用户名: 密码: 验证码:
典型河口区氮循环过程和影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口区受到海陆交互作用影响,是各种生物地球化学过程相互作用最为活跃的地带,对人类活动和社会发展有着十分重要的意义。氮是组成生物有机体的主要元素。目前由于大量人为输入的氮素在许多河口海岸带已经产生了诸如赤潮爆发、底层水溶氧锐减以及温室气体排放等重大环境问题。本研究选择在全球河口海岸研究中占据重要地位的密西西比河口和长江河口区作为研究对象,通过野外实测和实验室模拟相结合的研究手段,定量研究了典型河口沉积物-水界面、上覆水柱以及沉积物-气界面氮素的生物地球化学过程,试图阐明河口区不同介质界面氮循环的主要过程和影响因素,探讨氮氧耦合动力学在河口缺氧带形成机理中所扮演的角色。主要取得了以下主要研究成果:
     以经典的同位素稀释法为理论基础,结合连续流培养模拟和HPLC检测技术,拓展出一种新的沉积物-水界面NH4+-N总循环通量的研究方法,并引入了可描述沉积物氮限制程度的SAD这一概念,丰富了沉积物-水界面NH4+-N循环通量研究。
     密西西比河口区缺氧站位的NH4+-N总再生通量(REG)与潜在吸收通量(Upot)均高于常氧站位和中间溶氧水平站位,且夏季高于冬季;缺氧季缺氧站点的沉积物潜在NH4+-N需求量(SAD)显著高于常氧站点。各站点缺氧季SAD略高于冬季常氧季对应数据(<70μmol m-2 h-1)。SAD值反映了沉积物-水界面N限制现象非常显著;常氧站点的NH4+消耗过程可能以硝化过程为主,而缺氧站点的NH4+消耗过程以厌氧过程为主。NO3-的消耗过程以反硝化作用(非耦合)为主而非DNRA。脱N2过程均以非耦合反硝化过程(DDNF)为主(>70%),耦合反硝化过程(CDNF)和厌氧氨氧化过程(PANA)的作用十分微弱。缺氧站点的DDNF(?)生脱N2过程中所占的比重更高一些,总反硝化(脱氮)过程(PDNF)和DDNF没有表现出明显的常、缺氧季差异,均主要以DDNF为主要反硝化过程。总体而言,各站点的CDNF和PANA过程均较弱,且没有明显的季节差异和空间差异。缺氧站点固氮能力较弱,缺氧季时几乎没有新氮产生而以脱氮为主要过程。
     相关分析表明NH4+-N实际吸收通量(Uact)与Upot(?)存在一定的互相依存关系。REG、Uact、Upot、SAD都与底层水溶解氧呈显著线性负相关关系,表明再矿化作用是REG的主要来源而非DNRA,厌氧同化过程是Uact和SAD的主要去向。未观测到各NH4+-N循环通量与叶绿素a有明显的线性相关。NH4+-N和o-PO43-浓度与所有NH4+-N循环通量呈显著正相关,显示了共同的反应底物基础。REG和Uact与NO3--N浓度存在高斯函数相关。沉积物-水界面N2循环通量中只有CDNF与底层水溶解氧呈显著线性负相关关系表明密西西比河口沉积物-水界面N2循环通量影响因素十分独特和复杂,尚需进一步分析。氮氧动力学耦合分析表明沉积物-水界面的主要耗氧过程可能是各种氮循环微生物的呼吸作用。飓风活动强烈的物理扰动削弱了几乎所有的氮循环通量。
     密西西比河口水柱NH4+-N循环速率具有明显的深度分异规律,存在表层>底层>中层的分布规律和距密西西比河口距离成反比的空间分异规律。缺氧季底层水的低溶氧环境对底层水N循环的影响十分明显。所有站点的Upt均高于Reg,体现了水柱中有一定的氮限制可能性。季节性差异较明显,所有站点Upt和Reg均表现出了明显的冬、夏(常、缺氧季)季节差异,且表层水的季节变异大于中、底层水体。NH4+-N再生和吸收周期也存在底层>中层>表层的深度分异规律,表层水柱的氮同化周期非常短暂,而再矿化周期普遍高于同化周期的现象也暗示了水柱中可能存在氮限制现象。缺氧站点同化和再矿化周期表现为夏季低于冬季,缺氧站点的循环周期高于常氧站点。夏季水柱体现出了DON再生周期长于NH4+-N的循环周期的“氮饥饿”现象。
     相关分析表明Upt和Reg循环速率都受河口陆源淡水控制,Upt明显受到温度的控制。表层水的NH4+-N的Upt和Reg速率都与盐度呈显著负相关。只有底层水的NH4+-N循环速率与水体溶解氧呈极显著负相关关系,显示了缺氧季底层水的极端低溶氧对底层水中的微生物和浮游生物产生了明显的胁迫。光照模拟实验表明表层水对NH4+-N的利用方式以光合作用为主导的自养同化为主,缺氧站位的表层海水NH4+-N的吸收过程相对于常氧站位有更多的异养微生物以及更多的硝化作用微生物参与。夏季中、底层水Reg的变化趋势和氨肽酶消耗率(AMP)的变化趋势比较一致,表明水柱NH4+-N的再生过程与微生物对ON的水解能力密切相关。“底层锁”效应致使水柱NH4+-N循环速率远低于沉积物-水界面的NH4+-N循环速率,沉积物-水界面NH4+-N循环过程对缺氧带形成影响大于水柱NH4+-N循环过程,常氧环境水柱硝化过程依然对缺氧现象起到一定的促进作用。
     长江口滨岸潮滩沉积物-气界面N2O排放具有明显的时空变化差异,除BLG和LC表现为微量的吸收外,其他站点N2O排放的平均值均为正值,且淡水控制区域高于咸水控制区域。夏季长江口南岸潮滩的LHK和WSK站点N2O排放的季节变异远高于其他站点。夏季N2O排放远高于其他季节,除夏季表现出从淡水控制区域向咸水控制区域减少的趋势外,其他季节没有体现出明显的沿程分布模式。总体上,长江口潮滩是N2O的排放源。夏季长江口南岸N20排放显著高于杭州湾北岸潮滩,这是由于沉积物反硝化作用或耦合硝化过程的反硝化作用可能是长江口沉积物产生N2O的主要过程。
     温度、沉积物沙粒含量、沉积物WFPS、夏季沉积物可交换态NH4+-N含量以及沉积物-水界面NH4+-N通量和N2O排放呈显著的正相关关系,较高的温度、较高的沉积物水分含量、较低的沉积物氧化还原电位以及沉积物NH4+-N含量是促进长江口滨岸沉积物-气界面N2O排放的环境因子;有机质对长江口滨岸沉积物-气界面N2O排放还不甚清晰;根据大部分环境因子影响分析我们推测控制长江口滨岸沉积物-气界面N2O排放的主要氮循环过程可能以反硝化作用或DNRA为主,硝化作用的贡献不显著。
     建立基于主成分分析的N2O排放通量半经验模型,经验证模型的计算值与实测值之间达到了极显著的线性正相关(R=0.63,P=0.0004),说明该模型具有一定的合理性和应用价值。根据该模型估算长江口潮滩湿地沉积物在采样季内的年排放N2O量约为76.6 Mg a-1,对比其他学者的总排放数据表明长江口滨岸潮滩沉积物-气界面N2O排放水平较低,但是由于未将涨潮时沉积物-水界面的排放考虑在内,可能远远低估了长江口滨岸潮滩N2O排放总体水平。
Estuarine area which is strongly influenced by land-ocean interaction impact, is the most dynamic zone where kinds of biogeochemical processes occur. It also has a very important significance for human and social development. Nitrogen is the main element of organisms. Numerous anthropogenic nitrogen inputs have produced a bunch of serious environmental issues such as coastal eutrophication, hypoxia zone and nitrous oxide emissions. Therefore, this study set the Mississippi River and the Yangtze river estuarine area as research cases and focused on the nitrogen cycle biogeochemical processes occurred at the sediments-water interface (SWI), water column and sediment-atomosphere interface (SAI). We tried to identify and figure out the main N processes and influence factors, reveal the role of nitrogen-oxygen coupling dynamics in the hypoxia formation mechanism. The following achievements have been obtained through this research:
     A new approach, combining 15NH4+isotope dilution and continuous-flow techniques, provided estimates of "actual" and "net" NH4+ flux and sediment NH4+ demand (SAD) at the sediment-water interface in Mississippi river estuarine area. The SAD results indicate a rather consistent NH4+ demand at the SWI during the hypoxic season and suggest that reduced nitrogen may limit microbial dynamics in the region. The SAD concept may help us better understand the SWI NH4+-N recycling study.
