用户名: 密码: 验证码:
新型NZP族催化剂载体材料的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统地研究了一类具有相同晶体结构特征但化学组成各异的新型抗热震NZP族磷酸盐催化剂载体材料的合成、表征及应用,获得了三种不同形式的NZP族载体及其孔结构数据,开发了合成稳定的NZP族化合物前驱体溶胶的添加有机多功能酸的无机溶胶-凝胶路线,利用NZP族载体与蜂窝堇青石陶瓷的热膨胀系数匹配良好的特点制备了由NZP族涂层与堇青石基体构成的整体式复合载体,其抗热震性能优于目前机动车尾气净化三效催化转化器中普遍使用的由γ-Al2O3涂层与蜂窝堇青石陶瓷组成的复合载体。通过本论文工作,将长期以来局限于结构陶瓷领域的NZP族材料的应用基础研究拓展到新型抗热震催化材料领域。
     在第一部分研究工作中,分别合成了粉末状结晶化合物、多孔陶瓷和第二涂层等三种不同形式的NZP族催化剂载体材料,并利用X射线衍射、低温氮吸附BET法和BJH法对载体的物相和孔结构等进行了表征。
     首先,以(NH4)2HPO4为磷源,以ZrOCl2·8H2O为锆源,用共沉淀法配合高温焙烧结晶、无机溶胶-凝胶法配合高温焙烧结晶以及共沉淀法配合水热结晶制备了化学组成分别为KZr2(PO4)3、CaZr4(PO4)6、SrZr4(PO4)6、BaZr4(PO4)6和NH4Zr2(PO4)3的粉末状NZP族结晶化合物载体,系统研究了上述三种合成方法和条件对载体物相和孔结构的影响。结果表明:用共沉淀法和溶胶-凝胶法合成的无定形前驱体经过700-800℃以上高温焙烧2h能够转化为具有NZP族晶体结构的化合物载体,载体的比表面积为17.9-34.3m2/g,总孔容为0.0479~0.15 mL/g,平均孔径为3.48-22.7nm,孔径分布无序;另一方面,共沉淀法合成的无定形前驱体在结构导向剂F-存在下,经过150℃,24h的水热晶化,可以得到结晶良好的无团聚的NZP族化合物载体NH4Zr2(PO4)3,但它的比表面积仅为3.17m2/g,总孔容仅为0.00493mL/g,说明用水热晶化法合成的NZP族结晶化合物属于致密物质,同时也说明通过高温焙烧结晶法制备的具有中等比表面积的NZP族结晶化合物的孔结构主要来源于焙烧过程中颗粒间相互团聚形成的二次堆积孔,而存在于NZP族化合物的三维网状晶体结构中的空隙和通道本身并不足以使其成为类似微孔分子筛那样具有发达孔系的多孔载体。
     采用添加有机多功能酸的无机溶胶-凝胶法合成的化学组成为CaZr4(PO4)6的前驱体溶胶涂覆薄壁蜂窝堇青石陶瓷,经过后续热处理在堇青石陶瓷上制备了CaZr4(PO4)6第二涂层载体。经过12次浸涂后,CaZr4(PO4)6涂层负载量达到堇青石基体质量的19.5%,涂覆了CaZr4(PO4)6涂层后的堇青石陶瓷的比表面积达到16.4 m2/g,可以满足用于机动车尾气净化的三效催化转化器对整体式复合载体比表面积的要求。
     最后,将共沉淀法配合高温焙烧合成的化学组成分别为CaZr4(PO4)6、Ca0.85Ba0.15Zr4(PO4)6和K0.5Sr0.75Zr2(PO4)3的粉体分别添加50%质量分数的石墨为造孔剂,3%质量分数的ZnO为烧结助剂,1%质量分数的活性SiO2为晶粒生长抑制剂,在1100℃烧结2h制备了具有超低热膨胀特性的NZP族多孔陶瓷载体,其烧成温度明显低于堇青石陶瓷。其中,组成为Ca0.85Ba0.15Zr4(PO4)6和K0.5Sr0.75Zr2(PO4)3的NZP族多孔陶瓷载体在20~1000℃的平均线膨胀系数分别为0.6×10-6/℃和0.8×10-6/℃,属于零膨胀陶瓷,是继蜂窝堇青石陶瓷之后另一类极具应用潜力的抗热震规整催化载体的候选材料。
     在第二部分的研究工作中,选择有代表性的NZP族载体分别用于制备以贵金属Pd为活性组分的用于机动车尾气净化的单钯三效催化剂和硫酸工业上广泛使用的以过渡金属氧化物V2O5为活性组分的钒催化剂。通过对所制备的两类催化剂的物性表征和催化反应表征研究,探讨NZP族新型载体应用于这两类负载型催化剂体系的技术可行性,研究了NZP族载体对不同类型的活性组分的催化活性的影响。
     首先,以Pd(NO3)2·2H2O为活性组分前体,采用常规等量浸渍法制备了分别负载于化学组成为KZr2(PO4)3、CaZr4(PO4)6、和BaZr4(PO4)6的NZP族载体上的单Pd贵金属催化剂,Pd的实际负载量不超过载体质量的1%。研究了活性组分前体与不同化学组成的NZP族载体之间的相互作用关系,Pd在NZP族载体上的分散性以及经稀土氧化物改性的NZP族载体对Pd的催化活性的影响,在实验室配气条件下对所制备的单Pd催化剂小样进行了三效催化活性评价。实验结果显示:在上述三种不同化学组成的NZP族载体中,KZr2(PO4)3与活性组分之间的相互作用较为适中,故由其负载的单Pd催化剂具有最高的三效催化活性,对三种污染气体的转化率达到50%时的起燃温度分别为T50(CO)=245℃,T50(CH)=290℃,T50(NOX)=267℃,对CO的转化率为96%,对碳氢化合物(丙烷)的转化率为100%,对氮氧化物的转化率为100%;经过15%CeO2改性的CaZr4(PO4)6载体因削弱了活性组分与载体间过强的相互作用,使得Pd的分散性和催化活性得到明显改善。
