用户名: 密码: 验证码:
新型高催化活性纳米铂修饰电极的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制基于纳米材料修饰的电极,并将其应用于环境电化学方面的研究,是一个将纳米技术、环境工程和电分析化学有机结合起来的崭新领域,有利于建立电分析化学的新技术和新方法,促进环境电化学的发展。
     本论文的工作主要集中在纳米技术与电分析化学相结合的最活跃的研究领域之一——新型纳米材料修饰电极的制备和应用。本文采用了三种不同的方法制备出具有高催化活性的载铂纳米修饰电极,将其用于环境检测,并对苯酚电化学氧化进行了热力学分析。本文的主要内容如下:
     1.以抗坏血酸为还原剂,采用一步原位化学还原法将纳米金属铂直接修饰到玻碳电极表面制备了纳米铂修饰玻碳(PtNPs/GC)电极,结果表明,大量球形纳米铂颗粒修饰到玻碳电极表面,粒径为40-200 nm。研究了电极性能和半胱氨酸在PtNPs/GC电极上的电化学行为。该修饰电极具有优良的电化学性能,并对甲醇具有良好的催化氧化作用。较高的pH和温度有利于提高其氧化还原反应活性。研究发现:该修饰电极对半胱氨酸具有良好的催化氧化性能,与铂片电极相比,半胱氨酸的氧化峰电位降低了300 mV,氧化峰电流增加了12倍。半胱氨酸浓度在1.0×10-7 mol/L到1.3×10-5 mol/L范围内,其氧化峰电流与浓度呈良好的线性关系。可用于半胱氨酸的检测,检测下限为7.6×10-8 mol/L。
     2.利用循环伏安法研究了苯酚、邻苯二酚和对苯二酚在PtNPs/GC电极上的电化学氧化行为。温度、pH值和苯酚浓度对苯酚电化学氧化影响的实验结果表明,随着温度的升高,苯酚电催化氧化峰电位逐渐降低,而峰电流逐渐增大。随着pH值升高,氧化峰电位逐渐减小,氧化峰电流在pH小于7时逐渐减小,在pH=7.5时突然增大,超过7.5又减小。随着苯酚浓度的增大,苯酚的氧化峰电位逐渐减小,峰电流增大。苯酚在PtNPs/GC电极上的电化学氧化反应活化能为14.6 kJ/mol。在温度为187 K时只有聚合过程而没有其他的副反应发生。在温度超过375 K后,电极表面发生的主要反应是苯酚的降解和自发形成聚合膜。苯酚的氧化是在铂氧化物表面发生的。介质的类型和pH对苯酚的氧化机理没有影响。常温下,苯酚在PtNPs/GC电极上的氧化过程以聚合为主,邻苯二酚和对苯二酚的生成速率是其控制步骤。
     邻苯二酚在PtNPs/GC电极上的氧化过程是扩散控制过程,氧化峰电流随着温度的升高而增大,而氧化峰电位逐渐减小。在不同体系中,其电化学氧化反应的机理不同。在常温条件下,邻苯二酚可以自发的在电极表面发生聚合反应,生成具有导电性的聚合膜。反应的温度、邻苯二酚的浓度,介质类型和pH对其氧化过程均有较明显的影响。
     对苯二酚在PtNPs/GC电极上的催化氧化反应活化能为14.0 KJ/mol。且随温度的升高,反应可逆性降低,氧化峰电流的对数与温度的倒数呈线性关系。
     3.以血红蛋白(Hb)为组装分子,利用自组装技术成功地将Hb组装到PtNPs/GC电极上。使用交流阻抗技术对Hb修饰的PtNPs/GC电极(Hb/PtNPs/GC)的性能进行电化学表征。结果表明Hb自组装膜对H2O2的还原反应和Hb的直接电子转移具有催化作用。Hb/PtNPs/GC电极具有比PtNPs/GC电极更好的催化还原H2O2的能力。H2O2浓度在5.0×10-6 mol/L到4.5×10-4 mol/L范围内,Hb/PtNPs/GC电极对H2O2的催化还原电流与其浓度呈线性关系。最低检测限为7.4×10-7 mol/L。
     4.用电化学方法制备了聚合邻苯二酚/铂复合物修饰膜。电化学聚合的电位范围在-0.6~0.8 V可以得到具有良好电活性的聚合邻苯二酚膜。利用循环伏安法成功的将金属铂纳米颗粒引入聚合膜中。复合修饰膜对甲醇的催化氧化活性和铂颗粒的大小和分散性能有关。同时聚合膜对甲醇的催化氧化有协同作用,和直接在玻碳电极表面沉积金属铂相比,复合物对甲醇的催化氧化能力提高了70%。这种用电化学方法制备的复合膜可以作为一种新型电极材料。
     5.研究了甲醛在聚合邻苯二酚/铂复合物修饰膜电极上的电化学行为。利用循环伏安法研究了电解质、pH、扫速和甲醛浓度对甲醛氧化过程的影响。结果表明,该修饰电极对甲醛具有良好的催化氧化作用。在0.5 mol/L硫酸中,甲醛主要发生第一步氧化生成甲酸的反应;而在磷酸氢二钠—柠檬酸缓冲体系中,甲醛能够得到较彻底的氧化。甲醛的第一氧化峰电流随其浓度的增加而增大,并且呈线性关系,可用于甲醛的检测。
The modified electrodes based on nanomaterials are prepared and applied to the environmental electrochemistry, which is an organic combination of nanotechnology, environmental technology and electroanalytical chemistry. It is a promising research field which is advantage to form the new technology and new method and accelerate the development of environmental electrochemistry.
     The main work of this paper focuses on one of the most active field where nanotechnology combines with electroanalytical chemistry, preparation and application of novel nanomaterial-modified electrodes. Three methods are applied in this thesis to fabricate nanoplatinum-modified electrodes with high catalytic activity. The emphasis of the study is to apply these modified electrodes to realize the environmental determination and thermodynamic analysis of phenol’s electrochemical oxidation. The details are listed below:
     1. Platinum nanoparticles directly attached to glassy carbon (PtNPs/GC) were successfully fabricated by using an in situ chemical reductive growth method with ascorbic acid was used as reducing agent. The results indicated that many spherical metallic platinum nanoparticles were presented on GC surface. The diameter of these spherical nanoparticles was in the range of 40 to 200 nm. The electrochemical activety of the PtNPs/GC electrode and the electrochemical behavior of L-cysteine (L-cys) on the modified electrodes were studied. It was found that the PtNPs/GC electrode characterized excellent electrochemical feature in improving the electrocatalytic activity for the oxidation of methanol. Excellent redox reaction activity was obtained at high pH value and high temperature. The electrochemical behavior of PtNPs/GC for the L-cys oxidation was apparently higher than those of the bulk platinum electrode. Compared with the response obtained on the bulk platinum electrode, the electrochemical oxidation potential of L-cys on the modified electrode shifted negatively by 0.3 V, and the oxidation peak current of L-cys increased 12 times. The oxidation peak current of L-cys was linear to the L-cys concentration in the range of 1.0×10-7 mol/L to 1.3×10-5 mol/L. The calculated detection limit was 7.6×10-8 mol/L, which could be used to detect L-cys.
     2. The electrochemical oxidation behavior of phenol, catechol and hydroquinone on PtNPs/GC electrode was investigated by cyclic voltammetry. Various influence factors such as temperature, the pH of electrolyte and the concentration of phenol were examined. The results indicated that the oxidation peak potentials of phenol shifted to more negative values when temperature, pH and the concentration of phenol increased. The peak current increased with temperature and the concentration of phenol. However, the peak current decreased with increasing pH valve between 3 and 7. The peak current increased obviously until pH=7.5, and then decreased with increasing pH value. Activation energy of phenol’s electro-oxidation on PtNPs/GC electrode obtained from the experimental data was 14.6 kJ/mol. The thermodynamicanalyses showed that polymerization process took place without any side reaction at 187 K. After 375 K the main reaction tended to be the degradation of phenol with a spontaneous polymerization process on the electrode surface. In addition, the electrolyte and pH did not influence the oxidation mechanism of phenol on platinum surface. Polymerization was the main oxidation process of phenol, which was controlled by the generation rate of catechol and hydroquinone.
