用户名: 密码: 验证码:
辐照损伤材料的实验模拟研究:含氦薄膜制备及MAX相材料离子辐照行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐照损伤是核材料研究中最具特色和难度的重要问题。特别是由于α放射性的固体所产生的α粒子(如钚)或含氚材料中因氚衰变产生的氦-3在材料自身晶格中的滞留,产生自辐照效应以及中子或重离子等外来粒子对材料损伤所产生的外辐照效应。这两种效应的存在将会对材料性能,使用寿命等方面提出严峻考验,因此本论文就是基于这两种辐照效应背景而开展相关实验模拟研究的。
     氚在能源工业和国防事业中有着重要的作用,高性能储氚材料的研制在氚技术中是十分关键的。但氚衰变产生的氦会对材料性能产生很大的影响,是一种重要的形式上的自辐照效应。在进行金属中的氦行为研究时首先必须进行氦的引入。通常的氦离子注入会引发严重的晶格损伤;氚衰变和中子辐照则因为半衰期太长和实验设备安全防护等原因不易于实验室操作。为此,本论文提出了金属薄膜中引入氦的新方法—ECR等离子体辅助磁控溅射制备含氦薄膜。该方法的优点是不仅可以在薄膜中均匀引入氦而不带来额外的移位损伤,并且可以制备出表而平整、光洁、致密的金属薄膜。
     结合离子束分析、X射线衍射、扫描电镜、透射电镜、原子力显微镜、正电子湮灭、热脱附谱等技术对含氦钛膜进行了系统表征。X射线衍射表明,随着基片偏压的增加,Ti薄膜的择优取向从(002)转变为(100)取向。对薄膜择优取向改变起主导轰击作用的粒子是磁控溅射等离子区阳极鞘层的氩离子。在低氦含量引入薄膜时,氦的轰击效果也会对薄膜择优取向的改变产生轻微影响。对于传统磁控溅射引氦,主要以入射到阴极靶表面经氦离子背向散射后,转化为中性的氦粒子注入为主,而ECR等离子体辅助磁控溅射方法引氦,则基本来自ECR等离子体区中施加偏压的阳极鞘层的氦离子注入。由于两种引氦方法的不同,因此氦在薄膜中的存在状态和演化行为也不一样。ECR等离子体辅助磁控溅射在制备含氦薄膜时,轰击的氦粒子能量可控制在100eV左右,接近损伤阈值能量,因此薄膜的损伤很小,这与keV能量的氦离子注入引起的薄膜严重损伤情况完全不同。随着薄膜含氦量的增加,晶格点阵参数增大,X射线衍射峰宽化,薄膜晶粒细化,无序程度增加,点阵参数与衍射峰宽化随氦浓度变化的特性曲线与传统磁控溅射相比更接近氚衰变情况。
     通过在基片上加光控传感器进一步改进了ECR辅助磁控溅射系统,从而实现了磁控溅射区偏压和ECR等离子区偏压在镀膜过程中分别控制。从AFM和SEM图中可以观察到,改进的ECR辅助磁控溅射法与传统磁控溅射相比,制备的金属薄膜同时具备空位浓度缺陷少,薄膜致密度好,表面平整度高等优点。
     正电子湮灭能谱的多普勒展宽图表明在ECR等离子体辐照下,Ti膜的密度增加,空位减少。通过比较发现,ECR等离子体辅助磁控溅射法制备薄膜的空位浓度均小于传统磁控溅射法制备的相同含氦量薄膜的空位浓度缺陷。
     综合上述氦行为表征的特性说明,ECR等离子体辅助磁控溅射系统的引氦方法更接近于氚衰变产生的氦原子的存在及演化行为,可用于模拟氚衰变中氦产生对材料的影响,这可避免氚衰变产生氦所需的长实验周期。
     Ti3SiC2 MAX相材料被认为潜在的可用于聚变堆第一壁/包层的结构材料。本论文第二部分的目的主要是探讨Ti3SiC2 MAX相体材料的辐照损伤机理,研究的重点集中在用同步辐射X射线衍射结合正电子湮灭谱分析重离子辐照后的Ti3SiC2材料的缺陷及其退火恢复。用扫描电镜和原子力显微镜对Ti3SiC2材料的表面形貌进行分析。
     首先实验采用2 MeV高剂量的碘离子辐照Ti3SiC2样品。X衍射峰位偏移和衍射峰宽化主要是因为大小从原子尺度到微米尺度的晶格尺寸缺陷引起的。正电子湮灭谱显示辐照样品与未辐照样品相比有更多的空位类型缺陷,特别在高剂量辐照损伤后,样品表层区域的损伤有明显增加。扫描电子显微镜和X射线衍射分析的结果发现了TiC纳米晶相会在高剂量损伤下形成。温度在500~800℃之间的后退火实验会导致Ti3SiC2和TiC两种相的同时生长。
     实验又采用了三种自离子(Ti、Si和C)对Ti3SiC2材料进行辐照研究。实验结果表明,在三种不同离子辐照下,MAX材料都会在高剂量损伤下分解产生TiC纳米晶相。值得注意的是,C离子在高剂量的辐照损伤下,虽然Ti3SiC2发生了分解但MAX相仍然保持相对较好的晶体性。而Ti和Si离子则在较高剂量时,晶体就呈现出较严重的无序度。造成MAX相的无序度以及Ti3SiC2材料分解的原因与核阻止和电子阻止能量损失及相对大小有关,即与辐照离子种类、能量、辐照剂量、剂量率(dpa/s)以及辐照温度等因素相关。
     本文还对Ti3SiC2材料中的氦行为进行了初步研究。对样品表面进行了较低能量和高通量的He离子轰击,正电子湮灭分析表明,随着氦离子注入剂量的增加,S因子逐渐升高,空位性缺陷浓度增加。当注入剂量达到一定值时,S因子急剧升高,预示着大量氦泡的生长发生。同步辐射掠角X射线衍射分析说明,在He、Si离子协同辐照作用下,样品表面层将会形成比高剂量碘离子辐照情况下还严重的非晶化现象。
Irradiation damage is the most characteristic and difficult issues in nuclear materials. It includes, typically, two typies of damage:one is self-radiation effect due to the radioactive solid-produced a particles such as Pu or tritium decayed He-3 and corresponding retention in its own lattice, the other is the external-radiation effects due to bombardment from neutron or other particles to the materials. The existence of these two effects will affect the performance and service life of materials proposed severe tests. This thesis is based on the above two irradiation environment to carry out experimental simulation study.
     Tritium is an element of considerable interest and has important technological applications, especially in the nuclear industry. However, helium will build up in metals as a result of tritium decay in metal tritides. When carrying out the experimental investigations, helium must be introduced into the solid artificially. Traditional ion implantation induces the critical lattice damage, while tritium decay and neutron irradiations are not suitable in the laboratories due to a long half-time or requiring special safety. This thesis brings a new method of helium introduction into metal which is called "ECR plasma-assisted magnetron sputtering deposition technology" This method behaves the advantages of helium introduction with uniform distribution and no extra displacement damage as well as of preparation with a dense, smooth, mirror-like metal film.