     The gross NH4+-N regeneration fluxes (REG) and potential uptake fluxes (Upot) were both higher at hypoxic site than normoxic site and intermediate sites. All gross NH4+-N recycling fluxes were higher in hypoxic season (summer) than normoxic season (winter). The SAD values were significantly higher at hypoxic site than normoxic site when hypoxia. All SAD values were higher in summer than in winter (< 70μmol m-2 h-1). SAD values reflect the significant SWI nitrogen limitation. Nitrification could be the main NH4+-N removal process at normoxic site, but anaerobic processes such as denitrification should be the main NH4+-N removal
     process at hypoxic site. Direct denitrification (DDNF) but not DNRA should be the main NO3--N removal process. DDNF was the main N2 removal process. Coupled nitrification denitrification (CDNF) and potential anammox (PANA) were both insignificant at SWI. The percentage of DDNF in potential denitrificaition (PDNF) was a bit higher at hypoxic sites. There was no significantly seasonal difference for PDNF and DDNF. CDNF and PANA were generally very low and did not show any spatial or seasonal difference. Nitrogen fixation (NF) was low at hypoxic site and almost no new nitrogen was created by NF in hypoxic season.
     Actual uptake flux (Uact) and potential uptake flux (Upot) showed some certain interdependent relationship judged by the correlation analysis. There were significantly negative liner relationships between REG, Uact, Upot, SAD and bottom water dissolved oxygen (DO) concentrations which suggesting remineralization was the main process to replenish REG but not DNRA. Anaerobic assimilation was supposed to be the main pathway for uptake processes and SAD. There was no significant relationship between all fluxes and chlorophyll a. Bottom water NH4+-N and O-PO43- concentrations significantly correlated to all SWI NH4+-N fluxes. REG and Uact Gaussian correlated to bottom water NO3--N concentrations. Only exception of correlation analysis between SWI N2 fluxes and Bottom water hydrological characteristics was CDNF which significantly negatively correlated with bottom water DO. Further study need to be conducted since the impact factor research for SWI N cycle is still complex. The hurricane activities almost weakened all SWI N cycle fluxes.
     There was an obvious depth distribution pattern for water column NH4+-N recycling rate in Mississippi river estuary. Surface recycling rates were higher than bottom ones which were higher than middle ones. The site further to the Mississippi river mouth got lower recycling rates. Bottom water nitrogen recycling processes were deeply influenced by hypoxic DO condition. Potential NH4+-N uptake rates were higher than regeneration rates which indicate the water column nitrogen limitation. Upt and Reg showed significant seasonal differences. Larger seasonal variability was observed at surface than at middle and bottom. The NH4+-N regeneration and uptake turnover times also showed the same depth independent distribution pattern as recycling rates. The turnover time for surface uptake was very shot (< 0.5 d). The observation of longer regeneration turnover times than uptake also suggested the water column limitation phenomenon. The recycling turn overtimes at hypoxic site were lower in summer than in winter, and were higher than the ones at normoxic site. DON regeneration turnover times were longer than NH4+-N recycling rates in summer. This observation showed the typical water column nitrogen starvation.
     Upt and Reg were all deeply influenced by the freshwater from Mississippi river judged by the correlation analysis. Surface Upt and Reg significantly negatively correlated with salinity. Bottom water recycling rates signifcatnly negatively correlated with DO, suggesting low oxygen stress. Light-dark comparison study indicated that the main process for surface water NH4+-N uptake should be assimilation supported by photosynthesis. More heterotrophic microbes participated in uptake process at hypoxic site than normoxic site. Ammonia peptide enzyme consumption rate (AMP) showed the same pattern as Reg in middle and bottom water in summer indicating that ammoniation process correlated a lot to organic nitrogen hydrolysis ability. Water column NH4+-N recycling rates were far below SWI recycling fluxes which was caused by bottom seal effect. SWI nitrogen processes should play a more important role in hypoxia formation mechanism, but water column nitrification still contribute to oxygen depleting phenomenon at normoxic site or in normoxic season.