     基于上述实验结果,进一步研究了负载于经过10%CeO2改性的"CaZr4(PO4)6涂层-蜂窝堇青石陶瓷”复合载体上的整体式单钯催化剂的三效催化活性,同时制备了负载于经过10%CeO2改性的“γ-Al2O3涂层-蜂窝堇青石陶瓷”复合载体上的整体式单钯催化剂作为平行对比样品。发动机台架试验结果显示:当Pd的实际负载量不超过0.6%时,由CaZr4(PO4)6涂层负载的整体式单钯催化剂具有与由γ-A1203涂层负载的单钯催化剂相近的三效催化活性,起燃温度分别为CO:384℃,THC:383℃,NOx:397℃,比由γ-A1203涂层负载的对比样品的相应起燃温度偏高30℃左右。如果对活性组分配方进行优化研究,获得适合于NZP族载体的最佳配方,则NZP族材料可望成为既能赋予活性组分较高的催化活性同时又具有优良抗热震性能的新型涂层载体。
     以NH4V03为活性组分前体,以化学组成为KZr2(PO4)3、CaZr4(PO4)6和SrZr4(PO4)6的NZP族结晶化合物粉体为载体,按照国产S101钒催化剂的活性组分配方用湿混法制备了V205负载量为8%左右的含K2S04助剂的钒催化剂。以SO2氧化反应为模型反应,在小型固定床反应器中对所制备的钒催化剂进行催化活性评价。结果表明:由KZr2(P04)3载体负载的钒催化剂与硅藻土载体负载的平行对比样品的催化活性较为接近,适合作为钒催化剂的载体;而由CaZr4(PO4)6和SrZr4(PO4)6负载的钒催化剂活性较低,不宜作为活性组分配方中含钾助剂的钒催化剂的载体。原因是在钒催化剂的制备过程中,KZr2(P04)3载体不会发生晶格离子取代,可以确保载体和活性组分配方的化学成分稳定。相反地,化学组成为CaZr4(PO4)6和SrZr4(PO4)6的NZP族载体在催化剂制备过程中由于占据MI位的碱土金属离子Ca2+和Sr2+与K2S04助剂中的K+发生了离子取代,导致活性组分配方改变,失去了K2S04助剂对v4+/v5+的调变作用机制,使得催化剂的活性降低。
The synthesis, characterization and application of a new type of catalytic carrier belonging to NZP family with excellent thermal shock resistance performance and same crystal structure but different chemical composition were studied in this thesis. Three different types of carriers belonging to NZP family were synthesized and their pore structure data were obtained. A sol-gel route based on inorganic starting material with adding organic acids was explored successfully to synthesize a stable sol precursor of a compound with NZP structure. Based on this sol-gel method, a unit carrier composed of the coating of NZP family compound and cordierite honeycombed ceramic matrix was prepared. Since a good match of thermal expansion characteristics between NZP family coating and cordierite honeycombed ceramic matrix, the thermal shock resistance performance of the unit carrier is better than the current unit carrier composed ofγ-Al2O3 coating and the cordierite honeycombed ceramic matrix which is widely used in three-way catalytic convert to purify engine exhaust gases. Based on the study of this thesis, the potential applications of the phosphate material belonging to NZP family is extended from the area of structure ceramic to the range of innovative catalytic material.
     In the first part of this thesis, three different types of phosphate carriers with NZP structure including crystalline compound carrier, porous ceramic carrier and coating carrier were prepared. Their phase and pore structure were characterized by means of X ray diffraction (XRD), and N2 adsorption techniques based on Brunauer-Emmett-Teller (BET) formula and Barrett-Joyner-Halenda (BJH) method.