     The helium-containing Ti films were characterize systemically by using ion beam analysis (IBM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), slow energy positron beam analysis (PAS) and thermal desorption spectroscopy (TDS). We found that the preferred crystal orientation of helium-doped Ti films was controllably varied from (002) to (100) orientation by increasing the bias voltage (i.e., ion bombardment current and energy). The dominant bombardment effect on the orientation was from the Ar ions of the anode sheath in the magnetron sputtering plasma region, and He bombardment also showed a slight influence on the orientation transformation at low trapped-helium content in the crystal. The helium incorporation process in this new method is mainly from the helium ion implantation in the ECR plasma sheath, which is different from the traditional magnetron sputtering method in which helium contribution in the film is recognized as the bombarding to the growing film of helium atom backscattered by the target and helium ions implanting in anode plasma sheath as well. The projectile energy of helium particles to the film is confined about 100 eV, near the sub-threshold-energy for displacement damage. So the lattice damage is rather lower, which is unlike the case of keV ion implantation. Further increasing helium content will induce great lattice expansion, Bragg peak broadening, the grain refinement and disorder enhancement. The characteristics of relative cell parameters and peak broadening versus helium content are more closed to those of tritium decay compared to traditional magnetron sputtering method.
     Using the new ECR plasma-assisted magnetron sputtering deposition system (PMS), the argon plasma bombardment energy and Ti film deposition rate can be controlled separately, with the substrate bias voltage under feedback control. Results from SEM and AFM show that the properties of Ti films prepared by ECR-PMS are greatly improved compared with conventional sputtering, such as dense morphology, smooth surface, etc..
     Doppler broadening of PAS analysis also reveals that the Ti films have fewer vacancy defects compared with films prepared by the conventional magnetron.
     Combining all the above-mentioned analysis results, it is shown that the state of helium atom in the film by ECR-PAS method is more like that in tritides and it may be used to simulate the accumulation of helium in tritides, and avoid the long term for decaying.
     Ti3SiC2 MAX phase materials have been considered as the most potential candidate for the structural materials of the first wall/blanket for fusion reactor. The second part in this thesis is to investigate radiation damage mechanism of the Ti3SiC2 bulk materials. The dissertation concentrated mainly on the microstructure analysis of Ti3SiC2 by incident X-ray diffracttion (GIXRD) using aynchrotron radiation. The surface morphology of the sample was analyzed by SEM and AFM.