     There was a obvious spatial and temporal pattern in Yangtze river estuarine SAI N2O emission. All sites showed a positive average N2O flux value except at BLG. The sites influenced by fresh water got higher values than the ones influenced by sea water. Emissions at LHK and WSK in summer were far above than other sites in summer. Summer values were higher than ones in other season. The spatial distribution pattern of values depleted from fresh water control area to sea water control area only showed in summer. The Yangtze river estuarine intertidal area generally is the source of N2O emission. Denitrification or coupled denitrification were supposed to be the main generation process of N2O.
     Significantly correlations were observed between temperature, sediment sand percentage, sediment WFPS, summer sediment exchangeable NH4+-N concentrations, SWI NH4+-N fluxes and N2O emission respectively. It was not clear the relationship between ON and N2O emission. The main generation processes of N2O emission were supposed to be denitrification or DNRA. There was no obvious sign for nitrification contribution to N2O emission.
     We built a semi-empirical N2O emission model based on principle component analysis which was significantly correlated to the field measured values (R=0.63, P=0.0004). The annual N2O emission was 76.6 Mg in the sampling year based on the model we built. That number was insignificant compared to the total emission in that year from other researches. But this number might be far underestimated since we did not take the SWI N2O emission into consideration while rising tide water logging period.
引文
Achilles, K. M., Church, T. M., Wilhelm, S. W., Luther, G. W., and Hutchins, D. A., 2003. Bioavailability of iron to Trichodesmium colonies in the western subtropical Atlantic Ocean. Limnol. Oceanogr.48,2250-2255.
    Alegret, L., Molina, E., Thomas, E.,2001. Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico. Geology 29(10), 891-894.
    Allen, D.E., Dalal, R.C., Rennenberg, H., et al.,2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol. Biochem.,39,622-631.
    An, S., Gardner, W.S., Kana, T.,2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Applied and Environmental Microbiology 67,1171-1178.
    Anderson, I. C., Poth, M., Homstead, J., et al.,1993. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol 59(11), 3525-3533.
    Avrahami, S., W. Liesack, and R. Conrad.,2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers, Environ. Microbiol.,5,691-705.
    Barnard, R., P. W. Leadley, R. Lensi, L. Barthes.,2005. Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2:A study in microcosms of Holcus Lanatus, Acta Oecol., in press.
    Bauza, J. F., Morell, J. M. Corredor, J. E.2002. Biogeochemistry of Nitrous Oxide Production in the Red Mangrove (Rhizophora mangle) Forest Sediments. Estuarine, Coastal and Shelf Science 55,697-704.
    Belser, L.W.,1979. Population ecology of nitrifying bacteria. Annual reviews in microbiology 33,309-333.
    Berg, G, Balode, M., Purina, I., et al.,2003. Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquatic Microbial Ecology 30,263-274.
    Berges, J., Charlebois, D., Mauzerall, D., et al.,1996. Differential effects of nitrogen limitation on photosynthetic efficiency of Photosystems Ⅰ and Ⅱ in microalgae. Plant Physiol.110,689-696.
    Bergman, B., Gallon, J. R., Rai, A. N., and Stal, L. J.,1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev.19,139-185.
    Bianchi, T.S.,2007. Biogeochemistry of estuaries. Oxford University Press, Inc., New York.
    Binnerup, S.V., Jensen, K., Revsbech, N.P., et al.,1992. Denitrification, dissimilatory reduction of nitrate to ammonium and nitrification in a bioturbated estuarine sediment as measured with 15N and micro sensor techniques. Appl. Environ. Microbiol 58,303-313.
    Bishop, P. E., et al.,1986. Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232,92-94.
    Bissett, W.P., Walsh, J.J., Dieterle, D.A.,1999. Carbon cycling in the upper waters of the Sargasso Sea E. N umerical simulation of differential carbon and nitrogen fluxes. Deep Sea Res.46,205-269.
    Blackburn, H.T.,1979. Method for measuring rates of NH4+ turnover in anoxic marine sediments using a 15NH4+ dilution technique. Applied and Environmental Microbiology 37,760-765.
    Boesch, D.F., Boynton, W.R., Crowder, L.B., et al.,2009. Nutrient enrichment drives Gulf of Mexico hypoxia. Eos, Transactions. American Geophysical Union 90, 117, doi:10.1029/2009EO140001.
    Bowden,W.B.,1984. A nitrogen-15 isotope dilution study of ammonium production and consumption in a marsh sediment. Limnology and Oceanography,29,1004-1015.
    Brownlee, B.G., Murphy, P.,1983. Nitrogen fixation and phosphorus turnover in a hypcrtrophic prairie lake, Can. J. Fish. Aquat. Sci.40,1853-1860.
    Bronk, D.A., Ward, B.B.,1999. Gross and net nitrogen uptake and DON release in the euphotic zone of Monterey Bay, California. Limnol. Oceanogr.44(3), 573-585.
    Caffrey, J.M. Kemp, W.M.,1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol Oceanogr 37: 1483-1495
    Caffrey, J.M., Miller L.G.,1995. A comparison of two nitrification inhibitors used to measure nitrification rates in estuarine sediments. FEMS Microbi. Eco 17,213-220.
    Capone, D.G., Bronk, D.A., Mulholland, M.R., et al.,2008. Nitrogen in the marine environment (2nd edn). Amsterdam, NL, USA:Elsevier.
    Carini, S. A., McCarthy, M.J., Gardner, W.S.,2010. An isotope dilution method to measure nitrification rates in the northern Gulf of Mexico and other eutrophic waters. Continental Shelf Research 30(17),1795-1801.
    Chanton, J.P., Dacey, J.W.H.,1991. Effects of vegetation on methane flux, reservoirs, and carbon isotopic compositon. In Trace Gas Emissions by Plants,1st edn. Acdemic Press, Inc:65-92.
    ChenM, Guo L D,Ma Q, et al.,2006. Zonal patterns of 13C,15N and 210Po in the tropical and subtropical North Pacific. Geophysical Research Letters 33, L04609.
    Childs, C. R., Rabalais, N. N., Turner, R. E., et al.,2002. Sediment denitrification in the Gulf of Mexico zone of hypoxia. Mar. Ecol. Prog. Ser.240,285-290.
    Cole, J. J., Howarth, R.W., Nolan, S.S., Marino, R.,1986. Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria:Some implications for the aquatic nitrogen cycle. Biogeochemistry 2,179-196.
    Cornwell, J. C., Kemp, W. M., and Kana, T. M.,1999. Denitrification in coastal ecosystems:Methods, environmental controls, and ecosystem level controls, a review. Aquat. Ecol.33,41 54.