     The electrochemical oxidation of catechol was a diffusion-controlled process. The oxidation peak current increased with temperature. However, the oxidation peak potential decreased with increasing temperature. The electrochemical oxidation mechanisms of catechol in different electrolyte were different. The polymerization of catechol could occur at room temperature and the formed polymer was an electronically conducting polymer. The oxidation process was significantly affected by temperature, the concentration of catechol and electrolyte. The activation energy of hydroquinone’s oxidation was 14.0 kJ/mol. The reaction became irreversible with increasing temperature. The logarithm of the oxidation peak current was linear to the reciprocal of the absolute temperature.
     3. The hemoglobin (Hb) was immobilized on the platinum nanoparticles modified glassy carbon surface successfully. The Hb immobilization was characterized by electrochemical impedance technique. The results indicated that the effect of Hb monolayer was contributed to catalyzing the direct electron transfer of Hb and improving the reduction of hydrogen peroxide (H2O2). The electrocatalytic reduction activity to H2O2 on Hb/PtNPs/GC electrode was apparently higher than those on the PtNPs/GC electrode. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 5.0×10-6 mol/L to 4.5×10-4 mol/L. The limited detection was 7.4×10-7 mol/L.
     4. This study has shown that the synthesis of polycatechol/platinum composites could be accomplished using the electrochemical method. A polymerization catechol film with excellent electrochemical activity was obtained by controlling the potential scan range from -0.6 V to 0.8 V. Metallic platinum nanoparticles was introduced in polycatechol film by cyclic voltammetry. The catalytic oxidation of methanol was influenced predominantly by the size and dispersion of platinum particles. The results indicated that the oxidation current of methanol at polycatechol/platinum composites was significantly higher (70%) than that at the platinum directly electrodeposited on the GC surface, illustrating that the polymer had a synergistic effect with platinum particles in improving the catalytic oxidation of methanol. Thus, the obtained composites may be used as novel electrode material with excellent electrochemical feature.
     5. The electrochemical behavior of formaldehyde was investigated on the polycatechol/platinum composites modified electrode. Various influence factors such as electrolyte, pH value,scan rate and the concentration of formaldehyde were examined by cyclic voltammetry. The results indicated that the polycatechol/platinum composites modified electrode had excellent electrochemical catalytic activity to the oxidation of formaldehyde. The main reaction occurred in 0.5 mol/L H2SO4 solution was the oxidation of formaldehyde to methyl acid. However, formaldehyde could be completely oxided in 0.1 mol/L citrate + 0.2 mol/L Na2HPO4 solution (pH=7.0). The first oxidation peak current was linear to the formaldehyde concentration, which could be used to detecte formaldehyde.
引文
[1] H. Wohltjen, A. W. Snow, Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal. Chem., 1998, 70(14): 2856~2859.
    [2] A. N. Shipway, M. Lahav, R. Blonder, et al. Bis-bipyridinium cyclophane receptor-Au nanoparticle superstructures for electrochemical sensing applications. Chem. Mater., 1999, 11(1): 13~15.
    [3] (a) A. B. Kharitonov, A. N. Shipway, I. Willner, An Au nanoparticle/bis-bipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline. And. Chem., 1999, 71(23): 5441~5443.; (b) F. Patolsky, T. Gabriel, I. Willner, Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J. Electroanal. Chem., 1999, 479(1): 69~73.
    [4] L. A. Lyon, M. D. Musick, M. J. Natan, Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem., 1998, 70(24): 5177~5183.
    [5] A. M. Couper, D. Pletcher, F. C. Walsh, Electrode materials for electrosynthesis. Chem. Rev., 1990, 90(5): 837~865.
    [6]陈敏元. L-半胱氨酸药物及其合成[J].化学工程师. 1991, (5): 24~25.
    [7]金利通等.化学修饰电极[M].上海:华东师范大学出版社, 1992: 12.
    [8] R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. J. Phys. Chem., 1973, 77(11): 1401~1410.
    [9] P. R. Moses, L. Wier, R. W. Murray, Chemically modified tin oxide electrode. Anal. Chem., 1975, 47(12): 1882~1886.
    [10] A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev., 1996, 96(4): 1533~1534.
    [11] F. C. Anson, J. B. Flanagan, K. Takahashi, et al. Some virtues of differential pulse polarography in examining adsorbed reactants. J. Electroanal. Chem., 1976, 67(2): 253~259.
    [12] (a) D. L. Allara, R. G. Nuzzo, Spontaneously organizied molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir, 1985, 1(1): 45~52.; (b) D. L.Allara, R. G. Nuzzo, Spontaneously organizied molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir, 1985, 1(1): 52~66.
    [13] H. Ogawa, T. Chihera, K. Taya, Selective monomerthyl esterification of dicarboxylic acids by use of monocarboxylate chem.isorption on alumina. J. Am. Chem. Soc., 1985, 107(5): 1365~1369.
    [14] M. E. McGovem, K. M. R. Kallury, M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir, 1994, 10(10): 3607~3614.
    [15] S. Brandriss, S. Margel, Synthesis and characterization of self-assembled hydrophobic monolayer coatings on silica colloids. Langmuir, 1993, 9(5): 1232~1240.
    [16] L. H. Dubois, R. G. Nuzzo, Synthesis, structure, and properties of model organic surfaces. An. Rev. Phys. Chem., 1992, 43: 437~463.
    [17] C. D. Bain, E. B. Troughton, Y. T. Tao, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc., 1989, 111(1): 321~335.
    [18] H. E. Katz, M. L. Schilling, Electrical properties of multilayers based on zirconium phosphate/phosphornate bonds. Chem. Mater, 1993, 5(8): 1162~1166.
    [19] M. R. Linford, P. Fenter P. M. Eisenberger, et al. Alkyl monolayers on silicon prepared from 1-Alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc., 1995, 117(11): 3145~3155.
    [20] N. Tillman, A. Ulman, T. L. Penner, Formation of multilayers by self-assembly. Langmuir, 1989, 5(1): 101~111.
    [21] P. Silberzan, L. Leger, D. Ausserre, et al. Silanation of silica surfaces: A new method of constructing pure or mixed monolayers. Langmuir, 1991, 7(8): 1647~1651.
    [22] L. Netzer, R. Iscovichi, J. Sagiv, Adsorbed monolayers versus Langmuir-Blodgett monolayers—Why and how? I: From monolayer to multilayer, by adsorption. Thin Solid Films, 1983, 99(1-3): 235~241.
    [23] K. B. Blodgett, Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc., 1935, 57(6): 1007~1022.
    [24] G. Decher, J. Hong, Buildup of ultrathin multilayer films by a self-assembly process I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on chargedsurfaces. Makromol. Chem. Macromol. Symp., 1991, 46: 321~327.
    [25] (a) Y. Dongsik, S. S. Shiratori, M. F. Rubner, Controlling bilayer compositeon and sur- -face wettability of sequentially adsorbed multilayers of weak polyelectrlytes. Macromolecules, 1998, 31(13): 4309~4318.; (b) S. S. Shiratori, M. F. Rubner, pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33(11): 4213~4219.
    [26] M. Loesche, J. Schmitt, G. Decher, et al. Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules, 1998, 31(25): 8893~8906.
    [27] P. Bertrand, A. Jonas, A. Laschewsky, et al. Ultrathin polymer coatings by complication of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun., 2000, 21(7): 319~348.
    [28] M. C. Hsieh, R. J. Fqris, T. J. McCarthy, Surface“Priming”for layer-by-layer deposition polyelectrolyte multilayer formation on allylamine plasma-modified poly(tetrafluoroethylene). Macromolecules, 1997, 30(26): 8453~8458.
    [29] T. Nonaka, S. Abe, T. Fuchigami, Electro-organic reactions on organic electrodes. Part 2. Electrochemical asymmetric reduction of citraconic and mesaconic acids on optically-active poly(amino acid)-coated electrodes. Bull. Chem. Soc. Japan, 1983, 56(9): 2778~2783.
    [30] V. Svoboda, V. Chromy, Reactions of metallochromic indicators on micelles-I: General observations. Talanta, 1965, 12(5): 431~436.
    [31] [31] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun., 1977, (16): 578.
    [32] M. S. Wrighton, Surface functionalization of electrodes with molecular reagents. Science, 1986, 231(4733): 32~37.
    [33]高玲玲,周馨我,范广裕.导电高分子应用研究的若干进展[J].材料导报, 1995, (4): 54~59.