     The Ti3SiC2 was irradiated with high fluence 2 MeV I2+ ions. The shift and broadening of the observed diffraction peaks are due to a range of defects ranging from micron scale in size. PAS analysis shows that the irradiated samples have more vacancy-type defects compared to the unirradiated sample, and a significant increase of the defects occurs at in the surface layer after high dose irradiation. Combining this analysis with both SEM and XRD reveals that a TiC nanocrystalline phase was formed under the high dose irradiation. Post irradiation annealing to temperatures of 500-800℃results in crystal regrowth of Ti3SiC2 and TiC phase.
     Next, the Ti3SiC2 was irradiated by three self-ions (Ti、Si and C). These experiments reveal that, all of the samples become a two phase material with coexisting Ti3SiC2 and TiC components under high dose irradiation. It is noteworthy that, C ion irradiation damage at a highest doses, MAX-phase remained crystallinity, although Ti3SiC2 phase occurred decomposition. When the samples irradiated by Ti and Si ions at a relative higher dose, the crystal takes on a more serious disorder. The reason of the Ti3SiC2 phase decomposition and MAX phase disorder may be related to irradiation ion species, irradiation dose and ion damage rate (dpa/s) and so on.
     Analyzing the helium behavior of Ti3SiC2 sample by PAS, the results show that low energy and high-flux helium ions implantation into the sample surface, it could be accumulated a high helium concentration at top surface in a short time, and causing the surface microstructure changes, such as helium bubble aggregation, growth and migration etc. The results of synchrotron radiation GIXRD analysis reveal that the sample surface layer will show a more serious amorphous phenomenon under the He, Si ions co-irradiation compared with the case of sample irradiated by iodide ion at a highest dose.
引文
[1]周邦新等译.材料科学与技术从书(第10B卷)核材料(第2部分)[M].北京:科学出版社,1999:170-173.
    [2]M. Prem, G. Krexner, J. Pleschiutschnig. Helium damage in Ionged-aged metal-tritium systems[J]. J. Alloy. Compd,2003,356-357:683-687.
    [3]王佩璇,宋家树.材料中的氦及氚渗透[M].北京:国防工业出版社,2002:1-25.
    [4]R. Lasser, Tritium and Helium-3 in metals[M]. Berlin Heidelberg and Berlin:Springer-Verlag,1989:108-109
    [5]R. T. Rood, T. M. Bania, D. S. Balser.. Science 002,295:804
    [6]邓柏权,彭利林,王龙.月球氦-3与未来的新能源[J];科技导报;2003,1:13-16
    [7]J.Jacquinot, et al. D-3He Fusion in the Joint European Torus Tokamak-Recent Experimental Results[J]. Fusion Technology.1992,21(4):2254
    18] F.Corni, C. Nobili, G Ottaviani. Physical Review B,1997,56(12):7331
    [9]V. Raineri and S. U. Campisano. Appl. Phys. Lett.,1996,69:1783
    [10]S. E. Donnelly and J. H. Evans. Fundamental aspects of Inert Gases in solids[M]. Plenum Press, New York, 1991.
    [11]R. Aymar. ITER R&D:Design Overview[J], Fusion Engineering and Design,2001,55:107-118.
    [12]D. Post, K. Borras,D.J. Calle, et al. ITER Physics, ITER Documentation Series 21, IAEA, Vienna,1990
    [13]陈勇,吴玉程.面向等离了体钨基复合材料的制备及其性能研究[M].合肥工业大学出版社,2008
    [14]郁金南.材料辐照效应[M].化学工业出版社,2001.
    [1]杨柯,宋莉,吕曼祺.原子能科学技术,2004,38:330.
    [2]王隆保,吕曼祺和李依依.金属氚化物的时效和时效效应[J].金属学报,2003,39:449-469.
    [3]张崇宏,陈克勤,王引书,孙继光.金属材料中氦的扩散与氦泡的形核生长研究[J].原子核物理评论,2001,18(1):51-55.
    [4]U.S. General Accounting Office. Nuclear Weapons:Capabilities of DOE's Limited Life Component Program to Meet operational Needs [EB/OL]. GAO/RCED-97-52, Mar 5,1997.
    [5]UllmaierH. Radiation Effects, vol.781983.
    [6]R. Lasser, Tritium and Helium-3 in metals[M]. Berlin Heidelberg and Berlin:Springer-Verlag,1989:108-109
    [7]S. E. Donnelly, J. H. Evans. Fundamental Aspects of Inert Gases in Solids[M]. New York:Plenum Press, 1991:1.
    [8]L.C. Beavis. J Less-Common Met,1972,27:201.
