用户名: 密码: 验证码:
祁连山岩浆作用有关硫化金属矿床成矿与找矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁连山是中国最为重要的早古生代与海相火山岩有的块状硫化物(VHMS)铜多金属矿床成矿带,而其北邻的龙首山则为中国元古宙最主要的岩浆铜镍硫化物(铂族金属)矿床成矿带,本论文从成矿发展的角度,将两成矿带视为一个紧密联系的整体谓之广义的祁连山予以研究,重点摘取元古宙、早古生代成矿作用片段作为研究的主要对象。元古宙岩浆铜镍硫化物(铂族金属)矿床成矿作用范围覆盖整个广义祁连山的前长城纪古老基底陆块和微陆块,早古生代VHMS铜多金属矿床成矿作用则仅发育于狭义祁连山早古生代海相火山岩作用范围(局部可抵新元古代末)。
     元古宙岩浆铜镍硫化物(铂族金属)矿床成矿作用以金川世界级超大型矿床为典型代表,岩石-矿物Sm-Nd等时线定年为1508±31Ma,其西邻的具科马提岩特点的藏布太不含矿蚀变超镁铁岩Sm-Nd等时线定年为1511±67Ma,北祁连西段镜铁山微陆块朱龙关群中鉴别出的大陆溢流玄武岩(CFB),不同方法定年数据形成了较大的时间跨度(1780~604Ma),但也处于元古代,而南祁连化隆微地块中分布的几乎全岩矿化的拉水峡小型岩浆铜镍硫化物(铂族金属)矿床等相邻镁铁-超镁铁岩侵入体,尽管目前尚无确切的定年数据,亦形成于元古宙无疑。本论文认为这些现存于不同陆块、微陆块基底中的元古宙喷出的大陆溢流玄武岩(CFB)、科马体岩、侵入的镁铁-超镁铁岩体和熔离成因的岩浆铜镍硫化物(铂族金属)矿体,是响应Columbia超大陆裂解,祁连古陆在1.5Ga左右时期伴随拉张作用,发生大规模岩浆作用导致形成大火成岩省(LIP)的结果。源于核幔边界“D”层的地幔柱上升作用于岩石圈底部发生部分熔融,形成多物质来源大规模岩浆,最终上涌喷出(CFB、科马体岩)、形成喷发管道(基性岩墙群,镜铁山微陆块、龙首山微陆块中的大量出现的辉长岩脉集中分布?)、上侵形成层状侵入体和岩浆铜镍硫化物(铂族金属)矿体(成带分布的镁铁-超镁铁岩体群和局部高矿化率的岩体)构成了祁连古LIPs。
     与世界上大部分著名的LIPs形成后一直处于稳定的克拉通不同,祁连古陆形成LIPs后,在早古生代即遭解体而支离破碎,并演化成为造山带而横垣于中国两部。因此,祁连古LIPs的恢复较为困难,需要更加细致的工作。事实上,愈来愈多的证据表明世界上大部分大规模的岩浆铜镍硫化物(铂族金属)矿床均为地幔柱作用的结果,可分为核幔边界来源和次生的软流圈地幔来源两种地幔柱作用,前者可形成大规模的铜镍矿床,后者则难有大规模的铜镍聚集,主要形成于造山作用期后。
     金川矿床的地质地球化学特征表明,整体岩石化学成分为二辉橄榄岩,矿化率高达60%,拉水峡高达90%,如此之高的金属硫化物聚集绝非岩浆就地熔离所为,肯定为深部更大岩浆房不混溶形成含金属硫化物岩浆,甚至金属硫化物液相(矿浆)直接贯入所致;岩体ε Nd(t)=-1.9~-4.3,(La/Yb)_N为5.39~79.15之间,平均值15.04,(~(87)Sr/~(86)Sr)_i在0.702547~0.711761之间,
Qilian mountains is the most important metallogenic zone of Early Palaeozoic marine volcanic-association massive sufide (VHMS) copper-multimetallic deposits in China, and Longshou mountains also zone of Proterozoic magmatic nickel-copper sulfide (platinum group metal) deposits. In this paper, the both metallogenic zone, in the eyes of the metallogenic development, are identified as a wide-sense Qilian mountains with close association to be researched, but also the Proterozoic and Early Palaeozoic metallizations are took as the important study targets. The metallogenic area of Proterozoic magmatic Ni-Cu sulfide (PGM) deposits includes all continental blocks and micro-continental blocks with the pro-Changcheng Period (early period of Middle Proterozoic) basements, and the metallizations of VHMS copper-multimetallic deposits only found in the Early Palaeozoic, locally the end period of Neo-Proterozoic, marine volcanic area of the original Qilian mountains.Jinchuan world-class supper large type mineral deposit is a typical representative for the metallizations of Proterozoic magmatic Ni-Cu sulfide (PGM) deposits in the wide-sense Qilian mountains, of which rock-mineral Sm-Nd isochron dating is 1508 ±31Ma, and Sm-Nd isochron dating 1511 ± 67Ma, of Zangbutai non-mineralize metamorphic-ultramafic rocks with komatiite features located on the western side of Jinchuan intrusion. In addition, the continental flood basalt (CFB) had been recognized in Zhulongguan group of the Jingtieshan micro-continental block in the western part of North Qilian, that their ages confirmed in Proterozoic era although the dada of different isotopic age determinations had a wide period, and in the Hualong micro-continental block of South Qilian Lashuixia small type Ni-Cu sulfide (PGM) deposits which nearly whole mineralizations in the intrusion and other neighboring mafic-ultramafic intrusions also formed undoubtedly in Proterozoic era in spite of no certain age data in present. The paper suggests that these Proterozoic CFB, komatiite, intruded mafic-ultramafic rock bodies and magmatic Ni-Cu sulfide (PGM) mineral bodies location on the basements of different continental blocks and micro-continental blocks were resulted from large igneous provinces(LIP), which created by large scale magmatism to respond to cracking of Columbia super-continent, successively extension of the Qilian paleocontinent about 1.5Ga. As a result of process between rising mantle plume origin in D layer of core-mantle boundary and base of lithospheric mantle to generate parting melt that yielded a large scale magmas source from much more materials, the Qilian ancient LIP was finally formed by the rising eruption rocks (CFB and komatiite/picrite), the eruption canals (basic dyke swarms are exemplified by large volumes of close distributions of gabbro sills location on Longshou mountains micro-continental
    block) and the intruded layer intrusions and the magmatic Ni-Cu sulfide (PGE) ore bodies(zonal mafic-ultramafic rock body groups and local high-mineralize rock bodies).Comparison with most world-known LIPs location on stable craton, Qilian's LIP is different, because after the LIP formation Qilian palaeo-continent blocks had been disintegrated during Palaeozoic era and become a orogenic belt expanding in the western part of China. So, to restore Qilian's palaeo-LIP is relatively difficult and more detailed researchs will be required to do. In fact, more and more evidences show that most large scale magmatic Cu-Ni sulfide (PGE) deposits in world are understood as a result of processing of mantle plume which is divided into both the mantle plume origin in the core-mantle boundary and the one regeneration in the asthenosphere mentale, the former may formation large scale nickel and copper mineral deposits and the latter very difficult generation to assemble large volume of nickel and copper metals because of formation in post-orogenic phase.Geological and Geochemical characteristics of Jinchuan mineral deposit show that chemical compositions of the whole rocks belong to lherzolite, mineralizes of the whole rock body high into sixty percent and Lashuixia more high to ninety percent, and such high assembling of metallic sulfides is no as a result of magmatic liquation in suit and then should produce certainly from injection of metallic sulfide-bearing magma and/or metallic sulfide liquid coming from immiscible phase in bigger magma chamber in depth. Jinchuan rock body, e Nd(t) =-1.9 ~ -4.3, ( La/Yb ) N=5.39 ~ 79.15, averagel5.04, (87Sr/86Sr)I=0.702547~0.711761, e Sr (t) >0, even high into +128.8, explains that mineralize magma was subjected to the contamination of crust or indicated as the information of the origin of lower mantle, and Zangbutai non-mineralize ultramafic rocks, e Nd(t) =+2.6 — +2.9, show that its sulfur was unsaturated owing to no joining in crustal substances. According to remarkable difference between the western segment,2REE 3.39—23.57X 10"6, average 14.12X10"6, (La/Yb) N 5.39—14.01, average 7.50, PGE enrichment, and the eastern segment of Jinchuan rock body, SREE 15.25—55.87 X 10"6, average 30.64X 10"6, (La/Yb) N 7.02—79.15, average 23.52, the quantities of PGE lower, it is realized that there were several intrusion and injection of magmas at least two end of magmas. Remarkable depleted nickle and cobalt in early olivine and chromite accumulations indicate that immiscible of sulfide liquation occur in early stage, that is taking place liquation in the deep-seated