     First of all, using (NH4)2HPO4 as phosphorus resource and ZrOCl2·8H2O as zirconium resource, the NZP type crystalline compounds, such as KZr2(PO4)3, CaZr4(PO4)6, SrZr4(PO4)6, BaZr4(PO4)6 and NH4Zr2(PO4)3, were synthesized by coprecipitaion method and sol-gel route followed by calcination as well as by coprecipitaion method followed by hydrothermal treatment respectively. The influence of synthesis methods and conditions on the phase and pore structure of these materials was studied. It was found that the amorphous precursor synthesized by coprecipitation method as well as by sol-gel method was transformed into NZP family crystalline compounds after they were calcined at 700-800℃for 2h. The specific surface area, total pore volume and average pore diameter of these compounds was 17.9-34.3m2/g,0.0479-0.15mL/g and 3.48-22.7nm respectively. The pore size distribution was disorder, and the pore structure was formed from the particles aggregation. On the other hand, the crystalline compound NH4Zr2(PO4)3 were prepared by coprecipitation method followed by hydrothermal treatment at 150℃for 24h with F" as structure-directing agent, but the specific surface area of NH4Zr2(PO4)3 was 3.17m2/g, and total volume was only 0.00493mL/g. These results suggested that NZP crystalline compound NH4Zr2(PO4)3 were still compact materials rather than microspore molecular sieves.
     The second coating carrier CaZr4(PO4)6 was prepared by coating cordierite honeycombed ceramic with the sol precursor synthesized by sol-gel method and followed calcination under 700℃for 2h. The content of CaZr4(PO4)6 coating was achieved 19.5% (mass percentage) weight of the substrate after being coated twelve times, and the specific surface area of cordierite honeycombed ceramic coated by CaZr4(PO4)6 was increased to 16.4m2/g, which can be used as a unit carrier to prepare three-way catalytic convert to purify engine exhaust gases.
     Finally, three NZP structure-type porous ceramic carriers with different composition, which was CaZr4(PO4)6, Ca0.85Ba0.15Zr4(PO4)6 and K0.5Sr0.75Zr2(PO4)3 respectively, were prepared. The NZP porous ceramics were obtained by compacting the powders with 3%(mass percentage)ZnO as sintering additive and adding 50%(mass percentage) graphite to create pores as well as adding 1%(mass percentage)SiO2 to suppress grain growth excessively and then sintering under 1100℃for 2h. The sintering temperature to prepare NZP structure-type porous ceramic was lower than that one to prepare cordierite ceramic. Among these three porous ceramics, Ca0.85Ba0.15Zr4(PO4)6 and K0.5Sr0.75Zr2(PO4)3 showed near-zero average thermal expansion coefficients which was 0.6×10-6/℃and 0.8×10-6/℃. Therefore, NZP family porous ceramics are promising to be a new type of candidate material of unit carrier with excellent thermal shock resistance performance.
     In the second part of this thesis, some representative NZP family materials were selected as carriers to support palladium and transition metal oxide respectively to prepare palladium-only three-way catalyst which is used to clean automatic exhaust gases and vanadium catalyst which is widely used in sulfuric acid industry. The feasibility of using NZP family materials as the carriers in these two kinds of catalyst systems were discussed from technology perspective. The influence of NZP family carriers on the catalytic activities of these two different types of active components was investigated.
     Firstly, palladium-only catalysts which Pd content was not more than 1% supported on the NZP family compound carriers with different composition, which was KZr2(PO4)3,CaZr4(PO4)6 and BaZr4(PO4)6 respectively, were prepared by impregnation method using Pd(NO3)2·2H2O as precursor of palladium. The interaction between precursor of palladium and NZP family carriers were discussed. The dispersion of palladium on the NZP family carriers as well as the influence of modification of the NZP family carrier by rare-earth oxides CeO2 and La2O3 on the palladium dispersion were also investigated. And then, the catalytic activity of the palladium-only three-way catalysts was tested in a lab-scale plug flow reactor. The experimental results indicated that the proper interaction between KZr2(PO4)3 and the precursor of palladium resulted in the highest three-way catalytic activities of palladium-only three-way catalyst supported on KZr2(PO4)3 carrier. The light-off temperatures, at which a 50% conversion was obtained on the fresh catalyst, were T50(CO)=245℃, T50(CH)=290℃and T50(NOx)= 267℃respectively, and the conversions of monoxide carbon, hydrocarbon and nitrogen oxide was 96%,100% and 100% respectivly. Both the dispersion of Pd supported on CaZr4(PO4)6 carrier modified by 15%CeO2 and its catalytic activity was improved obviously because the excessive interaction between precursor of palladium and the CaZr4(PO4)6 carrier was decreased by modification.
     Based on the experimental results above, the three-way catalytic activities of palladium-only catalyst supported on the unit carrier composed of CaZr4P6O24 coating and cordierite honeycombed ceramic matrix were further investigated, and meanwhile, the palladium-only catalyst supported on the unit carrier composed ofγ-Al2O3 coating and cordierite honeycombed ceramic matrix was prepared for the purpose of comparing. The test results of the bench demonstrated that when palladium content was no more than 0.6%, the palladium-only catalyst supported on CaZr4P6O24 coating showed very close three-way catalytic activities to that one supported onγ-Al2O3 coating. The light-off temperatures of the former were CO384℃, THC 383℃and NOx397℃respectively, and they were only higher around 30℃than the light-off temperatures of the later. If the optimum active components which are suitable to NZP family carrier are studied further, NZP family materials is promising to be a new type of competitive coating carrier which is not only making active components show high three-way catalytic activities but also providing excellent thermal shock resistance performance for the three-way catalytic convert.