    [9]李玉璞,王佩璇.不锈钢中离子注入氦的质子弹性分析[J].核技术,1989,12(11):653-656.
    [10]彭述明,周晓松.金属氚化物中氦行为的研究现状与发展趋势[J].原子能科学与技术,2009,43:43-53.
    [11]张崇宏,陈克勤,王引书,孙继光.2.5MeV的He+离子辐照316L不锈钢中氦泡的形核与生长研究[J].物理学报,1997,46(9):1774-1781.
    [12]段艳敏,刘慢天,龙兴贵等.用增强质子背散射研究注氦纳米晶钛膜中氦的含量[J].四川大学学报(自然科学版),2005,42(1):112-116.
    [13]B.Y. Ao, J.Y. Yang, X.L. Wang, W.Y. Hu. Atomistic behavior of helium-vacancy clusters in aluminum[J]. J. Nucl. Mater.,2006,350(1):83-88.
    [14]Jianyu Yang, Bingyun Ao, Wangyu Hu, Xiaolin Wang. The Formation Energies and Binding Energies of Helium Vacancy Cluster:Comparative Study in Ni and Pd.
    [15]龙德顺,徐会忠,王炎森.氦原子在金属中的扩散势垒计算[J].应用科学学报,1998.
    [16]W Ling, N Xi-Jing. Molecular Dynamics Simulations of helium Behaviour in Copper Crystals[J]. Chinese Physics Letters,2003.
    [17]Ling WANG and Xi-Jing NING Diffusion and Aggregation of He Atoms Generated from T Decay in Cu Crystals [J].Journal of the Physical Society of Japan,2004,73(4):943-949.
    [18]TJ Liu, YX Wang, ZY Pan, XM Jiang, L Zhou, J Zhu. Atomistic Simulation of He Clustering and Defects Produced in Ni[J]. Chinese Physics Letters,2006.
    [19]魏澎,赵国庆,赖祖武,宋哲明,罗四维.氦在钛靶和Al2O3中的行为研究[J].核技术,1996,19:460.
    [20]C.Z. Liu, L.Q. Shi, Z.Y. Zhoul, X.P. Hao, B.Y. Wang, S.Liuand L B Wang. Investigations of helium incorporated into a film deposited by magnetron sputtering[J]. J. Phys. D:Appl. Phys.,2007,40(7):2150-2156.
    [21]Jin Qinhua, Hu Pcigang, Ling Hao, Wu Jiada, Shi liqun.Zhou Zhuying. Helium Charged Titanium Films deposited by Pulsed Laser Deposition in an Electron-Cyclotron-Resonance Helium Plasma Environment[J]. Chin. Phys. Lett,2003,20:386-388.
    [22]Losser R. Tritium and Helium-3 in Metal[M]. Berlin:Springer-Verlag,1989:109.
    [23]Picraux S T. Nucl Inslrum Methods,1981,182/185:413
    [24]Wilson W D, Bisson C L and Baskes M I. Phys Rev,1981,24B:5616.
    [25]N.M. Ghoniem, S. Sharafat, J.M. Williams, L.K. Mausur. Theory of helium transport and clustering in materials under irradiation [J]. Journal of Nuclear materials,1983,117:96-105.
    [26]H. Trinkaus, B. N. Singh, A.J.E. Foreman. Influence of cascade damage on helium diffusion and bubble nucleation [J]. Journal of Nuclear Materials,1990,174(1):80-85.
    [27]H. Trinkaus. Radiat Eff.,1983,78:189.
    [28]R.C. Browman. Distribution of helium in metal tritides[J]. Nature,1978,271:531-533.
    [29]S. Thiebasut. Phy. Rev,1998,57A:10379.
    [30]M. Prem, G. Krexner, J. Pleschiutschnig. Helium damage in long-aged metal-tritium systems[J]. J. Alloys. Compd,2003,356-357:683-687.
    [31]C.S. Snow, L.N. Brewer, D.S. Gelles, M.A. Rodriguez, P.G. Kotula,J.C. Banks, M.A. Mangan, J.F. Browning. Helium release and microstructural changes in Er(D,T)23Hex films[J]. J. Nucl. Mater.,2008,374:147-157.
    [32]GM. Bond, J.F. Browing, C.S. Snow. TEM study of helium bubble ev olut ion in er bium ditr itide[R]. USA: Sandia National Laboratories,2007.
    [33]R.P. Hjelm. Helium distribution in erbium tritide films[R]. USA:Sandia Natio nal Laboratories,2005.
    [34]G.J. Thomas, J.M. Mintz. J. Nucl. Mater,1983,116:336
    [35]J. Wang, Q. Hou, T. Y. Sun, et al. Defect behavior induced by helium cluster growth in titanium crystals[J]. J.Appl. Phys,2007,102:093510.