chamber. These characteristics of examples illustrate that in the Qilian ancient continental blocks owing to the processing of Proterozoic mantle plume the large igneous provinces are produced, and then the ore-bearing intrusions are formed at the high-level of sulfide-bearing magma chambers, from which basic melt of partial melting form and raise to the deep-seat of crust because of interaction between the heads of mantle plume and decompression of the lithosphere at depth form, and sulfur occur oversaturation and immiscible sulfide liquation occur in magmas when crustal substances contamination. The deep-seat of chambers not only have several ones but also continuous feeder magmas from different compositions, and the magmas intrusion and injection are also several stages from the deep-seat of magma chambers into the high-level of sulfide-bearing magma chambers. These realizations supply the determined symbols to look for prospecting targets for Jinchuan type mineral deposit, and suggest that the Lajishan region in the Hualong micro-continental block of South Qilian should be an important prospecting target.In Qilian mountains the Palaeozoic VHMS deposits can be divided into both continental crust environment including island arc and oceanic crust environment including oceanic basin and regeneration oceanic basin in back-arc basin types. The former is representative of Baiyinchang ore deposit, which mainly show that there are large volume of intermediate-acid volcanic rocks, as a whole enriched lead from continental crust in mineralize elements, and in Qilian mountains the prospecting objective of Palaeozoic marine volcanic-association massive sulfide deposits is main this type; the latter because of thrust and subduction. of Qilian ancient oceanic basin to conserve ore deposits is difficult even if
    formation ores, only preservation of ore deposits formed in oceanic crust environment of back-arc basin may been done. At present found Shijuligou is representative of the latter, which it is characterized in large volume of basic volcanic rocks as the part of ophiolite, deleted lead and enriched copper, locally zinc high contents, in mineralize elements. Owing to prospecting potential of ophiolite-association ancient VHMS deposits in the world is not distinct, which only in one fourth ophiolites mineralize were found, in China reported affirmatively ophiolite-association VHMS deposits only in North Qilian mountains, Shijuligou typical representative, the research and exploration of Shijuligou ore deposit is very important. Being based on the researchs of metallogenic setting of North Qilian's VHMS deposits, this paper demonstrates in sedimentology that North Qilian's Continental rift occurs at latter stage of Neo-Proterozoic era due to Roidian supper Continent break up, and suggests that Ordovician subduction and convergent fashion of North Qilian oceanic basin to the north keep a structural transomation, which the middle-east part was a continental margin of trench-arc-basin system to relate to ocean-ocean collision, but the west part transform to an active continental margin to relate to ocean-continent collision. So, the more the oceanic crust subductes to the west, the more subduction and convergent location is to the continent, and Shijuligou region location on the middle-west part appears a splitiing of island arc-oneself which then develops from island rift to back-arc basin with more island matters in its volcanic rocks. Nevertheless, owing to the mineralization is decided by magma fluid of post-volcanic action, the magma fluid of oceanic crust of back-arc basin applies mineralize metallic assemblage of characteristic oceanic crust type in hydrothermal mineralization.In Shijuligou mineral district, the basalt , TiO2 contents 1.30'— 1.21 uB%, jaspilite of close leaning against copper ore body 8 30Si -0.1%c~-0.9%e, approaches oceanic basalt; § 34S value of pyrite and chalcopyrite changes from +4.95%o to +8.88%o, and explains sulfur mixing of sea-water; quartz in ore, 8 180=+ll.l%o~+18.6%o, approaches magma fluid of boundary of convergent plate (+2.7-+8%o) . Above characteristics explain that magma fluid is main supply of ore-forming elements in hydrothermal mineralization system of primary fracture in control of the volcanic apparatus.In this paper, as a setting of exploration of solid metallic mineral resources in the whole Qilian mountains, a exploration recognition of three steps had been suggested, that is opening up new region, screening target with the measure of area of geophysical and geochemical prospecting and deep exploration in important area to look for targets of large or/and supper-large mineral deposits. It is specially emphasized that to open up new region of exploration must depend on the fundamental research, and confirming and application of important indicators had been profoundly researched to look for in Qilian mountains the exploration targets of the magmatic Cu-Ni-PGE sulfide deposits in terms of the project practice on the screening target of the Hualong zone of South Qilian. In addition, suitability of exploration thought and method assemblage in ophiolite-association VHMS deposits had been probed to be based on the exploration of Shijuligou ore deposit in Qilian mountains.
引文
北祁连-北秦岭铜硫成矿带区划调作小组.1983.北祁连地区黄铁矿型矿床的基本特征简介.中国地质,2:1~14.
    Bower R Gunatilaka A. 1977. Copper:its geology and economis.李文达译.铜矿地质及铜的经济评价.北京:地质出版社.
    成岗.1980.白银厂黄铁矿型矿床的若干地质特征.地质与勘探,9:14~29.
    程裕祺,陈毓川等.1979.初论矿床的成矿系列问题.中国地质科学院院报,1.
    程裕祺,陈毓川等.1984.再论矿床的成矿系列问题.中国地质科学院院报,6.
    陈毓川.1999.中国主要成矿区带矿产资源远景评价.北京:地质出版社.
    陈毓川.1994.矿床的成矿系列.地学前缘,3(1):90~94.
    柴东浩,陈廷愚.2000.新地球观——从大陆漂移到板块构造.太原:山西科学技术出版社,1~193.
    崔汝勇.2001.大洋中大型硫化物矿床的形成条件].海洋地质动态,17(2):1~4.
    崔广振.1987.贺兰山裂堑的垮塌堆积,中国北方板块构造论文集(1).北京:地质出版社,1~209.
    杜乐天.1996.碱流地球化学原理-重论热液作用和岩浆作用.北京:科学出版社,231~430.
    董显扬,曾河清,王来生.1990.龙首山西段发现科马提岩.中国地质科学院西安地质矿产研究所所刊,30:136~139.
    董云鹏,张国伟,朱炳泉.2003.北秦岭构造属性与元古代构造演化.地球学报,24(1):3~10.
    丁悌平,蒋少涌,万德芳.1994.硅同位素地球化学.北京:地质出版社,1~102.
    冯益民,何世平.1996.祁连山大地构造与造山作用.北京:地质出版社,1~150.
    甘肃省地质矿产局第六地质队.1984.白家咀子硫化铜镍矿床地质.北京:地质出版社,1~217.
    甘肃省地质矿产局.1989.甘肃省区域地质志.北京:地质出版社,1~520.
    葛肖虹,刘俊来.1999.北祁连造山带的形成与背景.地学前缘,6:223~230.
    戈德列夫斯基.1981.含矿超基性岩浆的形成条件及演化.国外地质科技,1983,(3).
    国土资源部规划司,中国地质调查局和中国国土资源经济研究所.2001.西部地区矿产资源勘察与开发潜力与规划研究.北京:地质出版社,1~30.
    侯增谦,韩发,夏林圻,张绮玲,曲晓明,李振清,别风雷,王立全,余金杰,唐绍华.2003.现代与古代海底热水成矿作用—以若干火山成因块状硫化物矿床为例.北京:地质出版社,1~11.
    侯增谦.1996.古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J].地球化学,,25(3):228~241.
    黄汲清.1984.中国大地构造特征的新研究.中国地质科学院院报,9:5~18.
    黄汲清,张正坤,张之孟等.1965.中国优地槽和冒地槽以及它们的的多旋回发展.北京:中国工业出版社,5~41.
    Hyndman D W.1985.火成岩与变质岩石学.邱家骧等译.1989.武汉:中国地质大学出版社.
    Kerrich Robert.Goldfarb Richard,Groves David.2001.超大型金成矿省的特征、成因及地球动力学背景:陈衍景等主编.大陆动力学与成矿作用.北京:地震出版社,5~72.
    Heaton I H E.Sheppard S M F.1977.关于塞浦路斯Troods杂岩海水热液蚀变和矿石沉积的氢氧同位素证据.火山成矿作用.地质出版社.