     Using NH4VO3 as the precursor of active component, the vanadium catalysts supported on KZr2(PO4)3,CaZr4(PO4)6,SrZr4(PO4)6 and diatomite respectively, in which V2O5 content was around 8%, were prepared by wet-blend method according to the active components of domestic S101 vanadium catalyst. Selecting the oxidation of sulfuric dioxide as probe reaction, the activities of vanadium catalysts were tested in lab-scale fixed-bed reactor. The results indicated that, the activity of vanadium catalyst supported on KZr2(PO4)3 was close to the activity of the vanadium catalyst supported on diatomite. However, the activities of vanadium catalyst supported on CaZr4(PO4)6 and SrZr4(PO4)6 carriers were lower. It was suggested that KZr2(PO4)3 was the suitable carrier of vanadium catalyst which contents K2SO4 as promoter. The reason was that the chemical composition of KZr2(PO4)3 carrier and the active component of the vanadium catalyst were stable during the preparation of vanadium catalyst. On the contrary, since the Ca2+and Sr2 occupying in the site of M1 of NZP crystal structure were substituted by K+which was resourced from the promoter K2SO4, the active components of vanadium catalyst was changed. As a result, the adjusting mechanism of K2SO4 to the ratio of V4+and V5+was lost which led to the lower catalytic activity.
引文
[1]Hagman L O, Kierkegaard P. The crystal structure of NaMe2Ⅳ(PO4)3:Me2Ⅳ=Ge, Ti, Zr. Act[J]. Chem Scand,1968,22(6):1822-1832.
    [2]陈玉清.NZP族陶瓷粉体合成方法[J].山东轻工业学院学报,1995,4:32-37.
    [3]徐刚,马峻峰,沈志坚等.NZP族陶瓷材料的合成与烧结[J].现代技术陶瓷,1999,4: 3-7.
    [4]陈玉清,韩高荣,沈志坚等.NZP族陶瓷组成与显微结构对其导热系数的影响[J].现代技术陶瓷,1997,4:17-19.
    [5]陈玉清,韩高荣,沈志坚等.CaO对Ca0 5Zr2(PO4)3热膨胀特性的影响[J].功能材料,1998,29(3):335-336.
    [6]陈玉清.NZP族陶瓷的热学性质及其应用研究.浙江大学博士学位论文,1996.
    [7]廖学品,李全喜,张云坤等.NZP族磷酸盐陶瓷材料粉体制备研究[J].云南化工,1998,3:20-22.
    [8]胡晓珍,葛曼珍.NZP族材料的低热膨胀性质研究[J].材料科学与工程,1998,16(2):39-42.
    [9]廖学品,祝琳华,杨劲等.Cal-xBaxZr4(PO4)6磷酸盐陶瓷材料的热膨胀特性[J].材料科学与工程,2000,18(4):45-48.
    [10]廖学品,杨劲,祝琳华等.低热膨胀磷酸盐陶瓷材料的研究[J].昆明理工大学学报,2001,2(2):65-68.
    [11]Alamo J, Roy R. Ultra low expansion ceramics in the system Na2O-ZrO2-P2O5-SiO2 [J]. J Am Ceram Soc,1984,67(5):78-79.
    [12]Roy R, Agrawal D K, Roy R A. [CTP]:A new structural family of near zero expansion ceramics [J]. Mater Res Bull,1984,19(2):471-477.
    [13]Alamo J, Roy R. Crystal chemistry of the NaZr2P3O12 [NZP] or [CTP] structure family [J]. J Mater Sci,1986,21(4):1144-1150.
    [14]Heintz J M, Rabardel L, Flem G L, et al. New low thermal expansion ceramics: sintering and thermal behavior of Ln1/3 Zr2 (PO4)3-based composites [J]. J Alloys and Compounds,1997,250:515-519.
    [15]Brochu R, Ei-Yacoubi M, Louer M, et al. Crystal chemistry and thermal expansion of Cdo.5 Zr2(PO4)3 and Cd0.25 Sr0.25Zr2 (PO4)3 ceramics [J]. Mater Res Bull,1997,32(1):15-23.
    [16]Buvaneswari G, Varadaraju U V. Synthesis of new network phosphates with NZP structure [J]. J Solid State Chemistry,1999,145:227-234.
    [17]施剑林.现代无机非金属材料工艺学[M].长春:吉林科学技术出版社,1993.
    [18]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京:化学工业出版社,2002:154-178.
    [19]Lenain G E, Mckinstry H A, Limayc S Y, et al. Low thermal expansion of alkali zirconium phosphates [J]. Mater Res Bull,1984,19(10):1451-1456.