    Cotner, J.B., Gardner, W.S.,1993. Heterotrophic bacterial mediation of ammonium and dissolved free amino acid fluxes in the Mississippi River plume. Marine Ecology Progress Series 93,75-87.
    Dagg, M.J., Breed, G.A.,2003. Biological effects of Mississippi River nitrogen on the northern gulf of Mexico-a review and synthesis. Journal of Marine Systems 43, 133-152.
    Dagg, M., Ammerman, J., Amon, R., et al.,2007. A review of water column processes influencing hypoxia in the northern Gulf of Mexico:a synthesis. Estuaries 30, 735-752.
    Dalsgaard, T., Canfield, D. E., Petersen, J., et al.,2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422,606-608.
    Daum, M., Zimmer, W., Papen, H., et al.,1998. Physiological and Molecular Biological Characterization of Ammonia Oxidation of the Heterotrophic Nitrifier Pseudomonas putida. Current Microbiology 37(4),281-288.
    Davidson, E. A.1993. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In Biogeochemistry of Global Change:Radiatively Active Trace Gases (Oremland, R. S., ed.). Chapman and Hall, New York, pp.369-386.
    Diaz, R.J., Rosenberg, R.,2008. Spreading dead zones and consequences for marine ecosystems. Science 321,926-929.
    Dickson, M. L., and Wheeler, P. A.,1995. Ammonium uptake and regeneration rates in a coastal upwelling regime. Mar. Ecol. Prog. Ser.121,239-248.
    De Bie, J.M., Speksnijder, A.G.C.L., Kowalchuk G.A., et al.,2001. Shifts in the dominant populations of ammonia-oxidizing β-subclass Proteobacteria along the eutrophic Schelde estuary. Aquatic Microbial Ecology 23,225-236.
    De Bie,J.M. Starink,M.,Boschker,H.,et al.,2002. Nitrification in t he Schelde estuary: Methodological aspects and factors influence its activity. FEMS, Microbiology Ecology,42,99-107.
    Donnelly, A.P., Herbert R.A.,1996. An investigation into the role of bacteria in the remineralization of organic nitrogen in shallow coastal sediments of Northern Adriatic Sea. In:Transfer Pathway s and Flux of Organic Matter Related Elements in Water and Sediments of the Northern Adriatic Sea and Their Importance in Eastern Mediterranean Sea. Price, N. B., Ed,189-197.
    Doremus, C.,1982. Geochemical control of dinitrogen fixation in the open ocean. Biol. Oceanogr.1,429-436.
    Dugdale, R.C., Goering, J.J., Ryther, J.H.,1961. Nitrogen fixation in the Sargasso sea. Deep Sea Res.7,298-300.
    Dugdale, R.C., Goering, J.J.,1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol.Oceanogr.12:196-206.
    Engelsen, A., Hulth, S., Pihl, L., Sundback, K.,2008. Benthic trophic status and nutrient fluxes in shallow-water sediments. Estuarine, Coastal and Shelf Science 78,783-795.
    Engle, V.D., Hyland, J.L., Cooksey, C.,2009. Effects of Hurricane Katrina on benthic macroinvertebrate communities along the northern Gulf of Mexico coast. Environmental Monitoring and Assessment 150,193-209.
    Enoksson V and Samuelsson MO.,1987. Nitrification and dissimilatory ammonium production and their effects on nitrogen flux over the sediment-water interface in bioturbated coastal sediments. Mar Ecol Prog Ser 36:181-189.
    Eppley, R. W., and Peterson, B. J.,1979. Particulate organic matter flux and planktonic newproduction in the deep ocean. Nature 282,677-680.
    Eppley, R.W., Renger, E.H., Harrison, W.G.,1979.Nitrogen and phytop lank ton p roduction in southern Califo rnian waters. Limnology and Oceanography 24, 483-494.
    Fahnenstiel, G.L., McCormick, M.J., Lang, G.A., et al.,1995. Taxon-specific growth and loss rates for dominant phytoplankton populations from the northern Gulf of Mexico. Mar. Ecol., Prog. Ser.117,229-239.
    Fang, Y, Gundersen, P., Zhang, W., et al.,2009. Soil-atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil (2009) 319:37-48.
    Fernex, F.E., Braconnot, J.C., Dallot, S., et al.,1996. Is ammonification rate in marine sediment related to plankton composition and abundance? A Timeseries and Study in Villefrancce Bay (NW Mediterranean). Estuarine, Coastal and Shelf Science 43,359-371.
    Garcia-Gil, L.J., Golterman, H.L.,1993. Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhone delta, southern France). FEMS Microbiol Ecol 13:85-92.
    Gardner, W.S., Bootsma, H.A., Evans, C., St John, P.,1995. Improved chromatographic analysis of 15N:14N ratios in ammonium or nitrate for isotopic addition experiments. Marine Chemistry 48,271-282.
    Gardner, W.S., Lavrentyev, P.J., Cavaletto, J.F., et al.,2004. Distribution anddynamics of nitrogen and microbial plankton in southern Lake Michigan during spring transition 1999-2000. Journal of Geophysical Research 109,1-16
    Gardner, W.S., McCarthy, M.J.,2009. Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay:why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry 95,185-198.
    Gardner, W.S., McCarthy, M.J., Carini, S.A., et al.,2009. Collection of intact sediment cores with overlying water to study nitrogen-and oxygen-dynamics in regions with seasonal hypoxia. Continental Shelf Research 29,2207-2213.
    Gardner, W.S., McCarthy, M.J., An, S., et al.,2006. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography 51,558-568.
    Glibert, P.M., Heil, C.A., Hollander, D., et al.,2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Marine ecology. Progress series 280,73-83.
    Goolsby, D.A., Battaglin, W.A., Lawrence, G.B., et al.,1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River basin. Topic 3:report for the integrated assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No.17. NOAA Coastal Ocean Program, Silver Spring, MD.130 pp.
    Gruber, N., and Sarmiento, J.,1997. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles.11,235-266.
    Hall, G H.,1986. Nitrification in lakes. In "Nitrification" (Prosser, J. I., ed.). IRL Press, Oxford, p.127-156.
    Hamersley, M.R., Howes, B.L.,2003. Contribution of denitrification to nitrogen, carbon, and oxygen cycling in tidal creek sediments of a New England saltmarsh. Mar. Ecol. Prog. Ser.262,55-69.
    Hamersley, M. R., Lavik, G, Woebken, D., et al.,2007. Anaerobic ammonium oxidation contributes significantly to nitrogen loss from the Peruvian oxygen minimum zone. Limnol. Oceanogr.52,923-933.
