsh sediments(Pass Fourchon, hA, USA):Ⅱ:The use of plant pigments as biomarkers.
    
    Estuarine, Coastal and Shelf Science, 50, 425-439.
    Bolalek, J., Graca, Z., 1996. Ammonia nitrogen at the water-sediment interface in Puck bay (Baltic sea). Estuarine, Coastal and Shelf Science, 43, 767-779.
    Bonsdorff, E., 1997. Coastal eutrophication :causes, Consequences and Perspectives in the Archipelago Areas of the Northern Baltic Sea , Estuarine, Coastal and Shelf Science, 44(Suppl. A), 63-72.
    Bowden, W.B., 1984. A nitrogen-15 isotope dilution study of ammonium production and consumption in a marsh sediment. Limnology and Oceanography, 29, 1004-1015.
    Burdige, D.J., Zheng, S., 1998. The biogeochemical cycling of dissolved organic nitrogen in estuary sediments. Liminol. and Oceanogr., 43(8), 1796-1813.
    Burton, E.D., Phillips, I.R., Hawker, D.W., 2004. Trace metals and nutrients in bottom sediments of the Southport Broadwater,iustralia. Marine Pollution Bulletin, 48, 378-402.
    Caffrey, J.M., Kemp, W.M., 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography, 37, 1483-1495.
    Caffrey, J.M., Harrington, N., Ward, B., 2002. Biogeochemical processes in a small California estuary. 1. Benthic fluxes and pore water constituents reflect high nutrient freshwater inputs. Marine Ecology Progress Series, 233, 39-53.
    Cai, D.L., Tan, F.C., Edmond, J.M., 1988. Sources and transport of particulate organic carbon in the Amazon river and estuary. Estuarine, Coastal and Shelf Science, 26, 1-14.
    Callender, E., Hammond, D.E., 1982. Nutrient exchange across the sediment-water interface in the Potomac river esturary. Estuarine, Coastal and Shelf Science, 15, 395-413.
    Capone, D.G., Budin, J.M., 1982. Nitrogen fixation associated with rinsed roots and rhizomes of the eelgrass zostera marina. Plant Physiology, 70, 1601-1604.
    Carpenter, E.J., Van Raalte, C.D., Valiela, Ⅰ., 1978. Nitrogen fixation by algae in a Massachusetts salt marsh. Limnology and Oceanography, 23, 318-327.
    Cassekman, M.E., Patrick, W.H., Jr., etal., 1981. Nitrogen fixation inagulfcoast
    
    salt marsh. Soil Science Society of America Journal, 45, 51-56.
    Cerwall, H., 1990. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio, 19, 109-112.
    Christensen, P.B.,Sorensen, J.,1986. Temporal variation of denitrification activity in plant-covered littoral sediment from Lake Hampen, Denmar. Applied Environmental, Microbiology, 51, 1174-1179.
    Claret, C., Marmonier, P., Bravard, J.P., 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquatic Sciences, 60, 33-55.
    Clavero, V., Izquierdo, J.,Ferndndez, J. A.,et al., 2000. Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain). Marine Ecology Progress Series, 198, 51-60.
    Conley, D. J., Stockenberg, A., Carman, R., 1997. Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 45,591-598.
    Cornwell, J. C., Kemp, W.M., Kana, T.M.,1999. Denitrification in coastal ecosystems: Methods, environmental controls and ecosystem level controls, a review. Aquatic Ecology, 33, 41-54.
    Currin, C.A., Joye, S.B., Paerl, H. W., 1996. Diel rates of N_2-fixation and dinitrification in a transplanted Spartina alterniflora marsh: Implications for N-flux dynamics. Estuarine, Coastal and Shelf Science, 42, 597-616.
    Dalsgaard, T., 2003. Benthic primary production and nutrient cycling in sediments with benthic microalga and transient accumulation of macroalgae. Limnol. Oceanogr., 48, 2138-2150.
    De Bie, J.M. Starink, M., Boschker, H., etal., 2002. Nitrification in theSchelde estuary: Methodological aspects and factors influence its activity. FEMS Microbiology Ecology, 42, 99-107.
    De Jonge, V. N., Van Beusekom, J. KE., 1995. Wind tide-induced resuspended of sediment and microphytobenthos from tidal flats of the Ems estuary. Limnol., Oceanogr., 40, 766-778.
    Eriksson, P.G., Weisner, S.E.B, 1999. An experimental study on effects of submersed
    