    韩春明,毛景文,杨建民.2002.东天山晚古生代内生金属矿床成矿系列和成矿规律.地质与勘探,38(5):5~9.
    李春昱,王荃.1978.秦岭及祁连山构造发展史,国际交流地质学术论文集(1).地质出版社,174~187.
    李江海,牛向龙,黄雄南,冯军.2002.豆荚状铬铁矿:古大洋岩石圈残片的重要证据.地学前缘,9(4):235~245.
    李华芹,谢才富,常海亮,等.1998.新疆北部有色贵金属矿床成矿作用年代学.北京:地质出版社,1~263.
    李文渊.2004.北祁连山加里东期聚敛作用的构造转换及其成矿响应.比地质论评,(待刊).
    李文渊,汤中立,郭周平,王伟.2004.阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征.岩石矿物学杂志,23(2):117~126.
    李文渊.2004.祁连山主要成矿组合及成矿动力学分析.地球学报,6(3):313~320.
    李文渊,杨鹏飞.2004.甘肃龙首山新元古代烧火筒群沉积特征及其构造意义.沉积学报,22(1):142~147.
    李文渊,赵东宏,申少宁.2003.西北地区有色金属矿床成矿条件约束及勘查潜力.地质与勘探,39(5):11~17.
    李文渊,夏林圻,夏祖春等.1999.北祁连山早古生代弧后盆地火山作用与成矿——以石居里沟富铜矿床为例.地质论评,45(增刊):1047~1053.
    李文渊.1999a.北祁连山陆-陆碰撞的远程成矿效应—龙首山地区深成矿体定位及构造热液改造.见:邓乃恭,雷伟志主编.大陆构造及陆内变形暨第六届全国地质力学学术讨论会论文集.北京:地震出版社,166~169.
    李文渊.1999b.聚敛型板块边缘火山岩浆流体的成矿作用.西北地质,2(3):6~11.
    李文渊,杨合群,赵东宏,宋忠宝.1999c.北祁连山发现塞浦路斯型富铜工业矿床.矿床地质,(3):32.
    李文渊.1997.与岩浆作用有关矿床成因地球化学.甘肃地质科技情报.2:10~14.
    李文渊.1996.中国铜镍硫化物矿床成矿系列与地球化学.西安:地图出版社,1~228.
    李文渊.1995.中国铜镍硫化物矿床特征及勘查对策.见:中国科学技术协会第二届青年学术年会论文集(基础科学分册).北京:中国科学技术出版社,180~190.
    李文渊.1992.龙首山地区的震旦系.西北地质,2:81~88。
    李文渊.1991.龙首山震旦纪砾状白云岩成因探讨.甘肃地质,12:81~88.
    李向民,彭礼贵,贺庆,王兴安.2000.甘肃白银矿田东部矿床成矿和找矿模式.北京:地质出版社,1~139.
    李嘉曾.1986.青海红沟铜矿床成因探讨及其在北祁连山地区的找矿意义.中国地质科学院西安地质矿产研究所所刊,2:61~75.
    李献华,苏犁,宋彪,刘敦一.2004.金川超镁铁侵入炭SHRIMP锆石U-Pb年龄地质意义.科学通报,49(4):401~402.
    黎彤.1976.元素丰度表.地球化学,3.
    陆松年,李怀坤,陈志宏.2003.塔里木与扬子新元古代热-构造事件特征序列和时代—扬子与塔里木连接(YZ-TAR)假设.地学前缘,10(4):321~326.
    陆松年,杨春亮,李怀坤,陈志宏.2002.华北古大陆与哥伦比亚超大陆.地学前缘,9(4):225~233.
    陆松年.2002.青藏高原北部前寒武纪地质初探.北京:地质出版社,1~125.
    陆松年,王惠初,李怀坤,袁桂邦,辛后田和郑健康.2002.柴达木盆地北缘“达肯达板群”的再厘定.地质通报,21(1):19~23.
    路风香.1988.地幔岩石学.武汉:中国地质大学出版社.
    刘同有.2003.中国镍钴铂族金属资源和开发战略.国土资源科技管理,103(1):21~25.
    刘英俊,曹励明.1987.元素地球化学导论.北京:地质出版社,1~325.
    刘民武.2003.中国几个镍矿床的地球化学比较研究.西北大学博士学位论文,1~145.
    毛景文,张招崇,杨建民等.2003.北祁连西段铜金铁钨多金属矿床成矿系列和找矿评价.北京:地质出版社.1~436.
    毛景文,张作衡,简平等.2000.北祁连西段花岗闪长岩的锆石U-Pb年龄及其动力学意义.地质论评,46(6):616~620.
    毛景文,张招崇,任丰寿等.1999a.北祁连西段金属矿床时空分布和生成演化.地质学报,73(1):73~82.
    毛景文,杨建民,张招崇等.1999b.北祁连小柳沟钨钼矿床Re-Os同位素测年及起意义.地质论评,45(4):412~417.
    毛景文,杨建民,张招崇等.1998a.甘肃寒山剪切带型金矿床地质、地球化学和成因.矿床地质,17(1):1~13.
    毛景文,张作衡,杨建民,张招崇等.1998b.甘肃鹰咀山金矿床地质和成矿地球化学.矿床地质,17(4):297~305.
    毛景文,张招崇,杨建民,宋彪,吴茂炳,左国朝.1997.北祁连西段前寒武纪地层单颗粒锆石测年及其地质意义.科学通报,42(13):1414~1417.
    毛景文,宋叔和,陈毓川.1988.桂北地区火成岩系列和锡多金属矿床成矿系列.北京:北京科学技术出版社.
    彭礼贵,任有祥,李智佩,杨建国.1995.甘肃白银厂铜多金属矿床成矿模式.北京:地质出版社.
    任纪舜.2003.新一代中国大地构造图——中国及邻区大地构造图(1:5000000).地球学报,24(1):1~2.
    任纪舜,姜春发.1999.从全球看中国大地构造—中国及邻区大地构造图简要说明.北京:地质出版社.
    任纪舜,姜春发,张正坤等.1980.中国大地构造及其演化.北京:科学出版社,1~124.
    任有祥,彭礼贵,李智佩,李向民,罗玉鹏,杨建国.2000.北祁连山清水沟-白柳沟矿田块状硫化物矿床成矿条件和成矿预测.北京:地质出版社,1~115.
    Ross J R and Travis G.A.1981.从全球观点看西澳大利亚的硫化镍矿床.经济地质,76(6).
    山本等.1984.日本茨城县日立矿区共生黄铁矿和黄铜矿的硫同位素分馏和硒的分配.稳定同位素地质译从,2:7~9.
    宋叔和,韩发等.1994.火山岩型铜多金属硫化物矿床VCPSD知识模型.北京:地质出版社.
    宋叔和.1991.中国一些主要金属矿床类型及其时空分布规律问题.矿庆地质,10(1).
    宋叔和.1985.甘陕境内秦祁地轴两侧古生代断陷海相火山活动与多金属成矿的探讨.中国地质科学院矿床地质研究所所刊,(2):1~12.
    宋叔和.1982.黄铁矿型铜和多金属矿床—世界范围内一些主要矿带和类型的对比研究趋势.中国地质科学院矿床地质研究所所刊,第3号.
    宋叔和.1955.祁连山一带黄铁矿型铜矿的特征与成矿规律.地质学报,35(1).
    宋志高.1984.北祁连优地槽区块状硫化物矿床形成地质环境的实步对比研究与探讨.矿床地质,3(2):1~23.
    宋述光.1997.北祁连山俯冲杂岩带的构造演化.地球科学进展,12(4):351~365.
    孙丰月,石准立,冯本智.1995.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1~170.
    孙海田,邬介人,李锦平.1997.北祁连金属成矿省时-空格局、演化及成矿作用.地质学报,71(2):170~179.
    孙海田,邬介人.1993.对北祁连山火山喷溢型贱金属硫化物矿床区域成矿的探讨.矿床地质,12(3):11~23.
    孙枢.1995.大洋钻探与中国地球科学.地球科学进展,10(3):213~214.
    孙枢等.1987.中国地台区张裂盆地沉积.沉积学报,5(3):6~16.
    斯米尔诺夫.1976.矿床地质学.1981,北京:地质出版社.
    Shiffman P.1985.德尔港绿岩底热液蚀变的氧同位素证据.稳定同位素地质译丛.(2).
    Spooner E T C.1977.塞浦路斯蛇绿岩含铜黄铁矿矿床的流体动力学模式.火山成作用.地质出版社.