    [20]Limaye S Y, Agrawal D K, Mckinstry H A. Synthesis and thermal expansion of MZr4(PO4)6(M=Mg,Ca,Sr,Ba)[J].J Am Ceram Soc,1987,70(10):C232-C236.
    [21]Engell J, Mortensen S, Moller L. Fabrication of Nasicon electrolytes from metal alkoxide derived gels [J]. Solid State Ionics,1983,9(10):877-884.
    [22]Clearfield A, Roberts B D, Subramanian M A. Preparation of NH4Zr2(PO4)3 and HZr2(PO4)3[J]. Mater. Res.Bull,1984,19(2):219-226.
    [23]岳勇,周凤岐,吕景才等.NaZr2(PO4)3的水热晶化研究[J].高等学校化学学报,1991,12(5):585-586.
    [24]王海增,徐华伟,庞文琴.温和水热法制备MZr2(PO4)3(M=Na,K,Rb)[J].盐湖研究,2003,11(3):31-35.
    [25]王海增.磷酸锆钠粉体的制备[J].无机盐工业,2003,35(3):27-28.
    [26]韩慧芳.快离子导体陶瓷的制备与应用[J].陶瓷学报,2004,25(1):64-68.
    [27]Goodenough J B, Hong H Y-P, Kafalas J A. Fast Na+-ion transport in skeleton structures [J]. Mater Res Bull,1976,11:203-220.
    [28]Mbandza A, Bordes E, Courtine P. Preparation and structural properties of the solid state ionic conductor CuTi2(PO4)3 [J]. Mater Res Bull,1985,20:251-257.
    [29]Delmas C, Nadiri A. The Nasicon-type Titanium Phosphates ATi2 (PO4)3(A=Li, Na) as electrode materials [J]. Solid State Ionics,1988,28:419-423.
    [30]Winand J M, Rulmont A, Tarte P. Synthesis and study of new compounds (M')(NⅣ)2(PO4)3 with Nasicon-like structure (M=Ag, Cu; N=Ge, Hf,Sn, Ti, Zr) [J]. J Solid State Chemistry,1993,107:356-361.
    [31]Hiroset N, Kuwano J. Ion-exchange properties of NASICON-type phosphates with the frameworks [Ti2(PO4)3] and [Ti17 Al0.3 (PO4)3] [J]. J Mater Chem,1994,4(1):9-12.
    [32]Boilot J P, Collin G, Comes R. Zirconium deficiency in Nasicon-type compounds: crystal structure of Na5Zr(PO4)3 [J]. J Solid State Chem,1983,50:91-99.
    [33]Delmas C, Cherkaoui F, Nadiri A, etal. A Nasicon-type phase as intercalation electrode:NaTi2(PO4)3 [J]. Mater Res Bull,1987,22:631-639.
    [34]Rao G V S, Varadaraju U V, Thomas K A. Metal atom incorporation studies on the phases with NZP structure:NbTiP3O12 [J]. J Solid State Chem,1987,70:101-107.
    [35]Sugantha M, Varadaraju U V. Synthesis and characterization of NZP phases, AM'3+M"4+P3O12 [J]. J Solid State Chem,1994,111:33-40.
    [36]Roy R, Vance E R, Alamo J. [NZP], a new radiophase for ceramic nuclear waste forms [J]. Mater Res Bull,1982,17:585-589.
    [37]Sugantha M, Kumar N R S, Varadaraju U V. Synthesis and leachability studies of NZP and eulytine phases [J]. Waste Management,1998,18:275-279.
    [38]Bois L, Guittet M J, Carrot F, et al. Preliminary results on the leaching process of phosphate ceramics, potential hosts for actinide immobilization [J]. J Nuclear Materials, 2001,297:129-137.
    [39]BoilotJP, Salanie JP, Desplanches G, et al. Phase transformation in Na1+xZr2SixP3-xO12 compounds[J].Mater Res.Bull,1979,14(11):1469-1477
    [40]Agrawal D K, Stubican V S. Synthesis and sintering of Cao.5Zr2P30]2-a low thermal expansion material [J]. Mater Res Bull,1985,20(2):99-106.
    [41]Ota T, Yamai I. Thermal expansion behavior of NaZr2(PO4)3 type compounds [J]. J Am Ceram Soc,1986,69(1):1-6.
    [42]Ota T, Jin P, Yamai I. Low thermal expansion and low thermal expansion anisotropy ceramic of Sro.5Zr2(P04)3 [J]. J Mater Sci,1989,24:4239-4245.
    [43]Senbhagaraman S, Umarji A M. Effect of cation valence on thermal expansion of MTi2P3O12 (M=Na, Cao.s, Lao.33)compounds [J]. J Solid State Chem,1990,85:169-172.
    [44]Yamai I, Ota T. Thermal expansion of homogeneous and gradient solid solutions in the system KZr2(PO4)3-KTi2(PO4)3 [J]. J Am Ceram Soc,1992,75(8):2276-2282.
    [45]Kutty K V G, Asuvathraman R, Mathews C K. Effect of variation in framework composition on the thermal expansinity of NZP phase[J]. Mater Res Bull,1994,29: 1009-1016.