    [34] C. E. D. Chidsey, R. W. Murray, Electroactive polymers and macromolecular electronics. Science, 1986, 231(4733): 25~31.
    [35] T. Malinski, A. Ciszewski, J. R. Fish, et al. Conductive polymeric tetrakis(3-methoxy- 4-hydroxyphenyl)porphyryin film electrode for trace determineation of nickel. Anal. Chem., 1990, 62(9): 909~914.
    [36]孙灏,王洪恩.硫醇/金自组装膜上组装葡萄糖氧化酶及其应用[J].济宁医学院学报, 1999, 22(1): 4~7.
    [37]张立德,牟季美.纳米材料[M].北京:化学工业出版社, 2000: 25~36.
    [38] R. M. Penner, M. J. Heben, T. L. Longin, et al. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science, 1990, 250(4984): 1118~1121.
    [39] S. Chen, A. Kucernak, Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun., 2002, 4(1): 80~85.
    [40] S. L. Chen, A. Kucernak, Overestimation of heterogeneous rate constants of hexacyanoferrate at nanometer-sized ultramicroelectrodes. Electrochem. Commun., 2002, 4(1): 24~29.
    [41] R. H. Chow, L. Von Ruden, E. Near, Delay in vesicle fusion revealed by electrochemical monitoring monitoring of singl secretory events in adrenal chromaffin cells. Nature, 1992, 365(6364): 60~63.
    [42] M. McNally, D. K. Y. Wong, An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area. Anal. Chem., 2001, 73(20): 4793~4800.
    [43] F. R. F. Fan, A. J. Bard, Electrochemical detection of single molecules. Science, 1995, 267(5199): 871~874.
    [44]一ノ懒升,尾崎义治,贺集诚一郎著.超微颗粒导论(第一版)[M].湖北:武汉工业大学出版社, 1991.
    [45] P. V. Braun, P. Wiltzius, Microporous materials: Electrochemically grown photonic crystals. Nature, 1999, 402(6762): 603~604.
    [46] P. V. Braun, P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials. Adv. Mater., 2001, 13(7): 482~485.
    [47] P. N. Bartlet, P. R. Birkin, M. A. Ghanem, Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun., 2000, (17): 1671~1672.
    [48]罗谨,苏连永,谢雷等.二氧化钛纳米微粒膜光电化学行为的研究[J].物理化学学报. 1998, 14(4): 315~319.
    [49] J. Zhu, S. T. Aruna, Y. Koltypin, et al. A novel method for the preparation of Lead selenide: pulse sonoelectrochemical synthesis of Lead selenide nanoparticles. Chem. Mater., 2000, 12(1): 143~147.
    [50] S. K. Haram, A. R. Mathadeshwar, S. G. Dixit. Synthesis and characterization ofcopper sulfide nanoparticles in Triton-X 100 water-in-oil micruemulsions. J. Phys. Chem., 1996, 100(14): 5868~5873.
    [51] F. Bonet, V. Delmas, S. Grugeon, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostrucured Materials, 1999, 11(8): 1277~1284.
    [52] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125(9): 2408~2409.
    [53] S. Hrapovic, Y. Liu, K. B. Male, et al, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem., 2004, 76(4): 1083~1088.
    [54] Y. Tu, J. Di, X. Chen. Study of the nano-size silica Sol-Gel film as the matrix of chemically modified electrode. J. Sol-Gol Sci. Tech., 2005, 33(2):187~191.
    [55] Q. He, S. Yuan, C. Chen, et al, Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film. Mater. Sci. Eng. C, 2003, 23(5): 621~625.
    [56] R. R. Moore, C. E. Banks, R. G. Compton, Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal. Chem., 2004, 76(10): 2677~2682.
    [57] J. W. Kang, Z. F. Li, X. Q. Lu, et al. Studies on the electrochemical behavior of 3-nitrobenzaldehyde thiosemicarbazone at glassy carbon electrode modified with nano-Al2O3. Electrochem. Acta, 2004, 50(1): 19~26.
    [58] J. Zak, T. Kuwana, Electrooxidative catalysis using dispersed alumina on glassy carbon surfaces. J. Am. Chem. Soc., 1982, 104(20): 5514~5515.
    [59] P. Unwin, A. J. Bard, L. R. Faulkner (eds). Encyclopedia of Electrochemistry, Wiley & VCH, Vol. 3, 2003.
    [60]谢远武,董绍俊著.光谱电化学方法—理论与应用[M].长春:吉林科学出版社, 1993: 11~12.
    [61] S. Yao, J. Xu, Y. Wang, et al. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal. Chim. Acta, 2006, 557(1-2): 78~84.
    [62]蔡宏,王延琴,何品刚等.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].高等学校化学学报. 2003, 24(8): 1390~1394.
    [63] K. R. Brown, A. P. Fox, M. J. Natan. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc., 1996, 118(5): 1154~1157.
    [64] Y. Xiao, H. X. Ju, H. Y. Chen, Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta, 1999, 391(1): 73~82.
    [65] Y. Xiao, H. X. Ju, H. Y. Chen. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal. Biochem., 2000, 278(1): 22~28.
    [66]兰新哲,金志浩,赵西成等. PVP保护还原法制备纳米金溶胶[J].稀金属材料与工程, 2003, 32(1): 50~53.
    [67]缪谦,金葆康,林祥钦. ss-DNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报, 2000, 21(1): 27~30.
    [68] J. Liu, L. Cheng, Y. Song, et al. Simple preparation method of multilayer polymer films containing Pd nanoparticles. Langmuir, 2001, 17(22): 6747~6750.
    [69] T. You, O. Niwa, Z. Chen, et al. An amperometric detector formed of highly dispersed Ni nanopaarticles embedded in a graphite-like carbon film electrode for sugar determineation. Anal. Chem., 2003, 75(19): 5191~5196.
    [70] (a) J. C. Hulteen, V. P. Menon, C. R. Martin, Template preparation of nanoelectrode ensembles. Achieving the“pure-radial”electrochemical-response limiting case. J. Chem. Soc. Faraday Trans., 1996, 92(20): 4029~4032.; (b) C. R. Martin, Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193): 1961~1966.; (c) V. P. Menon, C. R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem., 1995, 67(13): 1920~1928.; (d) M. Nishizawa, V. P. Menon, C. R. Martin, Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science, 1995, 268(5211): 700~702.
    [71] Y. Z. Xian, M. C. Liu, Q. Cai, et al. Preparation of microporous aluminium anodic oxide film modified Pt nano array electrode and application in direct measurement of nitric oxide release from myocardial cells. Analyst, 2001, 126(6): 871~876.
    [72] F. Campus, P. Bonhote, M. Gratzel, Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes. Solar Energy Materials & Solar Cells, 1999, 56(3-4): 281~297.
    [73] H. Yonemura, M. Yoshida, S. Miyake, Magnetic field effects on photocurrent responses from modified electrodes with CdS nanoparticles. Eletrochemistry (Tokyo), 1999, 67(12): 1209~1210.
    [74] V. Pardo-Yissar, E. Katz, J. Wasserman, et al. Acetylcholine esterase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors. J. Am. Chem. Soc., 2003, 125(3): 622~623.
    [75]褚道葆,沈广霞,周幸福等. Ti表面修饰纳米TiO2膜电极的电催化活性[J].高等学校化学学报, 2002, 23(4): 678~681.
    [76] H. Tang, K. Prasad, R. Sanjines, et al. TiO2 anatase thin films as gas sensors. Sensors and Actuators B, 1995, 26(1-3): 71~75.
    [77] L. D. Birkefeld, A. M. Azad, S. A. Akbar, Carbon monoxide and hydrogen detection by anatase modification of titanium dioxide. J. Am. Ceram. Soc., 1992, 75(11): 2964~2968.
    [78] S. P. E. Smith, K .F. Ben-Dor, H. D. Abruna, Poison formation upon the dissociative adsorption of formic acid on bismuth-modified stepped Platinum electrodes. Langmuir, 2000, 16(2): 787~794.
    [79] C. Wang, M. Waje, X. Wang, et al. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 2004, 4(2): 345~348.
    [80]吕少仿,费俊杰.头孢噻肟在多壁碳纳米管修饰电极上的电化学行为及分析应用[J].武汉大学学报(理学版), 2003, 49(2): 157~161.
    [81] J. Wang, M. Li, Z. Shi, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem., 2002, 74(9): 1993~1997.