    [36]H.T. Weaver, W.J. Camp. Detrapping of interstitial helium in metal tritides-NMR studies[J]. Phys. Rev. B, 1975,12:3054-3058.
    [37]R.C. Bowman, Jr, A. Attalla. NMR studies o f the helium distr ibution in uranium tritide[J]. Phys. Rev. B, 1977,16(5):1828-1843.
    [38]W. Primak. Radiation-Induced Cavities and Exfoliation [J]. J. Appl. Phys.,1963,34:3630-3631.
    [39]L.K. Mansur et al. J. Nucl. Mater.,1986,141-143:633-646.
    [40]L.K. Mansur, W.A. Coghlan. J. Nucl. Mater.,1983,119:1-25.
    [41]C.H. Woo. J. Nucl. Mater.1988,159:237.
    [42]M. B. Lewis. Diffusion of ion implanted helium in vanadium and niobium [J]. J.Nucl. Mater.,1988,152(2-3): 114-122.
    [43]Kenaünlü, Dielrich H. Vincent. Nucl. Instr. Meth. A,1990.229:606-609.
    [44]Kenaünlü, Dielrich H. Vincent. Nuclear science and engineering.1992,110:386-393.
    [45]G. Amarebdra, et al. Phy. ReV. B,1992,45:10231.
    [46]R.N. Wright, C. Dew Van Siclen. J. Nucl. Mater.,1993.200:200-206.
    [47]R.N. Wright, C. Dew Van Siclen. J. Nucl. Mater.,1991.182:281-286.
    |48] H. Kawanishi et al. J. Nucl. Mater,1992.191-194:933-937.
    [49]R.C.Bowman, Jr., GBambakidis, G.C.Abell, A.Attalla, and B.D.Craft. Phys.Rev.B,1988,37:9447.
    [50]P.Jung and R. Lasser. Phys.Rev.B,1988,37:2844
    [51]H.Rajainmaki, S.Linderoth, H.E.Hansen, R.M.Nieminen, and M.D.Bentzon. Phys.Rev.B,1988,38:1087
    [52]A.Manuaba, F.Paszti, and E.Kotai, J.Nucl.Mater.,1990,175:158
    [53]GAmarendra, B.Viswanathan, A.Bharathi, and K.P.Gopinathan. Phys.Rev.B,1992,45:10231
    [54]Clinton DeW. Van siclen and Richard N.Wright. Phys. Rev. Lett.,1992,68:3892
    [55]R.Rajaraman, B.Viswanathan, M.C.Valsakumar and K.P.Gopinathan, Phys. Rev. B,1994,50:597
    [56]B.Limacher, D.Leroy, C.Arnoux, and F.Gaspard. J.Alloys Comp.,1995,231:792
    [57]S.Nagata, K.Takahiro, S.Yamaguchi, S.Yamamoto, B.Tsuchiya, and H.Naramoto. Nucl. Instr. and Meth. B, 1998,136-138:680
    [58]S. Thiebaut, V.Paul-Boncour, A.Percheron-Guegan, B.Limacher, O.BIaschko, C.Maier, C.Tailland, and D.Leroy. Phys. Rev.B.,1998,57:10379
    [59]S.Thiebaut, B.Decamps, J.M.Penisson, B.Limacher, and A.Percheron Guegan. J.Nucl.Mater.,2000,277:217
    [60]J.D.Hunn, E.H.Lee, T.S.Byun, and L.K.Mansur. J.Nucl.Mater.,2000,282:131
    [61]P. Jung, C.Liu, J.Chen. J.Nucl. Mater.,2001,296:165
    [62]H. Trinkaus, B.N. Singh. Helium accumulation in metals during irradiation-where do we stand?[J], J.Nucl. Mater.,2003,323:229-242.
    [63]R.C. Bowman. NMR Studies of 3He Retention and Release in Metal Tritides[C]. Hydrogen & Helium Isotopes in Materials conference,Nm. USA,2007.
    [64]郁金南.材料辐照效应[M].化学工业出版社,2001.
    [65]陈勇,吴玉程.面向等离子休钨基复合材料的制备及其性能研究[M].合肥工业大学出版社,2008
    [66]R.L. Klueh, et.al. Ferritic/Martensitic Steels-overview of Recent Results[J]. J. Nucl.Mater.,2002,307-312: 455-465.
    [67]Y.Kohno, et.al. Mechanical Property Changes of Low Activation Ferritie/Martensitie Steels after NeutronI rradiation[J], J. Nucl.Materl.,1999,271-272:145-150.
    [68]B.vander Sehaaf, et.al. Progress and Critical Issues of Reduced Activation Ferritie/Martensitie Steel Development[J]. J. Nucl. Mater.,2000,283-287:52-59.