    Hansen, J.I., Henriksen, K., Blackburn, T.H.,1981. Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microbial Ecology 7(4),297-304.
    Hanson, R.B., Gundersen K.1977. Relationship between nitrogen fixation (acetylene reduction) and C:N ratio in a polluted coral reef system, Kaneohe Bay, Hawaii. Est. Coast. Mar. Sci 5:437-444.
    Harrison, W. G.,1978. Experimental measurements of nitrogen remineralization in coastal waters. Limnol. Oceanogr.23,684-694.
    Head, I.M., Hiorns, W.D., Embley T.M., et al.,1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology 139,1147-1153.
    Herbert,R.A.,1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Review,23,563-590.
    Henriksen, K., Kemp, W.M.,1988. Nitrification in estuarine and coastal marine environments. John Wiley and Sons, New York,1988,207-249.
    Home, A. J.,1977. Nitrogen fixation—A review of this phenomenon as a polluting process. Prog. Wat. Technol.8,359-372.
    Howarth, R.W., Marino, R., Lane, J., et al.,1988. Nitrogen fixation in freshwater,estuarine, and marine ecosystem.1. Rates and importance. Limnology and Oceanography,33,669-687.
    Intergovernmental Panel on Climate Change (2007), Climate Change 2007:The Physical Science Basis, Contribution of Working Group Ⅰ to theFourth Assessment Report of the Intergovernmental Panel on ClimateChange, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge,U.K.
    Jahnke, R., Heggie, D., Emerson, S., et al.,1982. Pore waters of the central Pacific-Ocean-Nutrient Results. Earth And Planetary Science Letters 61, 233-256.
    Jenkins, M.C., Kemp, W.M.,1984. The coupling of nitrification and dinitrification in two estuarine sediments. Limnol. Oceanogr 29,609-619.
    Jens K.,1982. Nitrogen fixation in the temperate estuarine intertidal sediments of the river. Lune. Limnol. Oceanogr 27,455-460.
    J(?)rgensen, KS.,1989. Annual pattern of denitrification and nitrate ammonification in estuarine sediment. Appl Environ Microbiol 55:1841-1847
    Joye, S.B., Smith, S.V., Hollibaugh, J.T., et al.,1996. Estimating denitrification rates in estuarine sediments:a comparison of stoichiometric and acetylene based methods. Biogeochemistry 33:197-215
    Kana TM, Sullivan MB, Cornwell JC., et al.,1998. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43:334-339
    Karl, D., Letelier, R., Tupas, L., et al.,1997. The role of nitrogen fixation in biogeochemicalcycling in the subtropical North Pacific Ocean. Nature 388:533-538.
    Karl, D. M., Michaels, A., Bergman, B., et al.,2002. Dinitrogen fixation in the world's oceans. Biogeochemistry.57,47-98.
    Kieskamp, W.M., Lohse, L., Epping, E., et al.,1991. Seasonal variation in denitrification rates andnitrous oxide fluxes in intertidal sedimentsof the western Wadden Sea. Mar. Ecol. Prog. Ser.72,145-151.
    Kim, D.H, Malsuda, O, Yamamoto T.,1997. Nitrification, denitrification and nitrate reduction rates in the sediment of Hiroshima Bay, Japan, J. of Oceanogr 53,317-324.
    Knowles, R.,1982. Denitrification. Microbiol. Rev.46,43-70.
    Koch, M.S., Benz, R.E., Rudnick, D.T.,2001. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida bay. Estuarine, Coastal and Shelf Science 52,279-291.
    Koike, I., Hattori, A.1978. Simultaneous determination of nitrification and nitrate reductionin coastal sediments by a 15N dilution technique. Appl. Environ. Microbiol 35,853-857.
    Kool, D.M., Dolfing, J., Wrage, N., et al.,2010. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology & Biochemistry 43,174-178.
    Koops, H.P., Pommerening-Roser A.,2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology 37,1-9.
    Kowalchuk, G. A., Stephen, J. R.,2001. Ammonia-oxidizing bacteria:A model for molecular microbial ecology. Annu. Rev. Microbiol.55,485-529.
    Kristensen E (1988) Benthic fauna and biogeochemical processes in marine sediments:microbial activities and fluxes. In:Blackburn TH and S(?)rensen J (eds) Nitrogen Cycling in Coastal Marine Environments (pp.275-300) John Wiley & Sons, New York.
    Kustka, A., Carpenter, E. J., Sanudo-Wilhelmy, S. A.,2002. Iron and marine nitrogen fixation:Progress and future directions. Res. Microbiol.153,255-262.
    Kuwae, T., Kibe, E., Nakamura, Y.,2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuarine, Coastal and Shelf Science,57,929-940.
    Kuypers, M.M.M., Sliekers, A.O., Lavik, G., et al.,2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422,608-611.
    Kuypers, M. M. M., Lavik, G, Woebken, D., et al.,2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of the United States of America 102, 6478-6483.
    LaMontagne, M.G., Astorga, V., Giblin, A.E., et al.,2002. Denitrification and the stoichiometry of nutrient regeneration in Waquoit Bay, Massachusetts. Estuaries and Coasts 25(2),272-281.
    Lavrentyev, P.J., Gardner, W.S., Yang, L.2000. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface. Aquatic Microbial Ecology 21,187-194.
    Leuenberger, M., Siegenthaler, U.,1992. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360,449-451.
    Li, F., Yang, R., Ti, C., et al.,2010. Denitrification characteristics of pond sediments in a Chinese agricultural watershed. Soil Science and Plant Nutrition 56,66-71.
    Lin, X., McCarthy, M.J., Carini, S.A, Gardner, W.S.,2011. Net, actual, and potential sediment-water interface NH4+ fluxes in the northern Gulf of Mexico (NGOMEX):Evidence for NH4+ limitation of microbial dynamics. Continental Shelf Research 31(2),120-128.
    Livingstone, M.W., Smith, R.V., Laughlin, R.J.,2000. A spatial study of denitrification potential of sediments in Belfast and Strangford Loughs and its significance. The Science of The Total Environment 251-252,369-380.
    Lomas, M. W., Trice, T. M., Glibert, P. M., et al.,2002. Temporal and spatial dynamics of urea concentrations in Chesapeake Bay:Biological versus physical forcing. Estuaries 25(3),469-482.
    Lopez, N. I., Duarte, C. M., Vallespinos, F., et al.,1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J. Exp. Mar. Biol. Ecol.224,155-166.