    汤中立,白运来,徐章华,李文渊,李奋齐,阎海卿,黄承熊,王志恒.2002.华北古陆西南缘(龙首山-祁连山)成矿系统及成矿构造动力学.北京:地质出版社,1~393.
    汤中立,Barnes S J.1998.岩浆硫化物矿床成矿机制[M].北京:地质出版社,1~60.
    汤中立,李文渊.1995.金川硫化铜镍(含铂)矿床成矿模式及地质对比.北京:地质出版社,1~209.
    汤中立,李文渊.1993.金川超大型硫化镍矿床成矿地质背景.第五届全国矿床会议论文集.地质出版社,7~9.
    汤中立.1975.某硫化铜镍矿床成矿特征及找矿方向.地质科技,(4).
    涂光炽.1998.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性——初谈非常规超大型矿床.中国科学(D辑),(增刊):1~6.
    吴汉泉,冯益民,霍有光,左国朝.1991.甘肃玉门昌马地区的蓝闪片岩.中国地质科学院西安地质矿产研究所所刊,32:1~13.
    吴汉泉.1987.北祁连山多硅白云母矿物学和多型特征以及对K-Ar年龄的思考.中国地质科学院西安地质矿产研究所所刊.15,33~46.
    吴汉泉.1982.北祁连山高压变质带的岩石学和矿物学.中国地质科学院西安地质矿产研究所所刊,4:5~21.
    吴汉泉.1980.东秦岭和北祁连山的蓝闪片岩.地质学报,54(3):195~207.
    王荃,刘雪亚.1976.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,(1):42~55.
    王廷印.1991.青海省大坂山矿带火成岩地球化学特征及构造演化模式.兰州大学学报(自然科学版),27(2):150~156.
    万渝生,许志琴,杨经绥,张建新.2003.祁连造山带及邻区前寒武纪深变质基底的时代和组成.地球学报,24(4):319~324.
    邬介人.1994.西北海相火山岩地区块状硫化物矿床.武汉:中国地质大学出版社,1~271.
    王淑玲.2003.贵金属资源形势及供需分析.中国矿业,68(4):10~14.
    Wolf K H.1988.层控矿床和层状矿床(6).地质出版社.
    赵虹,金治鹏,党犇.2001.甘肃省党河南山北坡早古生代火山岩时代探讨.西安工程学院学报,23(3):26~29.
    肖序常,陈国铭,朱志直.1978.祁连山古蛇绿岩带的地质构造意义.地质学报,(4):281~295.
    夏林圻,夏租春,任有祥,徐学义,杨合群,李智佩,杨建国,李文渊.2001.北祁连山构造-火山岩浆-成矿动力学.北京:中国大地出版社,1~296.
    夏林圻,夏祖春,赵江天等.2000.北祁连山西段元古宙大陆溢流玄武岩性质的确定.中国科学(D辑),30,(1):1~8.
    夏林圻,夏祖春,徐学义.1999.祁连山元古宙大陆溢流玄武岩.地质论评,45(增刊):1028~1037.
    夏林圻,夏祖春,任有祥,左国朝,邱家骧.1998a.祁连山及邻区火山作用与成矿.北京:地质出版社,1~240.
    夏林圻,夏祖春,徐学义.1998b.北祁连山早古生代洋脊—洋岛和弧后盆地火山作用.地质学报,72(4):301~312.
    夏林圻,夏祖春,徐学义.1996a.北祁连山海相火山岩岩石成因.北京:地质出版社,1~109.
    夏林圻,夏祖春,徐学义.1996b.北祁连山元古宙末-寒武纪主动大陆裂谷火山作用.地球学报,17(3):282~291.
    夏林圻,夏祖春,任有祥,曹宣铎等.1991.祁连-秦岭山系海相火山岩.武汉:中国地质大学出版社,1~326.
    夏林圻,夏祖春.1987.细碧角斑质火山岩若干问题.中国地质科学院西安地质矿产研究所所刊,19:1~29.
    夏林圻,夏祖春.1985.白银石石英角斑岩中的岩浆包裹体.中国地质科学院西安地质矿产研究所所刊,11:1~29.
    许志琴,杨经绥,吴才来,李海兵,张建新,戚学祥,宋述光,万渝生,陈文,邱海峻.2003a.柴达木北缘超高压变质带形成与折返的时限及机制.地质学报,77(2):163~176.
    许志琴,赵志兴,杨经绥等.2003b.板块下的构造及地幔动力学.地质通报,22(3):149~159.
    许志琴,崔军文.1996.大陆山链变形构造动力学.北京:冶金工业出版社,1~306.
    许志琴,徐惠芬,张建新,李海兵,朱志直.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,68(1):1~15.
    许志琴,杨经绥,徐惠芬,张建新,李海兵.1988.东秦岭复合山链的形成—变形、演化及板块动力学.北京:中国环境出版社,1~226.
    徐义刚.2002.地幔柱构造、大火成岩省及其地质效应.地学前缘,9(4):341~352.
    徐义刚,钟孙霖.2001.二叠纪峨眉山大火成岩省的形成:地幔热柱活动的证据及其熔融条件.地球化学,30(1):1~9.
    修群业,陆松年,于海峰等.2002.龙首山岩群主体划归古元古代的同位素年龄证据.前寒武纪研究进展,25(2):93-96.
    向鼎璞,戴天富.1985.北祁连山火山成因硫人物矿床区域成持征.矿床地质,4(1).
    严济南,1983.祁连山白银厂黄铁矿型矿床成因探讨.矿床地质,2(3).
    徐晓春,岳书仓,刘因,周涛发.1996.甘肃走廊南山朱龙关群的时代及其火山岩的岩石化学特征.安徽地质,6(4):1~6。
    尹安.2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,22(3),193~230.
    杨遵仪,程裕淇,王鸿桢.1989.中国地质学.武汉:中国地质大学出版社.
    杨合群,赵东宏.2000.甘肃镜铁山含铜条带状铁建造的年龄.西北地质跨学科,20(1):1~3.
    杨合群,宋忠宝,王兴安等.2002.北祁连山中西段塞浦路斯型铜矿特征、成矿作用及找标志.西北地质.5(4):65~85
    杨轩柱.1991.金川含铜镍超基性岩的岩浆包裹体特征及其地质意义.地质论评,(1):70~79.
    叶庆同.1982.甘肃小铁山多金属矿床的成矿作用及其形成的物理化学条件.中国地质科学院矿床地质研究所所刊,4.
    岳东生.1991.白银厂黄铁矿型矿床形成的物理化学条件及矿床成因.地质与勘探,(3).
    张旗,周国庆,王焰.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1~8.
    张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社,2001.34~54.
    张旗,孙晓猛,周德金等.1999.北祁连蛇绿岩特征形成环境及其构造意义.地球科学进展,12(4):366~393.
    张建新,许志琴,徐惠芬,李海兵,朱志直等.1997.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学,岩石矿物学报,(1):1~15.
    张理刚.1985.稳定同位素在地质科学中的应用.陕西科学技术出版社.
    张德会.1996.浅成热液成矿系统模型研究评述.地球科学进展,(6):563~568.
    张招崇,郝艳丽,王福生.2003a.大火成岩省中苦橄岩的研究意义.地学前缘,10(3):105~114.
    张招崇,闫升好,陈柏林,等.2003b.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束.岩石矿物学杂志,22(3):217~224.
    张本仁,高山,张宏飞,等.2002.秦岭造山带地球化学.北京:科学出版社,155~1161.
    张文治.2002.新元古时期中国华南和华北陆块的相对位置及构造意义.前寒武纪研究进展,25(2):120-128.
    左国朝,刘义科,张崇.2002.北祁连造山带中-西段陆壳残块群的构造-地层特征.地质科学,37(3):302~312.
    左国朝,吴汉泉.1997.北祁连山中段早古生代双向俯冲-碰撞造山模式剖析.地球科学进展,12(4):315~323.
    左国朝.1986.北祁连地区早古生代碰撞缝合作用.中国北方板块构造论文集(1),北京:地质出版社.
    左国朝.1985.甘肃白银厂黄铁矿型多金属矿床火山岩系的时代.中国地质,3.
    左国朝,刘寄陈.1987.北祁连早古生代大地构造演化.地质科学,(1):14~24.
    中国有色金属总公司北京矿产地质研究所.1987.国外主要有色金属矿产.北京:冶金工业出版社,82~170,284~313.