    macrophytes on nitrification and denitrification in ammonium -rich aquatic systems. Limnology and Oceanography, 44, 1993-1999.
    Eyre, B.D., Rysgaard, S., Dalsgaard, T., et al., 2002. Comparison of isotope paring and N_2:Ar methods for measuring sediment denitrification-assumption, modifications, and implications. Estuaries, 25, 1077-1087.
    Falco, M., Vale, C., 1998. Sediment-water exchange of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon (Ria Formosa). Hydrobiology, 373-374, 193-201.
    Fogel, M.L., Sprague, K, Gize, A., et al., 1989. Digenesis of organic matter in Georgia salt marshes. Estuarine, Coastal and Shelf Science, 28, 211-230.
    Fu, F.X., Bell, P. R. F., 2003. Effect of salinity on growth, pigmentation, N_2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp.. Marine Ecology Progress Series, 257, 69-76.
    Gardner, W.S., Seitzinger, S.P., Malczyk, J.M., 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux?. Estuaries, 14, 157-166.
    Gerritse, K G., Wallbrink, P.J., Murray, A.S., 1998. Accumulation of phosphorus and heavy metals in the Swan-Canning estuary, Western Australia. Estuarine, Coastal and Shelf Science, 47, 165-179.
    Giblin, A.E, Hopkinson, C.S.,Tucker, J.,1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries, 20, 346-364.
    Gilbert, F., Aller, R.C., Hulth, S., 2003. The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: An experimental simulation and model approach. Journal of Marine Research, 61, 101-125.
    Gilbert, F., Stora, G., Bonin, P., 1998. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experiment approach. Marine Ecology Progress Series, 163, 99-107.
    Goldenfeld, N., Kadanoff, L.P., 1999. Simple lessons from Complexity. Science, 284, 87-89.
    
    
    Gomez, E., Fillit, F., Ximenes, M.C., et al., 1998. Phosphorus mobility at the sediment-water interface of a Mediterranean lagoon (etang du Mejean), seasonal phosphorus variation. Hydrobiologia, 373-374, 203-216.
    Gomez, E., Durillon, C., Roles, G., et al., 1999. Phosphate adsorption and release from sediments of brachish lagoons: pH, O_2 and loading influence. Water Research, 33, 2437-2447.
    Goi, M.A., Thomas, K.A., 2000. Sources and transformations of organic matter in surface soils and sediments from a tidal estuary(north inlet, South Carolina USA).Estuaries, 23, 548-564.
    Graham, M.C., Eaves, M.A., Farmer, J. G., et al., 2001. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth estuary, Scotland. Estuarine, Coastal and Shelf Science, 52, 375-380.
    Gribsholt, B., Kostka, J. E., Kristensen, E., 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Marine Ecology Progress Series, 259, 237-251.
    Gunnarsson, J., Bjork, M., Gilek, M., et al., 2000. Effects of eutrophication on contaminant cycling in marine benthic systems. Ambio, 29, 251-257.
    Hamersley, M.R., Howes, B.L., 2003. Contribution of denitrification to nitrogen, carbon, and oxygen cycling in tidal creek sediments of a New England salt marsh. Marine Ecology Progress Series, 262, 55-69.
    Heggie, D.T., Skyring, W.M., Orchardo, J., et al., 1999. Denitrification and denitrifying efficiencies in sediments of Port Phillip Bay: Direct determination of biogenic N2 and N-metabolites fluxes with implications for water quality. Marine and Freshwater Research, 50, 589-596.
    Herbert, R. A.,1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Review, 23, 563-590.
    Hou Lijun, Liu Min, Jiang Haiyan, et al. 2003. Ammonium adsorption on tidal flat surface sediments from the Yangtze Estuary. Environmental Geology, 45, 72-78.
    Howarth, R. W., Sharpley, A, Walker, D, 2002. Sources of nutrient pollution to coastal
    