    Lutgens, F.K., Tarbuck, E.J.,2005. Foundations of earth science. Upper Saddle River, N.J. Pearson Prentice Hall.
    Luther GW III, Sundby B, Lewis BL, et al.,1997. Interactions of manganese with the nitrogen cycle:alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043-4052.
    Macfarlane G T, Herbert R A.,1984. Dissimilatory nitrate reduction and nitrification estuarine sediments, J. Gen. Microbiol 130,2301-2308.
    Mahaffey, C., Michaels, A., Capone, D.G.,2005. The conundrum of marine nitrogen fixation. Am. J. Sci.305,546-595.
    Mancinelli R L, White M R.,2000. Inhibition of denitrification by ultraviolet radiation. Adv. Space Res 26,2041-2046.
    Meyers, P.A.,1994. Preservation of Elemental and Isotop ic Source Identification of Sedimentary Organic Matter. Chem ical Geology 144,289-302.
    Middelburg, J.J., Levin, L.A.,2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6,1273-1293.
    Middelburg, J.J., Nieuwenhuize, J.,2000. Nitrogen uptake by heterotrophic bacteria andphytoplankton in the nitrate-rich Thames estuary. Marine Ecology Progress Series 203,13-21.
    Miller-Way, T., Boland, G.S., Rowe, G.T., et al.,1994. Sediment oxygen consumption and benthic nutrient fluxes on the Louisiana Continental Shelf:a methodological comparison. Estuaries 17,809-815.
    Mills, M. M., Ridame, C., Davey, M., et al.,2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429,292-294.
    Montoya, J.P., Voss, M., Kaehler, P., et al.,1996. A simple, high precision tracer assay for dinitrogen fixation. Appl. Environ. Microbiol.62,986-993.
    Montoya, J. P., Holl, C. M., Zehr, J. P., et al.,2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027-1031.
    Moutin, T., Karl, D.M,, Duhamel, S., et al.,2008. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5,95-109.
    Mulder, A., van de Graaf, A. A., Robertson, et al.,1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiology Ecology 16,177-183.
    Murrell, M.C., Campbell, J.G., Hagy Ⅲ, J.D., et al.,2009. Effects of irradiance on benthic and water column processes in a Gulf of Mexico estuary:Pensacola Bay, Florida, USA. Estuarine, Coastal and Shelf Science 81,501-512.
    Newell RIE.,1988. Ecological changes in Chesapeake Bay:Are they the result of overharvesting of the American oyster, Crassostrea virginica? In:Understanding the Estuary:Advances in Chesapeake Bay Research. Proceedings of a Conference,29-31 March 1988 (pp.536-546). Chesapeake Research Consortium, Edgewater, Maryland
    Newton, A.,2009. Global change and the coastal zone:current LOICZ science activities. Global Change News Letter 73,16-17.
    Nielsen, L.,1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology 86,357-362.
    Nixon, S.W.,1981. Remineralization and nutrient cycling in coastal marine ecosystems. In:Neilson BJ, Cronin LE (eds) Estuaries and nutrients. Humana. New York, p 111-138.
    Nowicki, B.L.,1994. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuarine, Coastal and Shelf Science,38,137-156.
    Odintsov V.S.,1981. Nitrogen fixation (acetylenereduction) in the digestive tract of some echinoderms from Vostok Bay in the Sea of Japan. Ambio Spec. Rep 5, 15-21.
    Ogura, N.,1972. Rate and extent of decomposition of dissolved organic matter in surface sea water. Mar. Biol.13,89-93.
    Orcutt, K. M., Lipschultz, F., Gundersen, K., et al.,2001. A seasonal study of the significance of N sub(2) fixation by Trichodesmium spp. at the Bermuda Atlantic time-series study (BATS) site. Deep Sea Res. Ⅱ48,1583-1608.
    Ourry, A., Macduff J.H., Prudhomme, M.,1996. Diurnal variation in the simultaneous uptake and'sink'allocation of NH4+ and NO3- by Lolium perenne in flowing solution culture. J. Exp. Bot.47(12),1853-1863.
    Parton, W. J., E. A. Holland, S. J. Del Grosso, M. D. et al.,2001. Generalized model for NOx and N2O emissions from soils, J. Geophys. Res.,106,17,403-17,419.
    Pakulski, J.D., Benner, R., Amon, R., et al.,1995. Community metabolism and nutrient cycling in the Mississippi River plume. Marine Ecology Progress Series 117,207-218.
    Pelegri SP, Nielsen LP and Blackburn TH.,1994. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar Ecol Prog Ser 105,285-290.
    Prinicic, A., Mahne, I., Meguar, F.,1998, Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater. Applied and Environmental Microbiology 64(10),3584-3590.
    Rabalais, N., Smith, N., Harper, D., et al.,2001. Effects of seasonal hypoxia on continental shelf benthos, p.211-240. In:N. Rabalais and R. E. Turner (eds.). Coastal Hypoxia:Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.
    Rabalais, N.N., Turner, R.E., Scavia, D.,2002. Beyond science into policy:Gulf of Mexico hypoxia and the Mississippi River. BioScience 52,129-142.
    Rabalais, N.N., Diaz, R.J., Levin, L.A., et al.,2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7,585-619.
    Ravishankara, A.R., Daniel, J.S., Portmann, R.W.,2009. Nitrous Oxide (N2O):The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326, 123-125.
    Redalje, D.G., Lohrenz, S.E., Fahnensteil, G.L.,1994. The relationship between primary production and the vertical export of particulate organic matter in a river-impacted coastal system. Estuaries 17,829-838.
    Revsbech, N.P., Nielsen, J., Hansen, P.K.,1988. Benthic primary production and oxygen profiles. In:Blackburn TH and S(?)rensen J (eds) Nitrogen Cycling in Coastal Marine Environments (pp.69-114) John Wiley & Sons, New York
    Rice, C.W., Rogers, K.L.,1993. Denitrification in subsurface environments:potential source for atmospheric nitrous oxide. In:Rolston D E, Duxbury J M, Harper L A, et al, eds. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publication,121-132
    Rivera-Monroy, V.H., Twilley, R.R.,1996. The relative role of denitrifacation and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon,Mexico). Limnol.and Oceanogr.,41(2),284-296.
    Rocha, C.,1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnology and Oceanogrphy,43,823-831.
    Rowe, GT., Kaegi, M.E.C., Morse, J.W., et al.,2002. Sediment Community Metabolism Associated with Continental Shelf Hypoxia, Northern Gulf of Mexico. Estuaries 25,1097-1106.