    詹森M L和贝特曼A.M.1987.区域成矿学.北京:科学出版社,1~287.
    翟裕生,邓军,李晓波.1999.大型构造与超大型矿床.北京:地质出版社
    翟裕生,张湖,宋鸿林等.1997.大型构造与超大型矿床.北京:地质出版社.
    翟裕生、秦长兴,1987,关于成矿系列和成矿模式问题。矿床学参考书(下册),地质出版社.
    左国朝,吴汉泉.1997.北祁连山中段早古生代双向俯冲-碰撞造山模式剖析.地球科学进展,12(4):315~323.
    左国朝,刘义科,张崇.2002.北祁连造山带中-西段陆壳残块群的构造-地层特征.地质科学,37(3):302~312.
    赵生贵.1996.祁连造山带特征及其构造演化.甘肃地质学报,5(1):16~29.
    赵祥生,邹湘华,牛道韫等.1984.北山地区震旦系及其冰川沉积.西安地质矿产研究所所刊,7:29~37.
    赵东宏,杨合群,刘玉林.2003.甘肃桦树沟铜矿床成矿年龄讨论决定.矿床地质,22(2).
    周廷贵,周继强,宋史刚.2002.小柳沟铜钨矿田矿化特征及找矿方向.地质与勘探,38(2):37~41.
    Arndt T N, Czamanske G K, Walker R J, Chauvel C and Fedorenko V A. 2003. Geochemistryy and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol., 98:495~515.
    Arndt T N. 2000. Hot heads and cold tails. Nature, 407: 458~460.
    Arndt N T and Brooks C. 1980. Komatiites: Penrose Conf. Rept. Geologyy, 8: 15~156.
    Arntd N T, Naldrett A J and Pyked D R. 1977. Komatiitic and iron-rich tholeiitic laves of Munro Township, northeast Ontario. J Petrol, 18: 319~369.
    Amelin Y, Li C, Valayev O and Naldrett A J. 2000. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey's Bay and Mushuau intrusions, Labrador, Canada. Econ. Geol., 95: 815~830.
    Amelin Y, Valeyev O, Naldrett A J. 2000. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey's Bay and Mushuau intrusions, Labrador, Canada. Econ.Geol.,95(4): 815~830.
    Arcuri T, Ripley E M and Hauck S A. 1998. Sulfur and oxygen isotopic studies of the interaction between pelitic xenoliths and mafic magma at the Babbitt and Serpentine Cu-Ni deposits, Duluth Complex, Minnesota. Econ. Geol., 93: 1063~1075.
    Bai T B and Koster Van Goes A F.1999. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochimican et Cosmochimican Acata, 63(7/8): 1117~1131.
    Barley M E. 1992. A review of Archean volcanic-hosted massive sulfide and sulfide mineralization in Western Australia. Econ. Geol., 87: 855~873.
    Barnes S J and Tang Zhongli.1999. Chrome Spinels from the Jinchuan Ni-Cu Sulphide Deposit, Gansu Province, Peoples' Republic of China, Economic Geology, 94, 343~356.
    Barnes S J and Campbell I H.1988.Role of late magmatic flwids in Merensky-type platinum deposits: A discussion. Geology, 16: 488~491.
    Basu A R. 1993. Early and late alkali igneous pulses and a high3He plume origin for the Deccan flood basalts. Science, 261:902—905.
    Binns R A, Scott S P, Bogdanov Y A. Hhydrothermal oxide and gold-rich sulfide deposits of Franklin Seamount, Western Woodlark basin, Papua New Guinea. Econ.Geol., 88: 2122—2153.
    Bischoof J, Roserbauser R J. 1989. Salinity variations in submarine hydrothermal system by layered doublediffusive convection. Journal Geology, 97: 613—623.
    Bleeker W, Parrish R R and Sager-Kinsman A. 1999. High precision U-Pb geochronology of the Late Archean Kidd Creek deposit and Kidd volcanic complex. Econ. Geol. Monograph, 10: 43—70.
    Bowje S H U et al. 1978. Mineral deposits of Europe. Northhwest Europe, the institution of mining and metallurgy and mineralogical society, Colchester and London.
    Brandon A D, Walker R J, Morgan J W, et al. 1998. Coupled 186Os and 187Os evidence for core-mantle interaction. Science, 280, 1570—1573.
    Breddam K. 2002. Kistufell: Primitive melt from the Iceland mantle plume. J Petrol, 43: 345—373.
    Brenan J M and Li Chusi.2000. Constraints on Oxygen Fugacity during Sulfide Segregation in the Voisey's Bay Intrusion, Labrador, Canada. Econ.Geol., 95(4): 901—916.
    Brugmann G E, Naldrett A J, Asif M et al. 1993. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Traps in the Noril'sk Region, Russion. Geochim. Cosmochim. Acta, 57: 2001—2 018.
    Butuzova G Y. 1984. Mineralizationn and certain aspects of ore-bearing sediment genesis in the Red Sea: Part II, General processes of mineralization and ore-formation in the Atlantis II Deep. Lithology and Mineral Resources, 19: 193—311.
    Cameron E M, Hattori K., 1987, A.,rchaean gold mineralization and oxidized hydrothermal fluids.Econ.Geol., 82:1177—1191.
    Campbell I H and Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett, 99: 79—93.
    Campbell I H and Griffiths R W. 1992. The changing nature of mantle hotspots through time: implications for the geochemical evolution of the mantle. J Geol., 92: 497—523.
    Campbell I H and Barnes S J. 1984. A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Can.Min, 22: 151 — 160.
    Cathles L M, Gruber A L, Lenagh T C and Dudas F O. 1983. Kuroko-type massive sulfide deposits of Japan: Products of an aborted island arc rift. Econ. Geol. Monograph, 5: 96— 114.
    Cesare B, Salvoili M E and Venturelli G 1997. Crustal anatexis and melt extraction during deformation in the restitic xenoliths at El Joyazo(SE Spain). Mineralogical Magazine, 61: 15—27.
    Chen Yuchuan and Tao Weiping. 1996. Metallic and nonmetallic minerals in China. Episodes, 18: 17—20.
    Chhai Gang, Naldrett A J. 1992. The Jinchuan ultramafic intrusion: Cumulate of a high-Mg Basalic magma. Journal of Petrology, 44(2): 2775—303.
    Chusi Li, Peter C. Lightfoot, Yuri A and Naldrett A J.2000.Contrasting Petrological and Geochemical Relationships in the Voisey's Bay and Mushuau Intrusions, Labrador, Canada: Implications for Ore Genesis . Econ. Geol.,95(4): 771-800
    Chung S L, Jahn B M. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Premian-Triassic boundary. Geology, 23: 889—892.
    Clarke D B, O'hara M J. 1979. Nickle and the existence of high-MgO liquids in nature. Earth Planet Sci Lett, 44: 153—158.
    Coffin M F and Eldholm O. 1994. Large igneous provincesxrustal structure, dimensions, and external consequences. Rev Geophys, 32: 1—36.
    Coleman R G 1977. Ophiolites, Ancient Oceanic Lithosphere? Springer-Verlag, Berlin.
    Courtillot V, Feraud G and Maluski H. 1988. Deccan flood basalts and Cretaceous/Tertiary boundary. Nature, 333: 843—846.
    Craig J R. 1979. Geochemical aspects of the origins of ore deposits, Review of research on modem problems in geochemistry. Earth sciences 16: 225—272.
    Davies G F and Richards MA. 1992. Mantle convection. J Geol., 100: 151—206.
    Desborough G A and Czamanske G K. 1973. Sulfides in Eclogite Nodules from a Kimberlite Pipe, South Africa.
     with Comments on Violarite Stoichiometry. Am. Min., 58: 195—202.
    Evans-Lamswood D M, Butt D P, Jackson R S, Lee D V and Muggridge M C. 2000. Physical controls associated with the distribution of sulfides in the Voisey's Bay Ni-Cu-Co deposit, Labrador. Econ. Geol., 95: 749-770.
    Fincham C J B and Richardson F D. 1954. The behavior of sulphur in silicate and aluminate stags. Proc. R. Soc. Lond., 223: 40—62.
    Fouquet Y, Stackelberge U, Charlou J L, Erzinger J, Herzig P M, Muhe R and Wiedicke M. 1993. Mmetallogenesis in back-arc environments: the low basin example. Econ. Geol., 88:2154—2181.