    [82]王宗花,刘军,颜流水等.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响[J].高等学校化学学报, 2003, 24(2): 236~240.
    [83]秦玉华,王胜天,关晓辉等.磷灰石通道离子替换对细胞色素C直接电化学的影响[J].分析化学, 2004, 32(12): 1613~1616.
    [84]王桂香,潘芊秀,王怀生.新型DNA电化学传感器的研制及其用于DNA氧化性损伤检测的研究[J].高等学校化学学报, 2005, 26(1): 1812~1816.
    [85] Z. Yang, J. M. Kauffmann, V. Acedo, et al. Electroanalytical behavior of a nanoarray self-assembled thiocholesterol gold electrode. Microchimca Acta, 1999, 131(1-2): 85~90.
    [86] T. Hernandez-Perez, A. V. Zuniga-Rodriguez, G. O. Campos-Salinas, et al. Silicagels as electrode membranes in the hydrogen peroxide potentiometric biosensor. Proceedings Electrochem. Soc., 1999, 98-26: 184~193.
    [87] (a) B. Keita, L. Nadjo. New oxometalate-based materials for catalysis and electroca- -talysis. Mater. Chem. Phys., 1989, 22(1-2): 77~103.; (b) B. Keita, A. Belhouori, L. Nadjo. Oxometalate-clay-modified electrodes: Pillaring of layered double hydroxide anion-exchanging clays by metatungstate. J. Electroanal. Chem., 1991, 314(1-2): 345~352.; (c) B. Keita, L. Nadjo. Surface modifications with heteropoly and isopoly oxometalates: Part I. Qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction. J. Electroanal. Chem., 1988, 243(1): 87~103.; (d) B. Keita, L. Nadjo. Surface modifications with heteropoly and isopoly oxometalates: Part III. Electrode modification procedures. The necessity of proton interference during the electrodeposition of the h.e.r. catalysts. J. Electroanal. Chem., 1988, 247(1-2): 157~172.; (e) B. Keita, L. Nadjo. Scanning tunnelling microscope monitoring of the surface morphology of the basal plane of highly oriented pyrolytic graphite during the cyclic voltammetry of isopoly and heteropolyanions. J. Electroanal. Chem., 1993, 354(1-2): 295~304.
    [88] (a) D. Ingersoll, P. J. Kulesza, L. R. Faulkner. Polyoxometallate based layered comp- -osite films on electrodes. J. Electrochem. Soc., 1994, 141(1): 140~147.; (b) C. Rong, F. G. A. Anson. Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions. Inorg. Chim. Acta, 1996, 242(1-2): 11~16.; (c) C. Sun, J. Zhao, H. Xu. Fabrication of multilayer films containing 1:12 phosphomolybdic anions on the surface of a gold electrode based on electrostatic interaction and its application as an electrochemical detector in flow-injection amperometric detection of hydrogen peroxide. J. Electroanal. Chem., 1997, 435(1-2): 63~68.; (d) I. Ichinose, H. Tagawa, T. Kunitake, Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations. Langmuir, 1998, 14(1): 187~192.
    [89] Z. Tang, S. Liu, E. Wang, et al. Preparation, structures, and electrochemistry of a new polyoxometalate-based organic/inorganic film on carbon surfaces. Langmuir, 2000, 16(13): 5806~5813.
    [90] (a) L. Cheng, S. Dong, Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods. J. Electroanal. Chem., 2000, 481(2): 168~176.; (b) S. Liu, Z. Tang,Z. Wang, et al. Oriented polyoxometalate–polycation multilayers on a carbon substrate. J. Mater. Chem., 2000, 10(12): 2727~2733.; (c) L. Cheng, L. Niu, J. Gong, et al. Electrochamical growth and characterizeation of polyoxometalate-containing monolayers and multilayers on alkanethiol monolayers self-assembled on Gold electrodes. Chem. Mater., 1999, 11(6): 1465~1475.
    [91] M. Mcnally, D. K. Y. Wong, An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area. Anal. Chem., 2001, 73(20): 4793~4800.
    [92] M. Schwank, U. Miller, R. Hauert, et al. Production of a microelectrode for intracellular potential measurements based on a Pt/Ir needle insulated with amorphous hydrogenated carbon. Sensors Actuators B, 1999, 56(1-2): 6~14.
    [93] X. J. Zang, W. M. Zhang, X. Y. Zhou, et al. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. Anal. Chem., 1996, 68(19): 3338~3343.
    [94] K. P. Troyer, R. M. Wightman, Dopamine transport into a single cell in a picoliter vial. Anal. Chem., 2002, 74(20): 5370~5375.
    [95] P. Janda, J. Weber, L. Daunsch, et al, Detection of ascorbic acid using a carbon fiber microelectrode coated with cobalt tetramethylpyridoporphyrazine. Anal. Chem., 1996, 68(6): 960~965.
    [96] L. I. Netchiporouk, N. F. Shram, N. Jaffrezic-Renault, et al. In vivo brain glucose measurements: differential normal pulse voltammetry with enzyme-modified carbon fiber microelectrodes. et al. Anal. Chem., 1996, 68(24): 4358~4364.
    [97] N. F. Shram, L. I. Netchiporouk, C. Martelet, et al. In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase. Anal. Chem., 1998, 70(13): 2618~2622.
    [98] P. Akhtar, C. O. Too, G. G. Wallace, Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part II. Use of microelectrodes. Anal. Chim. Acta, 1997, 339(3): 211~223.
    [99] W. H. Huang, D. W. Pang, H. Tong, et al. A method for the farbrication of low-noise carbon fiber nanoelectrodes. Anal. Chem. 2001, 73(5): 1048~1052.
    [100]孙元喜,冶保献,周性尧.聚中性红膜修饰电极上神经递质的电化学行为及应用[J].分析化学, 1998, 26(5): 506~510.
    [101] R. S. Chen, W. H. Huang, H. Tong, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal. Chem., 2003, 75(22): 6341~6345.
    [102] K. P. Gong, M. N. Zhang, Y. M. Yan, et al. Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potentiall electrochemical applications. Anal. Chem., 2004, 76(21): 6500~6505.
    [103] S. Moncada, R. M. J. Palmer, E. A. Higgs, Nitric oxide: physiology, pathophysiology and pharmacology. Pharm. Rev., 1991, 43: 109~111.
    [104] X. J. Zhang, Y. Kislyak, J. Lin, et al. Nanometer size electrode for nitric oxide and S-nitrosothiols measurement. Electrochem. Commun., 2002, 4(1): 11~16.
    [105] M. Aoife, N. Orawan, J. K. Anthony, et al. An amperometric enzyme biosensor fabricated from polyaniline nanoparticles. Electroananl., 2005, 17(5-6): 423~430.
    [106] J. B. Jia, B. Q. Wang, A. G. Wu, et al. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional Sol-Gel network. Anal. Chem., 2002, 74(9): 2217~2223.
    [107] C. X. Lei, H. Wang, G. L. Shen, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanal., 2004, 16(9): 736~740.
    [108] D. Marc, D. C. Dophie, W. Alain, Flow injection amperometric detection at enzyme -modified gold nanoelectrodes. Electroanal., 2004, 16(3): 190~198.
    [109] J. Wang, M. Musameh, Y. H. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am.Chem. Soc., 2003, 125(9): 2408~2409.
    [110] U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem., 2001, 495(2): 134~145.
    [111] O. Antoine, Y. Bultel, R. Durand, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion. J. Electroanal. Chem., 2001, 499(1): 85~94.
    [112] H. P. Liang, H. M. Zhang, J. S. Hu, et al. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem., 1999, 460(1-2): 258~262.
    [113] (a) J. A. Poirier, G. E. Stoner, Oxygen reduction behavior of thin-film platinum and platinum-rhodium electrocatalysts in sulfuric acid. J. Electrochem. Soc., 1995, 142(4): 1127~1132.; (b) K. W. Park, J. H. Choi, Y. E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation. J. Phys. Chem. B, 2003, 107(24): 5851~5856.; (c) A. Manzo-Robledo, A. C. Boucher, E. Pastor, et al. Electro-oxidation of carbon monoxide and methanol oncarbon-supported Pt-Sn nanoparticles: a DEMS study. Fuel Cell, 2002, 2(2): 109~116.; (d) M. Krausa, W. Vielstich. Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J. Electroanal. Chem., 1994, 379(1-2): 307~314.