    [46]Huang C Y, Agrawal D K, Mckinstry H A. Thermal expansion behaviour of M'Ti2P3O12(M'=Li, Na, K, Cs) and M"Ti4P6O24(M"-Mg, Ca, Sr, Ba) compounds [J]. J Mater Sci,1995,30:3509-3514.
    [47]Breval E, Agrawal D K. Thermal expansion characteristics of [NZP], NaZr2P3O12-type materials:a review [J].British Ceramic Transactions,1995,94(1):27-32.
    [48]Brochu R, Louer M, Alami M, etal. Structure and thermal expansion of KGe2(PO4)3[J]. Mater Res Bull,1997,32:113-122.
    [49]Trice R W, Su J Y, Faber K T, etal. The role of NZP additions in plasma-sprayed YSZ: microstructure, thermal xonductivity and phase stability effects [J]. Mater Sci Engineering, 1999, A272:284-291.
    [50]Lee W Y, Cooley K M, Berndt C C, etal. High-temperture chemical stability of plasma-sprayed Ca0.5Sr0.5Zr4(PO6) coatings on Nicalon/SiC ceramic matrix composite and Ni-based superalloy substrates [J]. J Am Ceram Soc,1996,79(10):2759-2762.
    [51]Agrawal D K, Harshe G, Breval E, etal. [NZP],NaZr2P3O12-type materials for protection of carbon-carbon composites [J]. J Mater Res,1996,11(12):3158-3163.
    [52]刘敏,周洪庆.低膨胀陶瓷材料[J].硅酸盐通报,1997,3:4-8.
    [53]Yamai I, Ota T. Low-thermal-expansion polycrystalline zirconyl phosphate ceramic: solid-solution and microcracking-related properties [J]. J Am Ceram Soc,1987,70(8): 585-590.
    [54]Limaye S Y, Agrawal D K, Roy R. Synthesis, sintering and thermal expansion of Ca1-xSrxZr4P6O24-an ultra-low thermal expansion ceramic system [J]. J Mater Sci,1991,26: 93-98.
    [55]Chen C J, Lin L J, Liu D M. Synthesis and characterization of Sr1-xK2XZr4(PO4)3 ceramics [J]. J Mater Sci,1994,29:3733-3737.
    [56]Huang Ch Y, Agrawal D K, Mckinstry H A. Synthesis and thermal expansion behavior of Ba1+xZr4P6-2xSi2xO24 and Sr1+xZr4P6-2xSi2xO24 systems [J]. J Mater Res,1994,9(8): 2005-2013.
    [57]Breval E, Mckinstry H A, Agrawal D K. Synthesis and thermal expansion properties of the Ca(1+x)/2Sr(1+x)/2Zr4P6-2xSi2xO24 system [J]. J Am Ceram Soc,1998,81(4):926-932.
    [58]祝琳华.低热膨胀磷酸盐陶瓷Ca1-xBaxZr4(PO4)6的研制.四川大学硕士学位论文,2001.
    [59]祝琳华,廖学品,郎小川,等.磷酸盐陶瓷Ca1-xBaxZr4(PO4)6的制备及其零膨胀组成的耐热冲击性研究[J].无机材料学报,2001,16(3):452-458.
    [60]祝琳华,杨劲,廖学品.提高NZP族陶瓷耐热冲击性的研究[J].中国陶瓷,2002年,38(2):8-10.
    [61]Sadykov V A, Pavlova S N, Agrawal D K. Synthesis of high-surface-area complex zirconium phosphates via mechanochemical activation route [J]. Mater Res Innovat,1999,2: 328-337.
    [62]Pavlova S N, Sadykov V A, Roy R, et al. The novel acid catalysts-framework zirconium phosphates:the bulk and surface structure [J]. J Mol Catal A, Chem 2000,158:
    319-323.
    [63]Sadykov V A, Pavlova S N, Roy R, et al. Scientific bases for the synthesis of highly dispersed framework zirconium phosphate catalysts for paraffin isomerization and selective oxidation [J]. Kinetics and Catalysis,2001,42(3):390-398.
    [64]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,7-11.
    [65]许越,夏海涛,刘振奇等.催化剂设计与制备工艺[M].北京:化学工业出版社,2003,1-20.
    [66]赵建宏,宋成盈,王留成.催化剂的结构与分子设计[M].北京:中国工人出版社,1998,109-150.
    [67]辛勤.固体催化剂研究方法[M].北京:科学出版社,2004,1-58.
    [68]周学良,秦永宁,马智等.精细化工产品手册-催化剂[M].北京:化学工业出版社,2004,127-136.
    [69]曾佩兰,黄可龙,刘素琴等.汽车尾气净化催化剂的研究现状及其进展[J].材料导报,2003,17(3):48-51.
    [70]蔡胜有,黄勇.Al2O3基涂层技术在汽车尾气催化净化装置中的应用与开发[J].功能材料,1998,29(3):225-228.