    waters in the United states: implications for achieving coastal water quality goals. Estuaries, 25, 656-676.
    Howarth, R.W., Marino, R., Lane, J., et al.,1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystem, 1. Rates and importance. Limnology and Oceanography, 33, 669-687.
    Hughes, D.J., Atkinson, R.J.A., Ansell, A. D., 2000. A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes. Marine Ecology Progress Series, 195, 189-199.
    Jensen, H.S., 1995. Phosphorus cycling in acoastal marine sediment, Aarhus bay, Pemark. Limnol. Oceanogr., 40(5), 908-917.
    Jickells, T.D., 1998. Nutrient biogeochemistry of the coastal zone. Science, 281, 217-222.
    Jones, K., 1974. Nitrogen fixation in a salt marsh. Journal of Ecology, 62, 553-565.
    Jones, K., 1982. Nitrogen fixation in the temperate estuarine intertidal sediments of the River Lune. Limnology and Oceanography, 27, 455-460.
    Joye,S. B., Hollibaugh, J.T.,1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science, 270, 623-625.
    Kana, T.M., Darkangelo, C., Hunt, M.D., et al.,1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2 and Ar in environmental samples. Analytical Chemistry, 66, 4166-4170.
    Kana, T.M.,Sullivan, M.B.,Cornwell,J.C., etal.,1998. Denitrificationinestuarine sediments determined by membrane inlet mass spectrometry. Limnology and Oceanography, 43, 334-339.
    Klump, J.V., 1981. Biogeochemical cycling in an organic rich coastal marine basin-Ⅱ:Nutrient sediment-water exchange processes. Geochimica et Cosmochimica, 45, 101-121.
    Koch,M.S.,Maltby, E.,Oliver, G.A.,et al.,1992. Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England. Estuarine, Coastal and Shelf Science, 34, 471-485.
    
    
    Koch, M.S., Benz, R.E., Rudnick, D.T., 2001. Solid-phasephosphoruspoolsinhighly organic carbonate sediments of northeastern Florida bay. Estuarine, Coastal and Shelf Science, 52, 279-291.
    Kuwae, T., Kibe, E., Nakamura, Y., 2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuarine, Coastal and Shelf Science, 57, 929-940.
    Laima, M., Brossard, P., Sauriau, D., et al., 2002. The influence of iongemersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oléron Bay, France. Marine Environmental Research, 53, 381-402.
    Lehtorantal, J., Pitknenl, H., 2003. Binding of phosphate in sediment accumulation areas of the eastern Gulf of Finland, Baltic Sea. Hydrobiologia, 492, 55-67.
    Lipschultz,F.,Cunningham,J.J.,Stevenson, J. C.,1979. Nitrogen fixation associated with four species of submerged angiosperms in the central Chesapeake Bay. Estuarine and Coastal Marine Science, 9, 813-818.
    Liu,M., Baugh, P. J., Hutchinson, S. M., et al., 200. Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China, Environmental Pollution, 110, 357-368.
    Liu, M., Yang, Y., Hou, L., Xu, S., et al, 2003. Polychlorinated organic contaminants in surface sediments from the Yangtze estuary, China. Marine Pollution Bulletin, 46 (5), 672-676.
    Lopez. P., Lluch, X., Vidal, M., et al., 1996. Adsorption of phosphorus on sediments of the Balearic island (Spain) related to their composition. Estuarine, Coastal and Shelf Science, 42, 185-196.
    Lopez, P.,2003. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and in. uence on water/sediment dynamics. Estuarine, Coastal and Shelf Science, 56, 943-956
    Mayer,L.M.,Rice,D. L.,1992. Early diagenesis of protein: a seasonal study. Limnology and Oceanography, 37, 280-295.
    Middelburg, J.J., Nieuwenhuize, J., 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Marine Chemistry, 60,
    