    [114] H. M. Villullas, F. I. Matos-Costa, et al. Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2. J. Phys. Chem. B, 2004, 108(34): 12898~12903.
    [115] P. Waszczuk, T. M. Barnard, C. Rice, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem. Comm., 2002, 4(7): 599~603.
    [116] P. C. Biswas, Y. Nodasaka, M. Haruta, Electro-oxidation of CO and methanol on graphite-based platinum electrodes combined with oxide-supported ultrafine gold particles. J. Electroanal. Chem., 1995, 381(1-2): 167~177.
    [117] P. Yeh, T. Uwana, Reversible electroode reaction of cytochrome c. Chem. Lett., 1977, 6(10): 1145~1148.
    [118] M. J. Eddowes, H. A. O. Hill, Aryl radical formation during the thermal decomposition of aryldizao alkyl ethers. J. Chem. Soc. Chem. Commun., 1977, 21: 771~773.
    [119] P. M. Allen, H. A. O. Hill, N. J. Walton, Surface modifiers for the promotion of direct electrochemistry of cytochrome c. J. Electroanal. Chem., 1984, 178(1): 69~86.
    [120] G. Chotard, N. Furuya, Direct electrochemistry of cytochrome c in the presence of heteropolytungstates. J. Electroanal. Chem., 1990, 278(1-2): 387~391.
    [121] C. Zhou, S. Ye, J-H. Kim, et al. Re-evaluation of 2, 2-bipyridine and pyrazine as promoters for direct electron transfer between cytochrome c and metal electrodes J. Electroanal. Chem., 1991, 319(1-2): 71~83.
    [122] T. Liu, J. Zhong, X. Gan, et al. Wiring electrons of cytochrome c with silver nanoparticles in layered films. Chem. Physchem., 2003, 4(12): 1364~1366.
    [123] H. X. Ju, S. Q. Liu, B. X. Ge, et al. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis, 2002, 14(2): 141~147.
    [124] S. Q. Liu, Z. H. Dai, H. Y. Chen, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosen. and bioelectro., 2004, 19(9): 963~969.
    [125] L. Wang, E. K. Wang, Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Comm., 2004, 6(1): 49~54.
    [126] C. X. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem., 2004, 325(2): 285~292.
    [127] J. Liu, A. Chou, W. Rahmat, et al. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 2005, 17(1): 38.
    [128] J. J. Gooding, R. Wibowo, J. Liu, et al. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc., 2003, 125(30): 9006~9007.
    [129] A. K. Boal, F. Iihan, J. E. Derouchey, et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 2000, 404(6779): 746~748.
    [130] H. Tang, J. H. Chen, Z. P. Huang, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 2004, 42(1): 191~197.
    [131] S. Liu, Z. Y. Tang, E. K. Wang, et al. Electrocrystallized platinum nanoparticle on carbon substrate. Electrochem. Comm., 2000, 2(11): 800~804.
    [132]王小聪,任斌,曹婧等.具有纳米结构的铂电极表面的电化学制备及其性能[J].化学学报, 2005, 63(23): 2112~2116.
    [133] J. Iniesta, J. González-García, J. Fernández, et al. On the voltammetric behavior of a platinized titanium surface with respect to the specific hydrogen and anion adsorption and charge transfer processes. J. Mater. Chem., 1999, 9(12): 3141~3145.
    [134]陈声培,陈燕鑫,黄桃等.不同介质对Pt/GC电极制备及其性能的影响[J].电化学, 2007, 13(1): 77~81.
    [135] M. Adlim, M. A. Bakar, K. Y. Liew, et al. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Molecular Catalysis A: Chemical., 2004, 212(1-2): 141~149.
    [136]丁收年,卢业举,金葆康.一种纳米铂水溶胶的制备及其在电化学上的应用[J].安徽大学学报(自然科学版). 2002, 26(3): 74~78
    [137]杜玉扣,赵丰,邹翠娥等.纳米铂颗粒的控制生长[J].化学物理学报, 2005, 18(6): 1019~1022.
    [138] M. T. Reetz, W. Helbig, Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc., 1994. 116(16): 7401~7402.
    [139] (a) T. S. Ahmadi, Z. L. Wang, M. A. Sayed, et al. Shape-controlled synthesis ofcolloidal platinum nanoparticles. Science, 1996, 272(5270): 1924~925.; (b) T. S. Ahmad, Z. L. Wang, A. Henglein, et al.“Cubic”colloidal platinum nanoparticles. Chem. Mater., 1996, 8(6): 1161~1163.
    [140] G. Chang, M. Oyama, K. Hirao, In situ chemical reduction growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J. Phys. Chem. B, 2006, 110(4): 1860~1865.
    [141]赵国华,李明利,李琳等.纳米铂微粒电极催化氧化有机污染物的研究[J].环境科学, 2003, 24(6): 90~95.
    [142] H. Kitano, Y. Taira, H. Yamamoto, Inclusion of phthalate esters by a self-assembled monolayer of thiolated cyclodextrin on a Gold electrode. Anal. Chem., 2000, 72(13): 2976~2980.
    [143] K. Yasuda, Y. Nishimura, The deposition of ultrafine platinum particles on carbon black by surface ion exchange—increase in loading amount. Mater. Chem. Phys., 2003, 82(3): 921~928.
    [144]朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H2O2的研究[J].高等学校化学学报, 2004, 25(9): 1637~1641.
    [145]姚彦丽,张岱,夏兴华.碳纳米管负载金属Pt催化剂的制备和机理研究[J].无机化学学报, 2004, 20(5): 531~535.
    [146] (a) X. Zhang, S. Fujiwara, M. Fujii, Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int. J. Thermophys, 2000, 21(4): 965~980.; (b) X. Zhang, H. Q. Xie, M. Fujii, et al. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett., 2005, 86(17): 171912/1~171912/3.
    [147]哈曜,何宝林,刘汉范.高分子稳定的水溶性铂氧化物纳米颗粒的制备[J].中南民族大学学报(自然科学版), 2005, 24(4): 22~26.
    [148]彭程,程璇,张颖等.碳载铂纳米微粒修饰的玻碳电极对甲醇的电催化氧化[J].稀有金属材料与工程, 2005, 34(6): 950~953.
    [149] L. N. Lewis, Chemical catalysis by colloids and clusters. Chem. Rev., 1993, 93(8): 2693~2730.
    [150] Z. Liu, J. Y. Lee, M. Han, et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J. Mater. Chem., 2002, 12(8): 2453~2458.
    [151] W. X. Chen, J. Y. Lee, Z. Liu, Microwave-assisted synthesis of carbon supported Ptnanoparticles for fuel cell applications. Chem. Commun., 2002, (21): 2588~2589.
    [152]贺平,天本太郎.燃料电池式酒精传感器研发技术报告(Ⅱ), Figaro技研株式会社1991: 3-8.
    [153] D. Quan, W. Shin, Modification of electrode surface for covalent immobilization of laccase. Mater. Sci. Eng. C, 2004, 24(1-2): 113~115.
    [154]李晓,李星玮.用于阴离子检测的聚苯胺电极[J].功能材料, 1997, 28(3): 328~330.
    [155] J. Sung, H. Huang, Application of a polyaniline/Nafion composite electrode to the determination of alkali and alkaline earth metal ions using flow-injection analysis and ion chromatography. Anal. Chim. Acta, 1991, 246(2): 275~281.
    [156] W. Schuhmann, R. Kittsteiner-Eberle, Evaluation of polypyrrole/glucose oxidase electrodes in flow-injection systems for sucrose determination. Biosen. Bioelectro., 1991, 6(3): 263~273.
    [157] J. C. Vidal, E. Garcia, J. R. Castillo, In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: Determination of total cholesterol in serum. Anal. Chim. Acta, 1999, 385(1-3): 213~222.
    [158] K. Kojima, H. Nasu, M. Shimomura, et al. An interfering factor in the glucose oxidase sensing system with polypyrrole/glucose oxidase membrane. Synthetic Metals, 1995, 71(1-3): 2245~2246.
    [159] O. V. Cherstiouk, P. A. Simonov, E. R. Savinova, Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim. Acta, 2003, 48(25-26): 3851~3860.
    [160] M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, et al. The effect of the particle size on the kinetics of CO electro-oxidation on high surface area Pt catalysts. J. Am. Chem. Soc., 2005, 127(18): 6819~6829.