    [71]穆柏春.陶瓷材料强韧化[M].北京:冶金工业出版社,2002,288-290.
    [72]张华,胡娟,周万城等.堇青石质蜂窝陶瓷的制备[J].硅酸盐学报,2004,32(1):24-28.
    [73]徐晓虹,尤德强,吴建锋等.累托石和滑石合成堇青石工艺的研究[J].硅酸盐学报,2004,32(4):481-484.
    [74]李玉敏.工业催化原理[M].天津:天津大学出版社,1992,161-162.
    [75]潘建平,彭开萍,陈文哲.溶胶-凝胶法制备薄膜涂层的技术与应用[J].腐蚀与防护,2001,22(8):339-342.
    [76]陈艳林,严海标,冯晋阳.多孔陶瓷的制备和性能研究[J].陶瓷,2005,3:13-15.
    [77]江昕.多孔陶瓷材料的制备技术及应用[J].现代技术陶瓷,2002,1(23):15-19.
    [78]杨坤.绿色多功能材料---多孔陶瓷[J].陶瓷,2005,2:15-18.
    [79]高平,崔芳,白庭芳等.汽车尾气净化用钯催化剂的制备及活性考察[J].分子催化,2004,18(3):203-207.
    [80]陈学梅.我国二氧化硫氧化制硫酸的钒催化剂现状和展望[J].硫酸设计与粉体工程,2004,4:12-16.
    [81]郭振兵.浅谈国内外钒催化剂的质量差异[J].硫酸工业,2004,2:6-9.
    [82]刘振林,伏义路.制备方法对Pd催化剂上丙烯选择性还原NO反应性能的影响[M].催化学报,2001,22(1):62-66.
    [83]毕先均,江华,林敏.云南先锋硅藻土制备钒催化剂[J].云南师范大学学报,2002,22(2):39-41.
    [84]田先国,张秋菊,丁建芳.高性能钒催化剂的研制[J].硫酸工业,2004,2:22-24.
    [85]杨冬霞,饶文.汽车尾气净化催化剂评价方法[J].贵金属,2004,25(1):61-66.
    [86]郑淳之.精细化工产品分析方法手册[M].北京:化学工业出版社,1999.
    [87]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [88]Srikanth V, Subbarao E C, Agrawal D K, etal.Thermal expansion anisotropy and acoustic emission of NaZr2P3O12 family ceramics [J]. J Am Ceram,1991,74:365-368.
    [89]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995.
    [90]刘维良.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004.
    [91]祝琳华,廖学品,郎小川等.共沉淀法合成磷酸盐陶瓷Ca1-xBaxZr4P6O24粉体的研究[J].硅酸盐学报,2001,29(3):271-274.
    [92]Boilot J P, Colomban Ph. Sodium and lithium superionic gels and glasses [J]. J Mater Sci Lett,1985,4:22-24.
    [93]Perthius H, Colomban Ph. Sol-gel routes leading to Nasicon ceramics [J]. Ceram Int, 1986,12:39-52.
    [94]Agrawal D K, Adair J H. Low-temperature sol-gel synthesis of NaZr2P3O12 [J]. J Am Ceram Soc,1990,73(7):2153-2155.
    [95]王零森.特种陶瓷[M].长沙:中南工业大学出版社,2000,69-72.
    [96]尹邦跃,王零森,樊毅.乙二醇在络合物溶胶-凝胶法中的应用研究[J].硅酸盐学报,1999,27(3):337-341.
    [97]于永丽,翟秀静,符岩等.纳米Ti02的燃烧合成及其光催化性能.中国有色金属学报,2004,14(5):831-835
    [98]黎大兵,胡建东,连建设等.纳米粉体(Ce02)09-x(GdO1.5)x(Sm203)0.1的溶胶-凝胶低温燃烧合成.2001,29(4):340-343
    [99]王大全,于世涛,刘福胜等.固体酸与精细化工[M].北京:化学工业出版社,2006.
    [100]Komarneni S. Hydrothermal preparation of the low-expansion NZP family of materials[J]. Int J High Tech Ceram,1988,4:31-39.
    [101]祝琳华,李良军.新型抗热震“NZP族涂层-蜂窝堇青石陶瓷”复合载体的制备方法[P].CN Patent,200610010728.8.
    [102]李艳平.NZP族磷酸盐晶体化合物的水热合成研究.昆明理工大学硕士学位论文,2009.
    [103]傅献彩.物理化学[M].北京:高等教育出版社,1979.
    [104]M.莫尔比代利,A.加夫里迪斯,A.瓦尔马.催化剂设计——活性组分在颗粒、反应器和膜中的最优分布[M].北京:化学工业出版社,2004,39-43.
    [105]刘兴玉,谢传欣,赵静等.晶种在L沸石合成体系中的作用[J].石油大学学报(自然科学版),2004,5:103-107.
    [106]Xu Y, Maddox P J, Couves J W, etal. The synthesis of SAPO-34 and CoSAPO-34 from a triethrlamine-hydrofluoric acid water [J]. J Chem Soc Faraday Trans,1990,86: 425-429.