    Fouquet Y, Stackelberg U, Charlou J L, Erzinger J, Herzig P M, Muhe R and Wiedicke M. 1993. Metallogenesis in back-arc environments: the low basin example. Econ. Geol., 88: 2154—2181.
    Fouquet Y. 1997. Where are the hydrothermal sulfide deposits in the ocean? Phil. Trans . R. Sco. Land. A, 355:427-441.
    Franklin J M, Sangster D F, Lydon J W. 1981. Volcanic-associated massive sulfide deposits[J]. Economic Geology, (75~th Anniv): 485—627.
    Francheteau J and Ballard R D. 1983. The East Pacific Rise near 21°N, 13°N and 20°S: inference For alongstrike variability of axial processes of the mid-ocean ridge. Earth Planet Sci., 64: 93—116.
    Francheteau J,Needham H D, Choukroune P, Juteau T, Seguret M, Ballard R D, Fox P J, Normark W R, Carranza A, Cordoba D, Guerrero J and Rangin C. 1979. Massive deep-sea-sulfide ore deposits discovered on the East Pacific Rise. Nature, 277: 523-528.
    Francis D. 1985. The Baffin Bay lavas and the value of picrites as analogues of primary magmas[J]. Contrib Mineral Petrol, 89: 144—154.
    Gao Rui, Wu Gongjian. Lithosphere structure and geodynamic model of Golmud-Ejin B.Geoscience Transect in North Tibet.Acta Geoscientia sinica.l996,Special Issue: 36—40.
    Gelinas L, Trudel P, and Hubert C. 1984. Chemostratigraphic division of the Blake River Group , Rouyn-Noranda area, Abitibi, QUEBEC. Canadian Journal of Earth Sciences, 21: 220—231.
    Gill j, Torssander P and Lapierre H. 1990.Explosive deep water basalt in the Sumisu Backarc rift. Science, 248: 1214-1217.
    Gillis K M. 2002. The rootzone of an ancient hydrothermal system exposed in the Troodos Ophiolite, Cyprus. Journal of Geology, 110(1): 57-74.
    Gorton M P and Schandl E S. 2000. From continents to island arcs: A geochemical index of tectonic setting for arcrelated and within-plate felsic to intermediate volcanic rocks. Canadian Miineralogist, 38: 1065—1073.
    Griffiths R W and Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth Planet Sci Lett, 1990, 99: 66-78.
    Groves D I, Goldfarb R J, Gebre-Mmariam M et al. 1998. Orogenic gold deposits : Aproposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7— 27.
    Hageman S G Gebre-Mariam M Groves .D L. 1994. Surface-water influxin shallow-level Archaean lode-gold deposits in Western Australia. Geology, 22: 1067—1070.
    Hamilton m A and Shirley A J. 1992. Nd and Sr isotopic variation of the nain Plutonic Suite, Labrador, American geophysical Union. Abstracts for 1992 Spring Meeting, EOS Supplement, 73: 355.
    Hauri E H and Hart S R. 1993.Re-Os isotopic systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean[J]. Earth Planet Sci Lett, 104: 398—416.
    Hawkesworth C J, Turner S P, McDermott F, Peate D W and van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551—555.
    Halbach P, Nakamura K, Washsner M et al. 1989. Probable modern analogue of Kuroko-type deposits in the Okinawa trough back arc basin. Nature, 338: 496—499.
    Halbach P, Pracejus B and Marten A. 1993. Geology and mineralogy of massive sulfide ores from the central Okinawa trough, Japan. Econ. Geol., 88: 2210—2225.
    Hannington M D, Scott S D. 1996. Gold mineralization in volcanogenic massive sulfide: Implications of data from active hydrothermal vents on the modern seafloor]. Econ. Geol.(Monograph), 6: 491 —507.
    Hart S R and Kinloch E D. 1989. Osmium isotopt systematics in Witwaterstand and Bushveld ore deposits,
     Econ.Geol., 84: 1561-1655.
    HaughtonD R, Roeder P L and Skinner B J. 1974. Solubility of sulfur in mafic magmas. Econ. Geol., 69: 451 — 467.
    Hezig P M, Hanningtong M D. 1995. Polymetallic massive sulfides at the modern seafloor-A review. Ore Geologica Review, 10: 95- 115.
    Herzberg C. 1995. Generation of plume magmas through time: An experimental perspective. Chem Geol, 126: 1 - 16.
    Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out. Science, 252: 409-412.
    Horibe Y, Kirn K R and Craig H. 1986. Hydrothermal methane plumes in the Mariana back-arc spreading center. Nature, 324: 131 — 133.
    Horan M F, Walker R J, Fedorenko V A, et al. 1995. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. Geochim Cosmochim Acta, 59: 5159-5168.
    Hutchinson R W. 1973. Volcanic sulfide deposits and their metallogenic significance. Econ.Geol., 68:1223- 1246.
    Irvine T N. 1975. Crystallisation sequence of the Muskox Intrusion and other layered intrusions: II Origin of the chromotite layers and similar deposits of other magmatic ores. Geochim. Cosmochim. Acta, 39:991 - 1 020.
    Jensen L S. 1976. A new cation plot for classifying dubalkaline volcanic rocks based on the ratal alkalisillica diagram. J. Petro., 3: 147—750.
    Keays R R. 1997. Requirements for the formation of giant Ni-Cu-PGE sulfide deposits: The role of magma generation. Transactions of the American Geophysical Union (EOS), 78: F799.
    Keays R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34:1-18.
    Keays R R, Ross J R and Woolrich P W. 1981. Precious metals in volcanic peridotite-associated nickel sulfide deposits in Western Australia. Part II: Distribution within the ores and host rocks at Kambalda. Econ. Geol., 76: 1645-1674.
    Karig D E. 1971.Origin and development of marginal basins in the western Pacific. J Geophys Res, 76: 2542— 2661.
    Toksoz M N and Bird P. 1997. Formation and evolution of marginal basins and continental plateaus, In Island arcs, deep sea trenches and back-arc basins. M Talxani and Pitman III W C(eds), Washington D C. Am Geophys, Union: 379—393.
    Kent R W, Kent, Stoey M and Saunders A D. 1992. Large igneous provinces: sites of plume impact or plume incubation . Geology, 20: 891 —894.
    Krvtsov A I. 1987. Ore-forming environment and condition of massive sulfide deposit on ancient and modern. International Geology Review, 29(11 — 12): 1425—1437.
    Lambert D D, Frick L R, Foster J G, Li Chusi, and Naldrett A J. 2000. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution . Econ.Geol.,95(4): 867—888.
    Lambert D D and Ripley E M. 1999. Special issue, Geodynamics of giant magmatic ore systems. Lithos, 47: 156.
    Lambert, D.D.and S.B.Shirey, etc., 1991, Re-Os and Sm-Nd isotopic systematics of lamproites and basalts from the southern U.S. midcotinent: Implications for the evolution of Proterzoic subcontinental Lithospheric mantle, Trans. Amer.Geophy. Union, 72, 543.
    Lambert, D.D. and J.W.Morgan, 1989, Rhenium-osmium and samarium-neodymium istopic systematics of the Stillwater Complex, Science 244, 1169—1174.
    Lambert, D.D. and E.C. Simmons, 1988, Magma evolution in the Stillwater Complex, Montana: II Rare-earth element evidence for the formation of the J-M Reet, Econ.Geol. 83, 1109—1126.
    Large R R. 1992. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models[J]. Economic Geology, 87: 741—510.
    Lay T, Williams Q and Garnero E J. 1998. The core-mantle boundary layer and deep Earth dynamics. Nature, 392: 461—468.
    Le Bas M J. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol, 41(10): 1467—1470.
    Leinen M, McDuff R, Delaney J, Becker K, and Schultheiss P. 1987. Off-axial hydrothermal activity in the Mariana Mounds Field. EOS, American Geophysical Union Transactions, 68:1531.
    Lightfoot P C, Hawkesworth C J and Olshefsky K. 1997. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions[J]. Contrib Mineral Petrol, 128: 139-163.
    Lightfoot P C and Naldrett A J. 1999. Geological and geochemical relationships in the Voisey's Bay intrusion, Nain plutonic suite, Labrador, Canada. In: Keays R R, Lesher C M, Lightfoot P C and Farrow C F G. eds. Dynamic processes in magmatic ore deposits and their application to mineral exploration. Geological Association of Canada Short Course Notes, 13: 1 -30.