    217-225.
    Morin, J., Morse, J.W., 1999. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry, 65, 97-110.
    Mortimer R. J. G., Davey J. T., Krom M. D., et al., 1999. The effect of macrofauna on pore-water profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 48, 683-699.
    Mortimer, R. J. G., Krom, M. D., Watson, P. G., et al., 1998b. Sediment-water exchange of nutrients in the intertidal zone of the Humber Estuary. Marine Pollution Bulletin, 37, 261-279.
    Mortimer, R.J.G., Krom, M.D., et al.,1998a, Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters, Marine Chemistry, 63, 119-129.
    Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199-219.
    Nowicki, B. L., 1994. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuarine, Coastal and Shelf Science, 38, 137-156.
    Paerl, H.W.,Dennis, R.L., Whitall, D.R., 2002. Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries, 25, 677-693.
    Paludan, C. and Morris, J.T., 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry, 45, 197-221.
    Panigatti, M. C., & Maine, M. A., 2003. Influence of nitrogen species (NH_4~+ and NO_3~-) on the dynamics of P in water - sediment -Salvinia herzogii systems. Hydrobiologia, 492, 151-157.
    Pant, H.K., Reddy, K.R., 2001. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Environmental Quality, 30,1474-1480.
    Petersen,N.R.,Jensen, K.,1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography, 42, 529 - 537.
    
    
    Phillips, J.C., Hurd, L.C., 2003. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilization in relation to shore position and season. Marine Ecology Progress Series, 264, 31-48.
    Reise, K., 1985. Tidal flat ecology: An experiment approach to species interactions. Berlin: Springer-Verlag.
    Riera, P., Sial, L.J., Nieuwenhuize, J., 2000. Heavyδ~(15)Nin intertidal benthic algae and invertebrates in the Scheldt estuary (the Netherlands): effect of river nitrogen inputs. Estuarine, Coastal and Shelf Science, 51, 365-372.
    Rivera-Monroy, V.H., Twilley, R.R., 1996. The relativeroleofdenitrifacationand immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnol. and Oceanogr., 41(2), 284-296.
    Rocha, C.,1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnology and Oceanogrphy, 43, 823-831.
    Rnnberg, C., Bonsdorff, E., 2004. Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia, 514, 227-241.
    Rysgaard, S., Thastum, T., Dalsgaard P., et al., 1999. Effects of salinity onNH_4~+ adsorption capacity, nitrification, and denitification in Danish estuarine sediments. Estuaries, 22(1), 21-30.
    Eysgaard, S., Thastum, P., Dalsggard, T., etal., 1999. Effects of salinityonNH_4~+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediment. Estuaries, 22, 21-30.
    Rysgaard, S., Christensen, P.B., Nielsen, L.P., 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series, 126, 111-121.
    Sanger, D.M., Holl, A.F., Scott, G.I., 1999. Tidal creek and salt marsh sediments in south Carclina coastal estuaries: Ⅰ. Distribution of trace metals. Environmental Contamination and Toxicology, 37, 445-457.
    Santschi,P., Hohener, P., Benoit, G.,et al.,1990. Chemical process at the sedimentwater interface. Marine Chemistry, 30, 269-315.
    