    [161] J. Prabhuram, X. Wang, C. L. Hui, et al, Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B, 2003, 107(40): 11057~11064.
    [162] J. Ding, K. Chan, J. Ren, et al, Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochim. Acta, 2005, 50(15): 3131~3141.
    [163]陈国良,孙世刚,陈声培等.碳载Pt/Sb(ad)电极上乙醇电催化氧化特征和原位FTIR反射光谱研究[J].应用化学, 2001, 18(6): 432~435.
    [164]佘沛亮,姚士冰,周绍民.电沉积制备钯铂电极上乙醇的电催化氧化[J].物理化学学报, 2000, 16(1): 22~26.
    [165]张兵,周海辉,温祖标等.铂钌电极上乙醇解离吸附与氧化行为的原位SERS研究[J].电化学. 2005, 11(3): 289~293.
    [166] H. L. Chen, M. S. Li. Structure and function of biomacromole-cules [J]. Shanghai Science Press, Shanghai, 1999: 4.
    [167] J. A. Reynaud, B. Maltoy, P. Canessan, Electrochemical investigations of amino acids at solid electrodes: Part I. Sulfur components: cystine, cysteine, methionine. J. Electroanal. Chem., 1980, 114(2): 195~211.
    [168] Y. Zhao, W. Zhang, H. Cheng, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actua. B, 2003, 87(1): 168~172.
    [169] J. Xu, Y. Wang, Y. Xian, L. Jin, et al. Preparation of multiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography. Talanta, 2003, 60(29): 1123~1130.
    [170]傅崇岗,苏昌华,单瑞峰. L-半胱氨酸自组装膜修饰金电极的电化学特性[J].物理化学学报, 2004, 20(2): 207~210.
    [171] S. Maree, T. Nyokong, Electrocatalytic behavior of substituted cobalt phthalocyanines towards the oxidation of cysteine. J. Electroanal. Chem., 2000, 492(2): 120~127.
    [172] Z. Wang, D. Pang, Electrocatalysis of metalloporphyrins: Part 9. Catalytic electroreduction of cystine using water-soluble cobalt porphyrins. J. Electroanal. Chem., 1990, 283(1-2): 349~358.
    [173] S. Zhang, W. Sun, W. Zhang, et al. Determination of thiocompounds by liquid chromatography with amperometric detection at a Nafion/indium hexacyanoferrate film modified electrode. Anal. Chim. Acta, 1999, 386(1-2): 21~30.
    [174] N. Spataru, B. V. Sarada, E. Popa, et al. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal. Chem., 2001, 73(3): 514~519.
    [175] S. Fei, J. Chen, S. Yao, et al. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem., 2005, 339(1): 29~35.
    [176] D. V. Ca, L. Sun, J. A. Cox, Optimization of the dispersion of gold and platinumnanoparticles on indium tin oxide for the electrocatalytic oxidation of cysteine and arsenite. Electrochim. Acta, 2006, 51(11): 2188~2194.
    [177] F. Gloaguen, J. M. Léger, C. Lamy, et al. Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochim. Acta, 1999, 44(11): 1805~1816.
    [178]朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H2O2的研究[J].高等学校化学学报, 2004, 25(9): 1637~1641.
    [179] M. Kambayashi, J. Zhang, M. Oyama. Crystal growth of gold nanoparticles on indium tin oxides in the absence and presence of 3-mercaptopropyltrimethoxysilane. Cryst. Growth Des., 2005, 5(1): 81~84.
    [180] F. Montilla, E. Morallon, I. Duo, et al. Platinum particles deposited on synthetic boron-doped diamond surfaces: Application to methanol oxidation. Electrochim. Acta, 2003, 48(25-26): 3891~3897.
    [181] D. W. Hatchett, R. Wijeratne, J. M. Kinyanjui, Reduction of PtCl62- and PtCl42- in polyaniline: Catalytic oxidation of methanol at morphologically different composites. J. Electroanal. Chem., 2006, 593(1-2): 203~210.
    [182] R. G. Barradas, T. J. Vandernoot, Studies in electrocrystallisation: Part V. Monte Carlo simulations of the 2-dimensional instantaneous nucleation and growth model. J. Electroanal. Chem., 1982, 142(1-2): 107~119.
    [183] K. Chandrasekaran, J. C. Wass, J. O’M, Bockris, The potential dependence of intermediates in methanol oxidation observed in the steady state by FTIR spectroscopy. J. Electrochem. Soc., 1990, 137(2): 518~524.
    [184] N. Furuya, M. Shibata, Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions. J. Electroanal. Chem., 1999, 467(1-2): 85~91.
    [185] J-L. Boudenne, O. Cerclier, P. Bianco, Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes J. Electrochem. Soc., 1998, 145(8): 2763~276.
    [186] C. C. Hu, K. Y. Liu, Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation. Electrochim. Acta, 1999, 44(16): 2727~2738.
    [187] F. P. L. Beth, T. K. Lauro, A. T. Auro, et al. Anodic oxidation of cysteine catalysed by nickel tetrasulphonated phthalocyanine immobilized on silica gel modified with titanium (IV) oxide. Electrochim. Acta, 1998, 43(12-13): 1665~1673.
    [188] A. J. Bard, L. R. Faulkner. Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980: 226.
    [189] T. R. Ralph, M. L. Hitchman, J. P. Millington, et al. The electrochemistry of L-cystine and L-cysteine: Part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem., 1994, 375(1-2): 1~15.
    [190]张祖训.超微电极电化学[M].北京:科学出版社,1998: 10-14.
    [191] C. Nistor, J. Emńeus, L. Gorton, et al. Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Anal. Chim. Acta, 1999, 387(3): 309~326.
    [192] E. Brillas, E. Mur, R. Sauleda, et al. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ., 1998, 16(1): 31~42.
    [193] S. Esplugas, J. Gimenez, S. Contreras, et al. Comparison of different advanced oxidation processes for phenol degradation. Water Res., 2002, 36(4): 1034~1042.
    [194] E. Brillas, J. C. Calpe, J. Casado, Mineralization of 2, 4-D by advanced electrochemi- -cal oxidation processes. Water Res., 2000, 34(8): 2253~2262.
    [195] J. Wang, M. Jiang, F. Lu, Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation. J. Electroanal. Chem., 1998, 444(1): 127~132.
    [196] J. Boudenne, O. Cerclier, P. Bianco, Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes. J. Electrochem. Soc., 1998, 145(8): 2763~2768.
    [197] F. Bruno, M. C. Pham, J. E. Dubois, Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochim. Acta, 1977, 22(4): 451~457.
    [198] (a) D. Pletcher, G. A. Alverez, The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta, 1998, 44(5): 853~861.; (b) A. Alverez-Gallegos, D. Pletcher, The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochim. Acta, 1999, 44(14): 2483~2492.
    [199] (a) K. M. Richard, A. A. Gewirth, Effect of ring substitution on the binding and oxidation of cyanophenols on Au(111) electrodes. J. Phys. Chem., 1996, 100(17):7204~7211.; (b) K. M. Richard, A. A. Gewirth, Observation of electrode poisoning during the electro-oxidation of aromatic alcohols on (111)Au. J. Electrochem. Soc., 1996, 143(7): 2088~2092.
    [200] M. A. Rodrigo, P. A. Michaud, I. Duo, et al. Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc., 2001, 148(5): D60~D64.
    [201] H. Kuramitz, Y. Nakata, M. Kawasaki, et al. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode. Chemosphere, 2001, 45(1): 37~43.
    [202] H. Kuramitz, J. Saitoh, S. Tanaka, Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode. Water Res., 2002, 36(13): 3323~3329.
    [203] M. Ngundi, O. A. Sadik, S. Suye, et al. First comparative reaction mechanisms ofβ-estradiol and selected environmental hormones in a redox environment. Electrochem. Commun., 2003, 5(1): 61~67.
    [204] B. Salci, I. Biryol, Voltammetric investigation ofβ-estradiol. J. Pharm. Biomed. Anal., 2002, 28(3-4): 753~759.
    [205] M. B. Hocking, D. J. Intihar, Oxidation of phenol by aqueous hydrogen peroxide catalysed by ferric ion-catechol complexes. J. Chem. Tech. Biotechnol., 1985, 35(7): 365~381.
    [206] C. Cezar, T. Carmen, M. Matei, et al. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res., 2003, 37(5): 1154~1160.