    Lightfoot P C, Hawkesworth C J, Hergt J, et al. 1993. Remobilization of the continental lithosphere by a mantle plume: Major- trace-element, and Sr-Nd- and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contrib Mineral Petrol, 171 - 188.
    Li C, Ripley E M and Naldrett A J. 2003. Compositional variations of olivine and sulfur isotopes the Noril'sk and Talnakh intrusions, Siberia: Implications for ore forming processes in dynamic magma conduits: Economic Geology 98: 69-86.
    Li C, Ripley E M, Maier W D and Gomwe T E S. 2002. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: Evidence for sulfur contamination and multiple magma emplacements: Chemical Geology , 188: 149-159.
    Li C, Naldrett A J and Ripley E M. 2001. Critical factors for the formation of a nickel-copper deposit in an evolved magmatic system: Lessons from a comparison of the Pants Lake and Voisey's Bay sulfide occurrences in Labrador, Canada. Mineralium Deposita, 36: 85—92.
    Li C and Naldrett A J. 2000. Melting reactions of gneissic inclusions with enclosing magma at Voisey's Bay, Labrador, Canada: Implications with respect to ore genesis. Econ. Geol., 95: 801 -814.
    Lowenstern J B, Mahood G A, Rivers M L. 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252: 1405—1409.
    Lu S N, Yang C L, Li H K et al. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton[J]. Gondwana Research, 5(1):, 123—131.
    Lydon J W. 1988. Ore deposit models 14, Volcanogenic massive sulfide deposits. Geoscience Canada, 83(1): 43— 66.
    MacLean W H. 1968. Liquidus phase relations in the FeS-FeO-Fe_3O_4-SiO_2 system and their application in geology. Econ. Geol., 64.
    Mavrogenes J and O'Neil H St C. 1999. The relative effects of pressure, temperature, and oxygen fugacity on the solubility in mafic magmas. Geochimica et Cosmochimica Acta, 63: 1173- 1180.
    Mitchell A H G and Garson M S.1981.Mineral deposits and global tectonic settings. London: Academic Press, 1 — 405.
    Molna'r F, Watkinson D H, Jones P C, et al. 2001. Multiple hydrothermal processes in footwall unit of the north range, Sudbury igneous complex\, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Econ. Geol., 96: 1645—1670.
    Naldrett AJ, Asif M, Schandl E, Sarcy T, Morrison C G, Binney W P and Moore C. 1999. Platinum-group elements in the Sudbury ore: Significance with respect to the origin of different ore zones and to the exploration for footwall orebodies. Econ. Geol., 94: 185—210.
    Naldrett,A.J. 1997. Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay, and other world-class Ni- Cu-PGE deposits: implications for exploration. Australian Journal of Earth Sciences, 44: 283—315.
    Naldrett AJ et al. 1996. Controls on the Composition of Ni-Cu Sulfide Deposits as Illustrated by Those at Noril’sk, Siberia. Economic Geology, 91,751—773.
    Naldrett AJ, Keats H, Sparkes K E and Moore R. 1996. Geology of the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Exploration Mining and Geology, 5(2): 109—129.
    Naldrett A J, Lightfoot P C, Fedorenko V A, et al. 1993. Geology and geochemistry of intrusions and flood basalts of the Noril' sk Region,USSR, with implications for origin of the Ni-Cu ores . Econ.Geol., 87: 975 — 1004.
    Naldrett A J. 1989. Magmatic sulfide deposits. New York, Oxford University Press, 1 — 186.
    Naldrett A J. 1984. Magmatic sulfide deposit, X X With IGC Abstracts, IV: 219.
    Naldrett AJ. 1979. IGCP project no.161 and a proposed classification of Ni-Cu-PGE sulfide deposits. Canadian Mineralogist, 17: 143—145.
    Naldrett AJ. 1973. Nickel sulfide deposits—their classification and genesis with special emphasis on deposits of volcanic association. Canadian Inst. Mining Metallurgy Trans.,76: 183—201.
    Nisbitt B E., 1998, Gold deposit continyuum; a genetic model for lode Au minralizarization in the continental crust,Geology, 16; 1044—1048
    Nicholson S W, Cannon W F and Schulz K J. 1992. Metallogeny of the Midcontinent rift system of North America. Precambrian Research, 58: 355—386.
    Ohmoto H. 1996. Formation of volcanic-associated massive sulfide deposits: The Kuroko perspective. Ore Geologica Review, 10:135 — 177.
    Ohmoto H and Skinner B J. 1983. The Kuroko and related volcanogenic massive sulfide deposit. Econ. Geol., (5): 604.
    Pearce J A and Peate D W. 1995. Tectonic implications of the compositior of volcanic arc magmas: Annual Reviews. Earth and Planetary Science, 23: 251—285.
    Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69: 33—47.
    Pearce J A, Goman B E and Birkett T C. 1977. The relationship between major element chemistry and tectonic environment of basic and intemediate volcanic rocks. Earth Planet. Sci. Lett., 36: 121 - 132.
    Peate D W and Hawkesworth C J. 1996. Lithospheric to asthenospheric transition in low-Ti flood basalts from Southern Parana, Brazil. Chem Geol, 127: 1 —24.
    Petrini R, Civetta L, Piccirillo E M, et al. 1987. Mantle heterogeneity and crustal contamination in the genesis of low-Ti continental flood basalts from the Parana plateau (Brazil): Sr-Nd isotope and geochemical evidence. J Petrol, 28:701-726.
    Pirajno Franco. 2000. Ore deposits and mantle plumes. London: Kluwer Academic Publishers, 1—540.
    Preston R J, Dempster T J, Bell B R and Rogers G1999. The petrology of mullite -bearing peraluminous xenoliths: implications for contamination processes in basaltic magma. Journal of Petrology 40: 549—573.
    Puchtel I S and HumaYun M. 2000. Platinum group elements in Kostomuksha komatiites and basalts: Implications for oceanic crust recycling and core-mantle interaction[J]. Geochim et Cosmochim Acta, 64: 4227—4242.
    Rachael H J, Mark D R and Martin R P. 1999. The alkali element and boron geochemistry of the Escanaba trough sediment-hosted hydrothermal system. Earth and Planetary Science Letters, 171: 157—169.
    Rad'ko V V. 1991. Model of dynamic differentiation of intrusive traps in the northwestern Siberian platform, Soviet. Geol. and Geophys, 32(7): 70—77.
    Rajamani V and Naldrett A J. 1978. Partitioning of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ.Geol., 73: 82—93.
    Revillon S. 2000. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: The plumbing system of an oceanic plateau. J Petrol, 41: 1127— 1153.
    Revillon S,Arndt N T, Hallot E, et al. 1999. Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 49: 1 —21.
    Richards M A, Jones D L, Duncan R A, et al. 1991. A mantle plume initiation model for the Wrangellia flood basalt and other oceanic plateaus. Science. 254: 263—267.
    Ripley E M, Park Y R, Li Chusi and Naldrett A J.2000. Oxygen isotopic studies of the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Econ.Geol.,95(4): 831—844.
    Ripley E M and Li Chusi. 2002. Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey's Bay, Labrador: δ~34 S, δ ~13c, and Se/S evidence. Econ.Geol., 97(6): 1307—1318.
    Ripley E M. 1981. Sulphur isotopic abundances of the Dunka Road CuNi deposit, Duluth Complex, Minnesota. Econ. Geol., 76:619—620.
    Ringwood A E. 1975. Composition and petrology of the Earth's Mantle. New York: Mc Graw-Hill.
    Roedder E and Weiblen P W. 1970. Lunar petrology of silicate melt. Inclusions, Apollo II Rocks. Apollo II Lunar Sci. Conf., 1:801—837.
    Rogers J J W and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5—22.
    Rona P A, Scott S D. 1993. A special issue on sea-floor hydrothermal mineralization: New perspectives. Econ.
     Geol.,88: 1935-1976.
    Rona P A, Hannington M D, Raman C V, Thompson G, Tivey M K and Humphris S E. 1993. Major active and reict sea-floor hydrothermal mineralization: TAG hydrothermal field, Mid-Aatlantic Ridge 26° N, 45° W. Econ. Geol.,88: 1989-2017.
    Ryan B. 2000.The Nain-Churchill Boundary and the Nain plutonic suite: A regional perspective on the geologic setting of the Voisey's Bay Ni-Cu-Co deposit. Econ.Geol.,95(4): 703—724.