    [69]R.L. Kluch, et.al. The Effect of Tantalum on the Mechanical Properties of a 9Cr-2W-0.25V-0.07Ta-0.1C Steel [J]. J. Nucl. Mater.,1999,273:146-154.
    [70]ITER-FEAT Outline Design Report, ITER Meeting, Tokyo, January 2000.
    [71]P.J. Maziase et.al. J.Nucl. Mater.1982,108-109:296-298.
    [72]李云凯,纪康俊.聚变堆等离子体面对材料[J].材料导报,1999 13(3):3-5.
    [73]汪京荣.核聚变与国际热核聚变实验堆[J].稀有金属快报,2002,10:1-5.
    [74]万发荣.金属材料的辐照损伤[M].北京:科学技术出版社,1991.
    [75]T.S. Duh, K..M. Yin, J.Y. Yan, P.C. Fang, C.W. Chen, J.J. Kai, F.R. Chen, Y. Katoh and A. Kohyama. Study of helium bubble formation in SiCf/PyC/β-SiC composites by dual-beam irradiation[J]. J. Nucl. Mater.,2004, 329-333:518-523.
    [76]T. Taguchi, E. Wakai, N. lgawa, S. Nogami, L.L. Snead, A. Hasegawa and S. Jitsukawa. Effect of simultaneous ion irradiation onmicrostructural change of SiC/SiC composites at high temperature[J]. J. Nucl. Mater.,2002,307-311:1135-1140.
    [1]Chu W K, Mayer J W, Nicolet M A. Backscattering Spectrometry [M]. New York:Academic Press,1978: 21-42.
    [2]J. F. Ziegier, New Uses of Ion Accelerators [M]. New York:Plenum Press,1975:75.
    [3]G. Deconninck. Introduction to Radioanalytical Physics [M]. Amsterdam:Elsevier Scientific Publishing Company,1978:76.
    [4]J. R. Bird, B. L. Campbell and P. B. Price. Atomic Energy Review,1974,12:275.
    [5]杨福家.离子束分析[M].北京:原子能出版社,1985:1-20.
    [6]杨福家.原子物理学[M].上海科学技术出版社,1985:11.
    [7]复旦大学、清华大学、北京大学合编.原子核物理实验方法[M].北京:原子能出版社,1997:27-47.
    [8]赵国庆和任炽刚编写,杨福家审校.原子能出版社,1989:108-164.
    [9]汤家镛,张祖华.离子在固体中的阻止本领射程和沟道效应[M].北京:原子能出版社,1988:32-40.
    [10][美]朱唯干等著,邹世昌,林成鲁等译.背散射分析技术[M].原子能出版社,1986:41-51.
    [11]M. Mayer. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA[A]. In:J L Duggan, I L Morgan. AIP Conference Proceedings (Volume 475) of the fifteenth international conference on the application of accelerators in research and industry [C]. (Denton, Texas, November,1998). USA:American Institute of Physics, 1999:541-544.
    [12]J. L Ecuyer, C. Brassard, C. Cardinal and B. Terreault. Nucl. lnstr. and Meth. B,1978,149:271.
    [13]B. L. Doyle and P. S. Peercy. Appl. Phys. Lett.,1979,34:811.
    [14]J. BΦttiger[J]. J. Nucl. Mater.,1978,78:161.
    [15]wrs, r. n. V. Kornlsn. h kinis o h sorpion o hliu ipln ino Nikl (100) rsl[J]. Sur Sin,1974,44(1):1-10
    [16]A.A. van Gorkum and E.V. Kornelsen. Quantitative thermal desorption spectrometry of ionically implanted inert gases [J]. Vacuum.1981,31 (2):89-98.
    [17]G. Abadias, Y.Y. Tse, Ph. Guerin, V. Pelosin[J]. J. Appl. Phys.,2006,99:113519.
    [18]马世良.金属X射线衍射学[M],西安:西北工业大学出版社,1987:149-150.
    [19]Schober T, Trinkaus H. The expansion of the tritide TaT0.37 at 10 K due to single interstitial 3He atoms[J]. J. Appl Phys,1991,70(2):729-731.
    [20]M. Prem, G. Krexner, J. Pleschiutschnig. Helium damage in long-aged metal-tritium syslems[J]. J. Alloy. Compd.,2003,356-357:683-687.
    [21]姜晓明,贾全杰,郑文莉,刘鹏,冼鼎昌,蒋最敏,王迅.同步辐射X射线掠入射衍射实验技术及应用[J].高能物理与核物理,2000,24(12):1185-1190.