    [207]张芳,李光明,张志刚等. Mn-Sn-Sb/γ-Al2O3粒子电极对苯酚的降解特性[J].化工学报, 2006, 57(10): 2515~2521.
    [208] G. Arslan, B. Yazici, M. Erbil, The effect of pH, temperature and concentration on electrooxidation of phenol. J. Hazar. Mate., 2005, 124(1-3): 37~43.
    [209] C. Comninellis, C. Pulgarin, Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem., 1991, 21(8): 703~708.
    [210] U. Schumann, P. Grundler, Electrochemical degradation of organic substances at PbO2 anodes: monitoring by continuous CO2 measurements. Water Res., 1998, 32(9): 2835~2842.
    [211] J. Iniesta, J. González-García, E. Expósito, et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res., 2001, 35(14):3291~3300.
    [212] S. Stucki, R. Kotz, B. Carcer, et al. Electrochemical waste water treatment usinghigh overvoltage anodes Part II: Anode performance and applications. J. Appl. Electrochem., 1991, 21(2): 99~104.
    [213] G. H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 2004, 38(1): 11~41.
    [214] A. T. Kuhu, R. W. Houghton, A comparison of the performance of electrochemical reactor designs in the treatment of dilute solutions. Electrochim. Acta, 1974, 19(11): 733~737.
    [215] S. L. Mu, Novel properties of polyaniline nanofibers coated with polycatechol. Synth. Met., 2006, 156(2-4): 202~208.
    [216] S. Dubey, D. Singh, R. A. Misra, Enzymatic synthesis and various properties of poly(catechol). Enzyme Micro. Tech., 1998, 23(7-8): 432~437.
    [217] F. Pariente, E. Lorenzo, F. Tobalina, et al. Aldehyde biosensor based on the determination of NADH enzymically generated by aldehyde dehydrogenase. Anal. Chem., 1995, 67(21): 3936~3944.
    [218] J. Davis, D. H. Vaughan, M. F. Cardosi, Modification of catechol polymer redox properties during electropolymerization in the presence of aliphatic amines. Electrochim. Acta, 1997, 43(3-4): 291~300.
    [219] S. B. Khoo, J. Zhu, Poly(catechol) film modified glassy carbon electrode for ultratrace determination of cerium(III) by differential pulse anodic stripping voltammetry. Electroanalysis, 1999, 11(8): 546~552.
    [220] S. S. Rosatto, L. T. Kubota, G. O. Neto, Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica–titanium. Anal. Chim. Acta, 1999, 390(1-3): 65~72.
    [221] E. Dempsey, D. Diamond, A. Collier, Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens. Bioelectron., 2004, 20(2): 367~377.
    [222]李明齐,何晓英,蔡铎昌.碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研究[M].分析科学学报, 2006, 22(3): 299~302.
    [223]冯治平,刘达玉,黄丹.用桑蚕丝素蛋白植被邻苯二酚酶传感器[M].生物技术, 2003, 13(2): 29~30.
    [224] L. C. Chiang, J. E. Chang, T. C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res., 1995, 29(2): 671~678.
    [225] J. Iniesta, P. A. Michaud, M. Panizza, et al. Electrochemical oxidation of phenol atboron-doped diamond electrode. Electrochim. Acta, 2001, 46(23): 3573~3578.
    [226]徐莉.苯酚羟基化合成邻苯二酚铁系催化剂反应性能、结构及反应机理研究: [博士学位论文].南开大学, 2000.
    [227] I. Y. Litvintsev, Y. U. Mitnik, A. I. Mikhailyuk, et al. Kinetics and mechanism of catalytic hydroxylation of phenol by hydrogen peroxide. Kinetics and Catalyst, 1993, 34(1): 76~82.
    [228] S. Andreescu, D. Andreescu, O. A. Sadik, A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes. Electrochem. Comm., 2003, 5(8): 681~688.
    [229] S. Mededovic, B. R. Locke, Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electical discharge. Appl. Catal. B: Environmental, 2006, 67: 149~159.
    [230] K. Zhang, L. Mao, R. Cai, Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta, 2000, 51(1): 179~186.
    [231] K. Zhang, R. Cai, D. Chen, et al. Determination of hemoglobin based on its enzymatic activity for the oxidation of o-phenylenediamine with hydrogen peroxide. Anal. Chim. Acta, 2000, 413(1-2): 109~113.
    [232] D. E. Reed, F. M. Hawridge, Direct electron transfer reactions of cytochrome c at silver electrodes. Anal. Chem., 1987, 59(19): 2334~2339.
    [233]胡乃非,李溱,马红艳.肌红蛋白在双十二烷基二甲基溴化铵-粘土多双层复合薄膜电极上的电化学与电催化[J].高等学校化学学报, 2001, 22(3): 450~454.
    [234] E. S. Forzani, G. A. Rivas, V. M. Solis, Amperometric determination of dopamine on an enzymatically modified carbon paste electrode. J. Electroanal. Chem., 1995, 382(1-2): 33~40.
    [235] K. Nakashima, K. Maki, S. Kawaguchi, et al. Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2, 4, 6, 8-tetrathio-morpholinopyrimido[5, 4-d] pyrimidine as a fluorescent component. Anal. Sci., 1991, 7(5): 709~714.
    [236] C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra (4-pyridyl) porphyryinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992, 117(11): 1781~1784.
    [237] Y. Xiao, H. Ju, H. Chen, A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayermodified electrode. Anal. Chim. Acta, 1999, 391(3): 299~306.
    [238] C. C. Leland. The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode. Methods Enzymol., 1979, 56: 448~479.
    [239] F. Palmisano, P. G. Zambonin.Ascorbic acid interferences in hydrogen peroxide detecting biosensors based on electrochemically immobilized enzymes. Anal. Chem., 1993, 65(19): 2690~2692.
    [240] S. B. Khoo, M. G. S Yap, Y. L. Huang, et al. Electrocatalytic oxidation of H2O2 at an oxycobalt film modified glassy carbon electrode for fermentation monitoring. Anal. Chim. Acta, 1997, 351(1-3): 133~142.
    [241] F. Ricci, G. Palleschi. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosen. Bioelectro., 2005, 21(3): 389~407.
    [242] C. X. Lei, S. Q. Hu, N. Gao, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochem., 2004, 65(1): 33~39.
    [243] J. Li, P. K. Dasgupta, Measurement of atmospheric hydrogen peroxide and hydroxymethyl hydroperoxide with a diffusion scrubber and light emitting diode-liquid core waveguide-based fluorometry. Anal. Chem., 2000, 72(21): 5338~5347.
    [244] J. Zhang, M. Oyama. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta, 2004, 50(1): 85~90.
    [245] E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16(1-2): 19~44.
    [246] E. Katz, I. Willer. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis, 2003, 15(11): 913~947.
    [247] H. Y. Gu, A, M, Yu, H. Y. Chen. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J. Electroanal. Chem., 2001, 516(1-2): 119~126.
    [248] M. Ciureanu, S. Goldstein, M. A. Matcescu, Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodes. J. Electrochem. Soc., 1998, 145(2):533~541.
    [249] M. E. Jozefowicz, A. J. Epstein, X. Tang, Protonic acid doping of two classes of the emeraldine form of polyaniline. Synth. Met., 1992, 46(3): 337~340.
    [250] J. Joo, E. J. Oh, G. Min, et al. Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes. Synth. Met., 1995, 69(1-3): 251~254.
    [251] M. C. Christine, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1): 293~346.
    [252] J. E. Park, S. G.. Park, A. Koukitu, et al. Electrochemical and chemical interactions between polyaniline and palladium nanoparticles. Synth. Met., 2004, 141(3): 265~269.
    [253] H. Peng, C. Soeller, M. B. Cannell, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosens. Bioelectron., 2006, 21(9): 1727~1736.
    [254] S. Bereznev, J. Kois, I. Golovtsov, et al. Electrodeposited (Cu-In-Se)/polypyrrole PV structures. Thin Solid Films, 2006, 511-512: 425~429.
    [255] J. C. Bradley, S. Babu, P. Ndungu, Site selective electrodeposition of metals and conductive polymer nano-structures on isolated carbon nanopipes using electric fields. Mate. Res. Soc. Sym. Pro., 2004, 818: 361~369.
    [256] L. Niu, Q. H. Li, F. H. Wei, et al. Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol. Synth. Met., 2003, 139(2): 271~276.