    [107]Zhang J X, Fujiwara M, Xu Q. Synthesis of mesoporous calcium phosphate using hybrid templates[J]. Microporous and Mesoporous Mater,2008,4:411-416.
    [108]Luo X Z, Imae T. Synthesis of mesoporous iron phosphate using PAMAM dendrimer as a single molecular template [J]. Chemistry Letters,2005,11:1132-1133.
    [109]秦海莉,刘云,刘全生.镧硅磷酸铝分子筛的合成与表征[J].人工晶体学报,2008, 2:480-483.
    [110]孔黎明,刘晓勤,刘定华.A1PO4-5分子筛大晶体的合成[J].高校化学工程学报,2007,6:1072-1075.
    [111]张爱敏,宁平,黄荣光.低贵金属三效催化剂技术[M].北京:冶金工业出版社,2007.
    [112]王丽琼,王大祥,张兴燕.不同原料制备蜂窝陶瓷涂层的研究[J].工业催化,2002,10(3):52-55.
    [113]安琴,冯长根,曾庆轩等.陶瓷蜂窝载体γ-A1203涂层研究进展[J].化学通报,2001,3:135-140.
    [114]邵潜,龙军,贺振富等.规整结构催化剂及反应器[M].北京:化学工业出版社,2005.
    [115]张华,胡娟,周万城等.堇青石蜂窝陶瓷的制备[J].硅酸盐学报,2004,32(1):24-28.
    [116]徐晓红,尤德强,吴建锋等.累托石和滑石合成堇青石工艺研究[J].硅酸盐学报,2004,32(4):481-484.
    [117]Srikanth V, Subbarao E C, et al. Thermal Expansion Anisotropy and Acoustic Emission of NaZr2P3O12 Family Ceramics. J.Am.Cerm.Soc.1991,74(2):365-368.
    [118]金杏妹.工业应用催化剂[M].上海:华东理工大学出版社,2004,199-205
    [119]张燕,肖彦,袁慎忠等.不同配比的Pd, Pt, Rh三效催化剂性能研究.中国稀土、学报,2003,21(专辑):59-63.
    [120]邹运湖.汽车尾气净化用三效催化剂[J].化学工业与工程技术,1999,20(4):21-25.
    [121]郭家秀.高性能低贵金属Pt-Rh型三效催化剂的研究[硕士学位论文].四川大学,2005.
    [122]王桂香,董国君,张密林.负载型Pd催化剂[J].化学工程师,2001,87(6):6-8.
    [123]周泽兴,王学中.全Pd三效催化剂研究—涂层材料的研究.环境化学,2001,20(1) :1-6.
    [124]田东旭,王浩静,王心葵.Pd/Ce/Al/蜂窝陶瓷催化剂制备方法的研究.无机化学学报,2001,17(4):527-532.
    [125]Gunan J G, Robota H J, Cohn M J, etal. Physicochemical properties of Ce-containing 3-way catalysts and the effect of Ce on catalytic activity [J]. J Catal,1992,133(11):309-324
    [126]屠兢,伏义路,林培琰.Pd/y-Al2O3三效催化剂中Ce02助剂的作用[J].催化学报,2001,22(4):390~396.
    [127]肖彦,张燕,袁慎忠等.低贵金属含量三效催化剂的研制[J].中国稀土学报,2004,22(4):575-578.
    [128]汪文栋,林培琰,伏义路.含铈、镧低贵金属含量三效催化剂的结构与性能[J].催化学报,1999,20(5):527-529.
    [129]Muraki H, Shinjoh H, Sobukawa H, etal. Palladium-lathanum catalysts for automotive emission control [J]. Ind Eng Chem Prod Res Dev,1986,25:202-208.
    [130]Monte R D, Fornasiero P, Kaspar J, etal. Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts [J]. Appl Catal B,2000,24:157-167.
    [131]蒋晓原,陆峥,周仁贤等.高比表面积Ce-Zr-O复合氧化物的制备与表征.浙江大学学报(理学版),2002,29(4):423-429.
    [132]赵建宏,宋成盈,王留成.催化剂的结构与分子设计[M].北京:中国工人出版社,1998.
    [133]杨成,任杰,孙予罕.Ce02和La203改性Pd/y-Al2O3甲醇低温分解催化剂的研究[J].催化学报,2001,22(4):339-341.
    [134]杨冬霞,饶文.汽车尾气净化催化剂评价方法[J].贵金属,2004,25(1):61-66.
    [135]李燕秋,贺振富,李阳等.镧、铈在贵金属型汽车尾气净化催化剂中的作用[J].石油炼制与化工,2004,35(2):18-21.
    [136]陈五平.无机化工工艺学(硫酸分册)[M].北京:化学工业出版社,1981.
    [137]钱功明,钟康年,刘羽.三种钒系催化剂表征的对比研究[J].天津化工,2003,17(6):24-26.
    [138]郑琼文.精细化工产品分析方法手册[M].北京:化学工业出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700