    [22]E. Zolotoyabko, B. Pokroy, T. Cohen-Hyams, J.P. Quintana. Nucl. Instrum. Methods B.,2006,246:244-248.
    [23| H. Dosch, Phys. Rev. B.,1987,35:2137.
    [24]韩荣典.慢正电子束技术的应用与发展.物理学进展,1999,19(3):305-330.(本文还详细介绍了中国科技 大学的实验装置。)
    [25]魏龙.一种新的灵敏核探针慢正电子束流装置[J].原子核物理评论,2000,17(2):117-120.(阐述了北京慢正电子束流装置的设计原理和性能)
    [26]郁伟中,袁佳平.正电子慢化体的研究和进展[J].物理,2001,30(2):95-100
    [27]W. Triftshausr and G. Kogel. Defect structure below the Surface in metals investigated by monoenergetic Posirons[J]. Phys. Rev. Lett.1982,48:1741-1744
    [28]P. J. Schultz and K. G Lynn Interaction of positrons wih surfaces, thin films, and interfaces[J]. Rev. Mod. Phys.1988,60:701-779.
    [29]M. J. Puska and R. M. Nieminen. Theory of positrons in solids and on solid surfaces[J]. Rev. Mod. Phs.1994, 66:841-897.
    [30]王英姿,侯宪钦.带能谱分析的扫描电子显微镜在材料分析中的应用[J].工艺与检测,2007,9:80-82.
    [31]本原纳米仪器有限公司,AFM各种成像模式的原理.、vww.spm.com.cn,2009.
    [32]Anupam Roy, K. Bhattacharjee, H.P. Lenka, D.P. Mahapatra, B.N. Dev. Nucl. Instr..Methods B,2008,266: 1276.
    [33]苏玉长PPT,透射电子显微镜成象原理与图象解释.中南大学
    [34]王凤莲PPT, TEM样品制备技术.中国科学院物理研究所.2004.
    [1]Maziasz P J. A perspective on present and future alloy development efforts on austenitic stainless steels for fusion application [J]. J Nuclear Materials,1985,133-134:134-140.
    [2]Hiroshi Kawanishi, Masato Yamada, Koji Fukuya and Shiori lshino. Effect of titanium on microstructural changes in SUS 316 stainless steels [J]. Journal of Nuclear Materials,1981,104:1097-1101.
    [3]Yutaka Kohno, Akira Kohyama and Hideo Kayano. Microstructural evolution of titanium modified austenitic stainless steel after FFTF irradiation [J]. Journal of Nuclear Materials,1992,191-194(2):742-747.
    [4]菅井秀郎(日).等离子体工程学[M].北京:科学出版社,2002:102-103
    [5]K. Y. Chan, B. S. Teo. Microelectronics,2006,37:1064-1071
    [6]G. Abadias, Y. Y. Tse, and Ph. Guerin. J. Appl. Phys,2006,99:113519
    [7]R. Lasser, K.. Bickmann, H. Trinkaus, and H. Wenzl. Physical Review B,1986,34:4364
    [8]吴仲成,彭述明,杨茂年,刘琼.氦在金属钛中的扩散行为[A].中物院科技年报:化学与化工学科研究进展2002论文集[C].中物院,2002.
    [9]Jung P, Schroeder K. Diffusion and agglomeration of helium in FCC metals [J]. Journal of Nuclear Materials, 1988,155-157(2):1137-1141.
    [10]Vassen R, Trinkaus H, Jung P. Diffusion of helium in magnesium and titanium before and after clustering[J]. Journal of Nuclear Materials,1991,183(1-2):1-8.
    [11]Kirk L. Shanahan and Jeffrey S. Holder. Tritium aging effects in a Pd0.94Rh0.05Co0.01 foil[J].Journal of Alloys and Compounds,2003,348(1-2):72-75.
    [12]L.C. Beavis,C.J. Miglionico. Structural behavior of metal tritide films[J]. Journal of the Less-Common Metals, 1972,27(2),201-11.
    [13]H.T. Weaver, W.J. Camp. Detrapping of interstitial helium in metal tritides-NMR studies [J]. Phys Rev B, 1975,12(6):3054-3059.
    [14]C. Faure, P. Bach, H. Bernardet, Le Vide Les Couches Minces,212, Mai-Juin-Juillet,1982.
    [15]周晓松.XRD研究时效早期合金化对Ti基合金氚化物晶体结构变化的影响(PPT).中国工程物理研究院.2007.9
    [16]Lasser R, Bickmann K, Trinkaus H, Wenzl H.Evolution of the lattice spacing and damage in tantalum tritide. Phys Rev B,1986,34(6):4364-4367.
    [17]Blaschko O, Ernst Q Fratzl P,et al.Lattice deformation in TaTx systems due to 3He production[J]. Phys Rev B, 1986,34(8):4985-4988.