    
    Schinner, F.,Ohlinger, R.,Kandeler, E., et al.,1996. Methods in soil biology. Berlin: Springer, 122-134.
    Seitzinger, S.P., Nixon, S.W.,1985. Eutrophication and the rate ofdenitrification and N_2O production in coastal marine sediments. Limnology and Oceanography, 30, 1332-1339.
    Seitzinger, S. P., 1988. Benitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnotogy and Oceanography, 33, 702-724.
    Sfriso, Marcomini, 999. Macrophyte production in a shallow coastal lagoon. Part Ⅱ: Coupling with sediment, SPM and tissue carbon, nitrogen and phosphorus concentrations. Marine Environmental Research, 47, 285-309.
    Smith, L.K. , Sartoris, J.J., rhullen, J.S., et al., 2000. Investigation of denitrification rates in an ammonia-dominated constructed wastewater treatment wetland. Wetlands, 20, 684-696.
    Somajojulu., 1993. Geochemical studies in the Godorari estuary, India. Marine Chemistry, 43, 83.
    Sumi, T., Koike, I.., 1990. Estimation of ammonification and ammonium assimilation in surficial coastal and estuarine sediments. Limnology and Oceanography, 35, 270-286.
    Sundareshwar, P.V., Morris, J.T., 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnol. Oceanogr., 44, 1693-1701.
    Sundbck, K., Miles, A., Gransson, E., 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series, 200, 59-76.
    Sundbck, K., Miles, A., Hulth, S., 2003. Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Marine Ecology Progress Series, 246, 115-126.
    Taylor, S., Way, J., Scranton, M. I., 2003. Planktonic carbon cycling and transport in surface waters of the highly urbanized Hudson River estuary. Limnol. Oceanogr., 48, 1779-1795.
    
    
    Teal, J.M., Valiela, I., Berlo, D., 1979. Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnology and Oceanography, 24, 126-132.
    Thornton, S.F., Mcmauns, J., 1994, Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary, Scotland, Estuarine, Coastal and Shelf Science, 38, 219-233.
    Tobias, C., Giblin, A., McClelland, J., et al., 2003. Sediment DIN fluxes and preferentidal recycling of benthic microalgal nitrogen in a shallow macrotidal estuary. Marine Ecology Progress Series, 257, 25-36.
    Trimmer,M.,Nedwell,D.B.,Sivyer, D.B.,et al.,2000. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorphs sp. snd Ulva sp. Marine Ecology Progress Series, 203, 67-80.
    Tuominen, L.,Makela, K.,Lehtonen, K.K., et al., 1999. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia affinis. Estuarine, Coastal and Shelf Science, 49, 83-97.
    Vitousek, P.M.,Mooney, H.A.,Lubchenco,H.A.,et al.,1997. Human domination of earth' s ecosystem. Science, 25, 494-499.
    Vouvé,F.,Guiraud, G., Mariol, C., et al.,2000. NH_4~+turnover in intertidal sediment of Marennes-Oléron bay (France): effect of sediment temperature. Oceanologica Acta, 23, 575-584.
    Wang, F.,Junipera, K., Pelegr, P., 2003. Denitrification in sediments of the Laurentian Trough, St. Lawrence Estuary, Quebec, Canada. Estuarine, Coastal and Shelf Science, 57, 515-522.
    Wang, W.X., Dei, R.C.H., 2001. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 111, 233-240.
    Warnkena, K.W., Gi. lla, G. A., Dellapennaa, T.M., et al., 2003. The effects of shrimp
    
    trawling on sediment oxygen consumption and the fluxes of trace metals and nutrients from estuarine sediments. Estuarine, Coastal and Shelf Science, 57, 25-42.
    Werner, B.T., 1999. Complexity in natural landform patterns. Science, 284, 102-104.
    Whitesides, G.M., Ismagilov, R.F., 1999. Complexity in Chemistry. Science, 284, 89-92.
    Wigand, G., Finn, M., Findlay, S., et al., 2001. Submersed macrophyte effects on nutrient exchanges in riverine sediments. Estuaries, 24, 398-406.
    Xu, S.Y., Gao, X.J., Liu, M., et al., 2001. China's Yangtze estuary Ⅱ.Phosphorus and polycyclic aromatic hydrocarbons in tidal flat sediments. Geomorphology, 41,207-217.
    Yin, R.D., Harrison, P.J., 2000. Influence of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat. Marine Ecology Progress Series, 196, 75-85.
    Zhang, J., Yu, Z.G., Wang, J.T., et al., 1999. The subtropical Zhujiang (Pear River) Estuary: Nutrient, Trace species and their relationship to photosynthesis. Estuarine, Coastal and Shelf Science, 49, 385-400.
    毕春娟,陈振楼,许世远,等,2003.上海滨岸潮滩根际重金属含量季节变化及形态分布.海洋与湖沼,34(2),194-200。
    陈建芳,叶新荣,1999.长江口-杭州湾有机物污染历史初步研究-BHC与DDT的地层学记录.中国环境科学,19(3),206-210.
    陈振楼,许世远,柳林,等,2000.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,55(6),641-651.
    段水旺,章申,陈喜保,等,2000.长江下游氮、磷含量变化及其输送量的估计.环境科学,21 (1),53-56.
    顾宏堪,熊孝先,刘明星,等,1981.长江口附近氮的地球化学Ⅰ.长江口附近海水中的硝酸盐.山东海洋学院学报,11(4),37-46.
    侯立军,刘敏,许世远等,2001.长江口岸带柱状沉积物中磷的存在形态及其环境意义.海洋环境科学,20(2),7-12.
    