    Rustad, L.E., B.D. Campbell, GM. Marion, et al.,2001. Ameta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia,126,543-562.
    Rysgaard S, Risgaard-Petersen N, Sloth NP, et al.,1994. Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr 39:1643-1652
    Rysgaard, S., Christensen, P.B., Nielsen, L.P.,1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series 126,111-121.
    Rysgaard, S., Thastum, P., Dalsggard,T., et al.,1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediment.Estuaries,22,21-30.
    Sanders, I.A., Trimmer, M.,2006. In situ application of the 15NO3- isotope pairing technique tomeasure denitrification in sediments at the surfacewater-groundwater interface. Limnol. Oceanogr.:Methods 4,142-152
    Santschi, P., Hohener, P., Benoit, G., et al.,1990. Chemical processes at the sediment-water interface. Marine Chemistry 30,269-315.
    Scavia, D., N.N. Rabalais., R.E. Turner., et al.,2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography 48:951-956.
    Schlesinger, W.H.,1991. Biogeochemistry. An analysis global change. Academic Press Inc.
    Seitzinger, S.P.,1987 Nitrogen biogeochemistry in an unpolluted estuary:the importance of benthic denitrification. Mar, Ecol. Prog. Ser 41,177-186.
    Seitzinger,S.P.,1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnology and Oceanography,33, 702-724.
    Seitzinger SP, Nielsen LP, Caffrey J., et al.,1993.Denitrification measurements in aquatic sediments:A comparison of three methods. Biogeochemistry 23: 147-167
    Shieh W.Y., Lin Y.M.,1994. Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bulletin of Marine Science 54, 557-564.
    Skiba, U.M., Sheppard, L.J., MacDonald, J., et al.,1998. Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmospheric Environment 32(19),3311-3320.
    Sloth N P, Nielsen L P, Blackburn T H.1992. Nitrification in sediment cores measured with acetylene inhabitation. Limnol. Oceanogr 37,1108-1112.
    Smith S. V.,1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr 29,1149-1160.
    Smith, C.J., Patrick Jr WH.,1982. Nitrous oxide emission following urea nitrogen fertilization of wetland rice. Soil Sci. Plant Nutr.28,161-171.
    Smith, S.V., Hollibaugh J.T., Dollar S.J., et al.,1989. Tomales Bay, California:A case for carbon-controlled nitrogen cycling. Limnol Oceanogr 34:37-52
    Soetaert K., Herman P.M.J., Middelburg J.J.,1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochim Cosmochim Acta.60: 1019-1040.
    Sorensen, J.,1978. Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl. Environ. Microbiol.36,139-143.
    S(?)rensen J.,1987. Nitrate reduction in marine sediment:pathways and interactions with iron and sulfur cycling. Geomicrobiol J 5:401-421.
    Souza, A.C., Gardner, W.S., Hou, L., et al.,2009. Measurement of Extracellular Enzyme Activity in the "Dead Zone" Region of the Northern Gulf of Mexico (NGOMEX).2009 CERF meeting.
    Steingruber, S. M., Friedrich, J., Gachter, R., et al.,2001. Measurement of denitrification in sediments with the 15N isotope pairing technique. Appl. Environ. Microbiol.67,3771-3778.
    Stewart, W.D.P., Fitzgerald, G.P., Burns, R.H.,1967. In situ studies on N2 fixation, using the acetylene reduction technique. Proc. Natl. Acad. Sci.58,2071.
    Stewart, W.D.P.,1969. Biological and Ecological Aspects of Nitrogen Fixation by Free-Living Micro-Organisms. Proceedings of the Royal Society of London. Series B, Biological Sciences Vol.172, No.1029, A Discussion on Nitrogen Fixation (Apr.1,1969), pp.367-388.
    Strom, S.L., Strom, M.W.,1996. Microplankton growth, grazing and community structure in the northern Gulf of Mexico. Mar. Ecol., Prog. Ser.130,229-240.
    Sumi,T., Koike,I..,1990. Estimation of ammonification and ammonium assimilation in surficial coastal and estuarine sediments. Limnology and Oceanography,35, 270-286.
    Tarbuck, E.J., Lutgens, L.K.,2006. Earth Science. Upper Saddle River, N.J Prentice Hall.
    Teepe, R., Brumme, R., Beese, F.,2000. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest. Soil biology and biochenmistry 32, 1897-1910.
    Tiedje, J. M.1982. Denitrification. In "Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties". ASA-SSSA, Madison, WI. pp.1011-1025.
    Tiedje, J. (ed.). (1988). "Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium". John Wiley and Sons, New York.
    Thamdrup, B., and Dalsgaard, T.,2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction inmarine sediments. Applied and EnvironmentalMicrobiology 68,1312-1318.
    Therkildsen, M. S., King, G. M., Lomstein, B. A.,1996. Urea production and turnover in a shallow estuary. Mar. Ecol. Prog. Ser.109,77-82.
    Tobias, C., Giblin, A., McClelland, J., et al.,2003. Sediment DIN fluxes and referential recycling of benthic microalgal nitrogen in a shallow macrotidal estuary. Marine Ecology Progress Series 257,25-36.
    Trimmer, M., Nicholls, J.C., Deflandre, B.,2003. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Applied and Environmental Microbiology 69,6447-6454.
    Tyler, A.C., McGlathery, K.J., Anderson, I.C.,2003. Benthic algae control sediment-watercolumn fluxes of organic and inorganic nitrogencompounds in a temperate lagoon. Limnol. Oceanogr.48(6),2125-2137.
    van de Graaf, A. A., Mulder, A., Debruijn., et al.,1995. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology 61,1246-1251.
    Veuger, B., Eyre, B. D., Maher, D., et al.,2007. Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical intertidal sediment:An in situ 15N-labeling study. Limnol. Oceanogr.52(5),1930-1942.
    Vouve, F., Guiraud, G, Mariol, C., et al.,2000. NH4+ turnover in intertidal sediment of Marennes-Oleron bay (France):effect of sediment temperature. Oceanologica Acta,23,575-584.
    Wang, Y. S, Li, J. L.,2000. The catalytic mechanic and chemical simulation on the progress of nitrification fixing by organism, Progress in natural science 10 (6), 481-490.
    Ward, B.B., Talboy, M.C., Perry, M.J.1984. Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrite dynamics in coastal waters. Continental Shelf Research.3,383-398.
    Ward, B. B.,1986. Nitrification in marine environments. In "Nitrification" (Prosser, ed.). IRL Press, Oxford. p.157-184.