    [257] C. Hu, E. Chen, J. Lin, Capacitive and textural characteristics of polyaniline-platinum composite films. Electrochim. Acta, 2002, 47(17): 2741~2749.
    [258]彭图治,杨丽菊,李惠萍等.复合高分子膜修饰电极直接测定大脑内源性神经递质[J].高等学校化学学报. 1995, 16(12): 1847~1851.
    [259]郑东红,郑军伟,陆天虹. N, N-双水杨醛合钴-全氟磺酸膜修饰电极的电化学研究[J].高等学校化学学报. 1997. 18(3): 360~363.
    [260]杨庆华,叶宪曾,陶家沟等.二茂铁单羧基衍生物/Nafion修饰电极对多巴胺的电化学催化研究[J].北京大学学报(自然科学版), 1999, 35(6): 738~744.
    [261] A. S. Sarac, Y. Bardavit, Electrografting of copolymer of poly[N-vinylcarbazole-co- styrene] and poly[N-vinylcarbazole-co-acrylonitrile] onto carbon fiber:cyclovoltammetric (CV), spectroscopic (UV-Vis, FT-IR-ATR), and morphological study (SEM). Progress in Organic Coatings, 2004, 49(1): 85~88.
    [262]孙登明,陈宁生,冷艳芳.聚甲基蓝修饰电极的制备及对多巴胺的测定[J].分析试验室. 2004, 23(5): 41~43.
    [263] T. Ahuja, I. A. Mir, D. Kumar, et al. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials, 2007, 28(5): 791~805.
    [264] B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci., 2004, 29(7): 699~766.
    [265] D. Nematollahi, S. M. Golabi, Electrochemical study of catechol and 4-methylcatechol in methanol. Application to the electro-organic synthesis of 4, 5-dimethoxy-and 4-methoxy-5-methyl-o-benzoquinone. J. Electroanal. Chem., 1996, 405(1-2): 133~140.
    [266] W. S. Pierpoint, The enzymic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochem. J., 1966, 98(2): 567~580.
    [267] Y. Kong, S. L. Mu, Synthesis of polycatechol with electrochemical activity and its properties. Chin. J. Polym. Sci., 2002, 20(6): 517~524.
    [268] S. L. Mu, Novel properties of polyaniline nanofibers coated with polycatechol. Synth. Met., 2006, 156(2-4): 202~208.
    [269] W. Ziechmann, Die Darstellung von Huminsahuren in Heterogenen System Mit Neutraler Reaktion. Z. Pflanzenernaehr, Dueng, 1959, 84: 155.
    [270] S. Sanchez-Cortes, O. Francioso, J. V. Garcia-Ramos, et al. Catechol polymerization in the presence of silver surface. Colloids and Surfaces A, 2001, 176(2-3): 177~184.
    [271] T. S. C. Wang, M. C. Wang, P. M. Huang, Catalytic synthesis of humic substances by using aluminas as catalysts. Soil Sci., 1983, 136: 226~230.
    [272] S. P. Mathur, M. Schnitzer, A chemical and spectroscopic characterization of some synthetic analogues of humic acids. Soil Sci. Soc. Am. J., 1978, 42: 591~596.
    [273] M. C. Pham, F. Adami, P. C. Lacaze, In situ study by multiple internal reflection fourier transform infrared spectroscopy (MIRFTIRS) of the phenoxy radical during anodic oxidation of phenol derivatives on iron. J. Electrochem. Soc., 1989, 136(3): 667~679.
    [274] G. Mongoli, M. M. Musiani, C. Pagura, et al. The inhibition of the corrosion of mild steel in aqueous acids by in situ polymerization of unsaturated compounds. Corrosion Sci., 1991, 32(7): 743~753.
    [275] N. Davood, H. Davood, Rah. Mohammad, et al. A facile electrochemical method forsynthesis of new benzofuran derivatives. J. Org. Chem., 2004, 69(7): 2637~2640.
    [276] S. H. Davarain, N. M. Najafi, S. Ramyar, et al. An improved electrochemical method for the synthesis of some benzofuran derivatives. Chem. Pharm. Bull., 2006, 54(7): 959~962.
    [277] A. Levina, G. J. Foran, D. I. Pattison, et al. X-ray absorption spectroscopic and electrochemical studies of tris(catecholato(2-))Chromate(V/IV/III) complexes. Angew. Chem. Int. Ed., 2004, 43(4): 462~465.
    [278] V. D. Parker, The anodic oxidation of hydroquinone in acetonitrile. On the question of a possible one electron intermediate. Electrochim. Acta, 1973, 18(8): 519~524.
    [279] Y. Kong, S. L. Mu, Investigation on the electrochemical polymerization of catechol by means of rotating ring-disk electrode. Chin. J. Chem., 2003, 21(6): 630~637.
    [280] Z. L. Liu, J. Y. Lee, M. Han, et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J. Mater. Chem., 2002, 12(8): 2453~2458.
    [281] (a) J. Clavilier, R. Faure, G. Guinet, et al. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes. J. Electraanal. Chem., 1980, 107(1):205~209.; (b) J. Clavilier, D. Armand, B. L. Wu, Electrochemical study of the initial surface condition of platinum surfaces with (100) and (111) orientations. J. Electraanal. Chem., 1982, 135(1): 159~166.
    [282]卢国强. C1分子电化学吸附和反应的表面过程研究—从铂单晶表面到纳米薄层过渡金属表面[博士学位论文].厦门大学, 1997.
    [283]孙世刚,陈爱成,黄泰山等.一种金属单晶电极制备方法的建立和Cu2+在铂单晶上UPD过程的研究[J].高等学校化学学报, 1992, 13(3): 390~394.
    [284] J. Clavilier, D. Armand, S. G. Sun, et al. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J. Electroanal. Chem., 1986, 205(1-2): 267~277.
    [285] C. C. Hu, K. Y. Liu, Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation. Electrochim. Acta, 1999, 44(16): 2727~2738.
    [286] K. R. Prasad, N. Munichandraiah, Electrooxidation of methanol on polyaniline without dispersed catalyst particles. J. Power Sources, 2002, 103(2): 300~304.
    [287]李小芳,张亚利,孙典亭等.甲醇、甲醛和甲酸在碳载纳米Pt电极上的催化氧化[J].青岛大学学报(工程技术版). 2004, 19(1): 47~54.
    [288]李小芳,张亚利,孙典亭等.甲醇、甲醛和甲酸在碳载纳米Pt-WO3电极上的催化氧化[J].青岛大学学报(工程技术版). 2004, 19(4): 18~23.
    [289] T. Zerihun, P. Grundler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes. J. Electroanal. Chem., 1998, 441(1): 57~63.
    [290]胡冠九,尹卫萍.室内空气中甲醛的测定方法[J].环境监测管理与技术. 2002, 14(6): 12~13.
    [291] N. Nakano, K. Nagashim, An automatic monitor of formaldehyde in air by a monitoring tape method. J. Envir. Monitoring, 1999, 1(3): 255~258.
    [292] B. Podola, E. C. M. Nowack, M. Melkonian. The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens. Bioelectron., 2004, 19(10): 1253~1260.
    [293] A. Fried,B. P. Wert, B. Henry, et al. Airborne tunable diode laser measurements of formaldehyde. Spectrochim. Acta Part A,1999, 55(10): 2097~2110.
    [294] S. Bockle, J. Kazenwadel, T. Kunzelmann, et al. Single-shot laser-induced fluorescen- -ce imaging of formaldehyde with XeF excimer excitation. Applied Physics B, 2001, 70(5): 733~735.
    [295] S. Abbasi, M. Esfandyarpour, M. A. Taher, et al. Catalytic-kinetic determination of trace amount of formaldehyde by the spectrophotometric method with a bromate-Janus green system. Spectrochim. Acta A, 2007, 67(3-4): 578~581.
    [296] V. Fabio, B-C. Raffaella, S. Stefano, et al. On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosensors and Bioelectronics, 2007, 22(6): 920~925.
    [297]张瑞斌,郝俊,何莉萍等.居室空气中甲醛的极谱测定法[J].环境与健康杂志. 2005, 22(2): 140~141.
    [298] A. Miki, S. Ye, T. Senzaki, et al. Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. J. Electroanal. Chem., 2004, 563(1): 23~31.
    [299] T. Zerihun, P. Grundler. Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes. J. Electroanal. Chem., 1998, 441(1-2): 57~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700