    Ryan B, Wardle R J, Gower C and nunn G G 1995. Nickel-copper sulphide mineralization in Labrador: The Voisey's Bay discovery and its exploration implications: geological Survey branch, Department of Natural Resources, Report95-1: 177—204.
    Sangster D F and Scott S D. 1976. Precambrian statabound, massive Cu-Zn-Pb sulfide deposits of North America. In: Wolf K A eds. Handbook of Strata-Bound and Stratiform Ore Deposits. Amsterdam:Elsevier: 129—222.
    Sangster D F. 1980. Quantitative characteristics of volcanogenic massive sulphide deposits. Bulletin of Canada Institute Mineral Metallurgy, 73:74—81.
    Sasso A M and Clark A H. 1998. The Farallon Negro group, northwestern Argentina: Magmatic, hydrothermal and tectonic evolution and implications for Cu-Au metallogeny in the Andean back-arc, Soc. Econ. Geol.Newsl.24: 17-18.
    Saunders A D & Tarney J. 1979.The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochim. Cosmochim. Acta, 43: 555—572.
    Sawkins F J. 1990. Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits[J]. Geology, 18: 1061 — 1064.
    Sawkins F J. 1976. Massive sulfide deposits in relation to geotectonics[J]. Geological Association of Canada, (Spec Pagerl 4): 221-240.
    Schandl E S and Gorton M P. 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ. Geol., 97(3): 629—642.
    Scoates J S and Mitchell J N. 2000.The evolution of troctolitic and high-Al basaltic magmas in Proterozoic anorthosite plutonic suites and implications for the Voisey's Bay-type massive Ni-Cu sulfide deposit. Econ.Geol., 95(4): 677—702.
    Scott S D. 1997. Submarine hydrothermal systems and deposits. In: H L Barnes, ed. Geochemistry of hydrothermal ore deposits. 3~rd ed. Wileyy and Scons, Inc: 797—876.
    Sharpe R and gemmell J B. 2002. The Archean Cu-Zn magnetite-rich Gossan Hill volcanic-hosted massie sulfide deposit, western Australia: genesis of a multistage hydrothermal system. Econ. Geol., 97()3): 517—539.
    Shaw J. 1988. Coarse-grained sediment gravity flow facies in a large supraglacial lake. Sedimentology, 35: 527— 529.
    Sheth H C. 1999. Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy. Tectonophysics, 311: 1—29.
    Shimazaki H and Clark L A. 1973. Liquidus relations in the FeS-FeO-SiO_2-Na_2O system and geological implications. Econ. Geol., 63: 79—96.
    Skinner B J and Peck D L. 1968. An immiscible sulfide melt from Hawaii. In: H B D Wilson (ed), Magmatic Ore Deposits. Econ. Geol., (4): 310—322.
    Skinner B J and Barton P B. 1973. Genesis of mineral deposits: A. Rev. Earth Planet. Scie., 1: 183—211.
    Solomon M.1990. Subduction, arc reversal,and the origin of porphyry copper-gold deposits in island arcs:Geology, 18,630—633.
    Solomon M. 1976. "Volcanic" massive sulphide deposits and their host rocks—a review and explanatio. In: Wolf K A eds. Handbook of Strata-bound and Stratiform Ore Deposits. Amsterdam:Elsevier: 21 —50.
    Stanton R L. 1990..Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores[J]. Australasian Institule of Mining & Metallurgy Proceeding, 15: 101 — 107.
    Stanton R L. 1994. Ore elements in arc lavas. Oxford: Oxford Science Publications, 1—391.
    Stoltz A J, Large R R. 1992.Evaluation of the source control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania[J]. Economic Geology, 87: 720-738.
    Sun S S & McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts : implications for mantle composition and processes[A]. Saunders A D & Norry M J. Magmatism in the Ocean Basins [C]. Geological Society. London, Special Publication, 42: 313-345.
    Taylor H.P.Jr. 1997. Oxygen and Hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits. John Wiley & Sons, Inc. 229-302.
    Thompson R N, Gibson S A. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407: 502-506.
    Tuchscherer M G and Spra J G 2002. Geology, Mineralization, and Emplacement of the Foy Offset Dike Impact Structure. Econ. Geol.,97(7): 1377-1397
    Ulrich T, Gunther D and Heinrich C A. 1999, Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399(17): 676-679.
    Urabe T. 1987. Kuroko deposit modeling based on magmatic hydrothermal theory[J]. Mining Geology, 37: 159-175.
    Urabe T, Yuasa M, Nakao S and On-board Scientists. 1987. Hydrothermal sulfide from a submarine caldera in the Shhichito Iwojima Ridge, northwestern Pacific[J]. Marine Geol., 74: 295-299.
    Urabe T and Kusakabe M. 1991. Barite silica chimneys from the Sumisu Rift, Izu-Bonin arc: possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci. Lett, 100: 283-290.
    UrabeT, Marumo K. 1991. Anew model for Kuroko-type deposits of Japan[J]. Episodesl4(3): 246—251.
    Ulrich T, Gunther D and Heinrich C A. 1999, Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits, Nature, 399: 676—679.
    Vida N, Alvarez M J, Klaeschen D. 2000.The structure of the Africa-Anatolia plate boundary in the eastern Mediterranean. Tectonics. 19(4): 723-739.
    Vogel D C and Keays R R. 1997. The application of platinum group geochemistry in constraining the source of basalt magmas: Results from Newer Volcanic Province, Victoria. Australia. Chem Geol, 136: 181 -204.
    Vogt J H L. 1894. Beitrage zur Genetischen Classification der Durch Magmatische Differentiations Processe und der Durch Previnathloyse Entslandenen Erzvoskommen. Z Prakt. Geol., 2: 381 —399.
    Walker R L, Morgen J W and Horan M F. 1995. Osmium-187 enrichment in some plumes: evidence for core- mantle interaction. Science, 269: 819-821.
    Walker R J and Morgan J W. 1991.Re-Os isotopy systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Plamet, Sci. Lett, 105: 416-429.
    Wan Yusheng, Yang Jinsui, Xu Zhiqin and Wu Cailai. 2000. Geochemical characteristics of the Maxianshan Complex and Xinglongshan Group in the eastern segement of the Qilian Orogenic Belt. Geol. Rev., 43(1): 52-68.
    Wheat G C. 1994. Hydrothermal circulation, Juan de Fuca ridge eastern flank: Factors controlling basement water composition. Journal of Geophysical Research, 99: 3 067—3 080.
    White R S and Mckenzie D P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res, 1989, 94: 7685—7729.
    Whitney J A. 1984. Volatiles in Magmatic Systems. Econ Geol., 1: 155—175.
    Windley B F. 1995. The evolving continents. New York: John Wiley, 1 —526.
    Wilson M.,1989,Igneous petrogenesis. London: Unwin Hyman.
    Xia L Q, Xia Z C and Xu X Y. 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geological Societyy of America, 115(12): 1510— 1522.
    Xia L Q, Xu X Y, Xia Z C, Li X M, Ma Zh P and Wang L S. 2004. Petrogenesis of Carboniferous rift-relate volcanic rocks in the Tianshan, northwestern China. Geological Societyy of America, 116(3/4):419—433.
    Xu Y G, Chung S L, Jahn B M, et al. 2001. Petrological and geochemical constraints on the petrogenesis of the Emeishan Permo-Triassic Emeishan flood basalts in southwestern China. Lithos , 58: 145—168.
    Yang Kaihui, 1998. Mmagmatic fluids and mineralization-observation of subaerial volcanic-hydrothermal processes, black smokers on modern sea floor and melt inclusion sdudies. 地学前缘, (3): 7—38.
    Yang K and Scott S D. 1996. Possible contribution of metal-rich magmatic fluid to a seafloor hydrothermal system. Nature,383: 420—423.
    Yang K and Scott S D. 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: Economic Geology, 97: 1079— 1100.
    Yang K and Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383( 6659): 420—423.
    Yin An. 2001. Geologic evolution of the Himalayan-Tibetan orogen in the context of Phanerozoic contiental growth of Asia. Acta Geoscientia Sinica, 22(3): 193—230.
    Zhang Zh.M, Liou J G and Coleman R G. 1984. An outline of the plate tectonic of China. Geo.Soc.Amer. Bull., .95:295—312.
    Zhao D P.2001. Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett, 192: 251—265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700