    Werner, B.T.,1999. Complexity in natural landform patterns. Science 284,102-104.
    Woitchik A. F., Ohowa, B., Kazungu, J.M., et al.,1997. Nitrogen enrichment during decomposition of mangrove leaf little in an east African coastal lagoon (Kenya): Relative importance of bio logical nitrogen fixation. Biogeochemistry 39,15-35.
    Yoshida, N., S. Toyoda.,2000. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers, Nature,405,330-334.
    Zak, D. R., K. S. Pregitzer, P. S. Curtis, et al.,2000. Atmospheric CO2 and the composition and function of soil microbial communities, Ecol. Appl.,10,47-59.
    Zehr, J. P., Harris, D., Dominic, B., et al.,1997. Structural analysis of the Trichodesmium nitrogenase iron protein:implications for aerobic nitrogen fixation activity. FEMS Microbiol. Lett.153,303-309.
    Zehr, J. P., Carpenter, E. J., Villareal, T. A.,2000. New perspectives on nitrogen-fixing microorganisms in tropical and subtropical ocean. Trends Microbiol.8,68-73.
    Zehr, J. P., Waterbury, J. B., Turner, P. J., et al., Omoregie, E., Steward, G. F., Hansen, A., Karl, D. M.,2001. New nitrogen-fixing unicellular cyanobacteria discovered in the North Pacific Central Gyre. Nature 412,635-638.
    Zheng, X.H., Fu, C.B., Xu, X.K.,2002. The Asian nitrogen cycle case study. AMBIO 31(2),79-87.
    沈焕庭,朱建荣,1999.论我国海岸带陆海相互作用研究.海洋通报18(6),11-17.
    毕春娟,陈振楼,许世远等,2003.上海滨岸潮滩根际重金属含量季节变化及形态分布.海洋与湖沼,34(2),194-200.
    蔡昱明,宁修仁,刘子琳,2002.珠江口初级生产力和新生产力研究.海洋学报24(3),101-111.
    蔡云龙,臧维玲,戴习林等,2002.杭州湾漕泾沿岸水化学状况.上海水产大学学报11(3),219-224.
    陈文新,1989.土壤环境微生物学.北京:北京出版社.133-151.
    陈振楼,许世远,柳林等,2000.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,55(6),641-651.
    黄耀,2003.地气系统碳氮交换——从实验到模型.北京:气象出版社.
    高杨,宋志文,2011.硝化细菌对铜绿微囊藻生长的影响.河北渔业205,9-27.
    高月香,张永春,2006.水文气象因子对藻华爆发的影响.水科学与工程技术2,10-12.
    韩舞鹰.1986.海水化学要素调查手册.北京:海洋出版社.
    侯立军,刘敏,许世远等,2001.长江口岸带柱状沉积物中磷的存在形态及其环境意义.海洋环境科学,20(2),7-12.
    李凡,张秀荣,2000.东海陆架沉积物的分布格局及形成机制,胡敦欣,杨作升等著,东海海洋通量关键过程,北京:海洋出版社,13-24.
    李明,2007.近几十年长江口-杭州湾北岸滩涂演变分析.华东师范大学,硕士学位论文.
    李佳霖,2009.典型河口区沉积物的硝化和反硝化过程.中国海洋大学,博士学 位论文.
    刘敏,侯立军,许世远等,2001.河口滨岸潮滩沉积物-水界面N、P的扩散通量.海洋环境科学,20(3),19-23.
    刘敏,侯立军,许世远等,2002.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,57(4),397-406.
    刘敏,侯立军,许世远等,2004.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报59(6),918-926.
    刘敏,许世远,侯立军,2007.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程.北京:科学出版社.
    刘巧梅,刘敏,许世远等,2002.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征.海洋环境科学,21(3),29-33.
    吕晓霞,翟世奎,牛丽风.2005.长江口柱状沉积物中有机质C/N比的研究.环境化学24(3),255-259.
    马建华,2007.长江口.武汉:长江出版社.
    欧冬妮,刘敏,侯立军等,2002.围垦对东海农场沉积物无机氮分布的影响.海洋环境科学,21(3),18-22.
    彭晓彤,周怀阳,2002.海岸带沉积物中脱氮作用的研究进展.海洋科学,26(5),31-34.
    苏畅,沈志良,姚云等,2008.长江口及其邻近海域富营养化水平评价.水科学进展19(1),99-105.
    王东启,陈振楼,钱嫦萍等,2002.盐度对崇明东滩沉积物-水界面NH4+-N父换行为的影响.海洋环境科学21(3),5-9.
    王东启,陈振楼,许世远等,2006.长江口崇明东滩沉积物反硝化作用研究.中国科学D辑:地球科学36(6),544-551.
    王东启,陈振楼,许世远等,2007.长江口潮滩沉积物反硝化作用及其时空变化特征.中国科学B辑:化学37(6),604-611.
    王丽芳,戴民汉,翟惟东,2007.近岸、河口缺氧区域的主要生物地球化学耗氧过程.厦门大学学报(自然科学版)46,33-37.
    吴丰昌,1996.沉积物-水界面的生物地球化学.地球科学进展 11(2),191-197.
    徐彬,刘敏,侯立军,2009,光照对长江口潮滩沉积物-水界面可溶性硅和无机氮通量的影响.环境科学研究22(3),327-331.
    徐华,蔡祖聪,李小平,1999.土壤Eh和温度对稻田甲烷排放季节变化的影响.农业环境保护18(4),145-149.
    徐继荣,王友绍,孙松,2004.海岸带地区的固氮、氨化、硝化与反硝化特征.生态学报12(24),2907-2914.
    于君宝,刘景双,孙志高等,2009.中国东北区淡水沼泽湿地N20和CH4排放通量及主导因子.中国科学D辑:地球科学39(2),177-187.
    张长清,曹华,1998.长江口北支河床演变趋势探析.人民长江29(2),32-34.
    张强,巨晓棠,张福锁,2010.应用修正的IPCC2006方法对中国农田N20排放量重新估算.中国生态农业学报1,7-13.
    赵化德,姚子伟,关道明,2007.河口区域反硝化作用研究进展.海洋环境科学26(3),296-300.
    郑循华,王明星,王跃思等,1997.华东稻麦轮作生态系统的N20排放研究.应用生态学报8(5),495-499.
    周伟华,袁翔城,霍文毅等,2004.长江口邻域叶绿素a和初级生产力的分布.海洋学报3,143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700