    
    李铁,叶常明,雷志芳,1998.沉积物与水间相互作用的研究进展.环境科学进展,6(5),29-39.
    林荣根,吴景阳,1992.黄河口沉积物中无机磷酸盐的存在形态.海洋与湖沼,23(4),387-395.
    林荣根,吴景阳,1994.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,16(4),82-90.
    刘敏,许世远,陈振楼,1998.上海南汇淤泥质潮滩表层沉积物中多环芳烃.中国环境科学,18(3),284-288.
    刘敏,许世远,侯立军,等,2001.长江.口滨岸潮滩沉积物中磷的存在形态和分布特征.海洋通报,20(5),10-17.
    刘敏,侯立军,许世远,等,2001.河口滨岸潮滩沉积物-水界面N、P的扩散通量.海洋环境科学,20(3),19-23.
    刘敏,侯立军,许世远,等,2002.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,57(4),397-406.
    刘巧梅,刘敏,许世远等,2002.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征.海洋环境科学,21(3),29-33.
    刘培芳,陈振楼,刘杰等,2002.环境因子对长江口潮滩沉积物中NH_4~+-N的释放影响.环境科学研究,15,28-32.
    刘素美,张经,于志刚,等,1999.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量.环境科学,1999,20(2),12-16.
    欧冬妮,刘敏,侯立军等,2002.围垦对东海农场沉积物无机氮分布的影响.海洋环境科学,21(3),18-22.
    彭晓彤,周怀,2002.海岸带沉积物中脱氮作用的研究进展.海洋科学,26(5),31-34.
    蒲新明、吴玉霖、张永山.(2000)长江口区浮游植物营养限制因子的研究Ⅰ.秋季的营养限制情况.海洋学报,22(4):60-66.
    钱嫦萍,陈振楼,胡玲珍等,2003.崇明东滩沉积物再悬浮对沉积物-水界面氮、磷交换行为的影响.环境科学,24,114-119.
    上海市海岸带和海涂资源综合调查报告,1989.上海:上海科学技术出版社,389.
    沈志良,刘群,张淑美,等,2001a.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,32(5),465-473.
    沈志良,2001b,长江和长江口N的生物地球化学研究——关于长江和长江口无机氮的主要
    
    来源.海洋科学,25(7),56.
    石晓勇,史致丽,余恒,等,1999.黄河口磷酸盐缓冲机制的探讨Ⅰ.黄河口悬浮物对磷酸盐的吸附-解吸研究.海洋与湖沼,30(2),192-198.
    宋金明,2000a.黄河口邻近海域沉积物中可转化的磷,海洋科学,24(7),42-45.
    宋金明,李鹏程,1996.南沙群岛海域沉积物-水界面间营养物质的扩散通量.海洋科学,20(6),43-50.
    宋金明,罗延磬,李鹏程,2000b.渤海沉积物-海水界面附近磷与硅的生物地球化学循环模式.海洋科学,24(12),30-32.
    王东启,陈振楼,钱嫦萍,等,2002.盐度对崇明东滩沉积物-水界面NH_4~+-N交换行为的影响.海洋环境科学,2002,21(3),5-9.
    吴丰昌,1996.沉积物-水界面的生物地球化学.地球科学进展,11(2),191-197.
    叶常明,1997.多介质环境污染研究.北京,科学出版社,53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700