    [18]Lasser R, Bickmann K, Trinkaus H. X-ray diffraction study of the lattice deformation due to 3He bubble formation in a tantalum tritides [J]. Phys Rev B,1989,40(5):3306-3310.
    [19]Thiebaut C, Baclet N, Ravat B,et al.Effect of radiation on bulk swelling of plutonium alloys [J]. J. Nucl. Mater, 2007,361(2-3):184-191.
    [20]M.A. Krivoglaz. Theory of X-ray and thermal Neutron Scattering by Real Crystals[M]. Plenum, New York, 1969.
    [21]O. Blaschko, J. Pleschiutschnig, R. Glas and P. Weinzierl. Helium damage in metal-tritium systems. Phys. Rev. B,44,1991:9164-9169.
    [22]M. Prem, G. Krexner, J. Pleschiutschnig. Helium damage in long-aged metal-tritium systems[J]. J. Alloys. Compd,2003,356-357:683-687.
    [1]王志光.利用高能粒子模拟研究反应堆结构材料的辐照效应[J].原子核物理评论,2006,23(2):155-160.
    [2]郁金南.材料辐照效应[M].化学工业出版社,2001.
    [3]复旦大学、北京大学和清华大学合编.原子核物理实验方法[M].北京:原子能出版社,1997.
    [4]丁富荣,班勇,夏宗璜.辐射物理[M].北京:北京大学出版社,2004:5-15
    [5]万发荣.金属材料的辐照损伤[M].北京:科学技术出版社,1991
    [6]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2002
    [7]杨福家,王炎森,陆福全.原子核物理[Ml.上海:复旦大学出版社,1993.
    [8]K.J. Michio. J.Nucl.Mater,2000,276:41
    [9]王隆保,吕曼祺和李依依.金属氚化物的时效和时效效应[J].金属学报,2003,39:449-469.
    [10]杨文斗.反应堆材料学[M].原子能出版社,1999.
    [11]M.J. Norgett, M.T. Robinson, I.M. Torrens. Nucl Eng Des,1975,33:50
    [12]张通和,吴瑜光.离子束材料物理学[M].北京师范大学,2002:126-133.
    [13]J.A. Brinkman, J.Appl.Phys,1954,25:961
    [14]L.R. Greenwood. Neutron interaction and atomic recoil spectra[J]. J. Nucl. Mater,1994,216:29-44.
    [15]L.R.Greenwood, R.K. Smither. Specter:Neutron damage calculations for Materials irradiations[M].
    [16]S. Shimakawa, N.Sekimura and N. NoJIRl, Radiation Damage Calculation by NPR1M Computer Code with JENDL 3.3, Department of HTTR Project Japan Atomic Energy research Institute.
    [17]Zinkle S J,Ghoniem N M.Operating temperature windows for fusion[J]. Fusion.Engi.Des,2000,51:55.
    [18]Muroga T,Gasparotto M.Overview of materials research for fusion reactors[J].Fusion.Engi.Des,2002,61:13.
    [19]于兴哲,宋月清等.聚变堆用结构材料的研究现状与进展[J].材料导报,2008,22:68-72
    [20]许增裕,聚变材料研究的现状和展望[J].原子能科学技术,2003,37:105-110
    [21]Q.Huang,C.Li,et al. Progress in Development of China Low Activation Martensitic Steel for Fusion Application[J]. Journal of Nuclear Materials,2007,367-370:1410-1415.
    [22]黄群英,李春京,李艳芬等.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,2007,27(1):41-51
    [23]P. Colombo, B. Riccardi, A. Donato and G. Scarinci. J. Nucl. Mat,2000,278(2-3):127-135.
    [24]Y. Katoh, M. Kotani, A. Kohyama, M. Montorsi, M. Salvo, and M. Ferraris. J. Nucl. Mater.,2000,283-287: 1262-1266.
    [25]A. Gasse, F. Saint Antonin, G. Coing Boyat. Specific non reactive BraSiC alloys for SiC-SiC joining, Report CEA-Grenoble, DEM n.DR 25:97 December 1997.
    [26]赵莉,梅炳初,朱教群等Ti3SiC2及其复合材料的研究现状及发展趋势[J].山东陶瓷,2005,28(5):22-25
    [27]陈福,赵恩录,张文玲,苟金芳,曾雄伟.新型层状陶瓷Ti3SiC2的研究进展[J].2006,4:26-30
    [28]S.B. Li, J.X. Xie, L.T.Zhang.L.F.Cheng. In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC[J]. Mater.Sci. Eng. A,2004,381:51
    [29]M.W. Barsourn, Progr. Solid State Chem.2000,28:201.
    [30]向其军,刘咏,刘伯威.新型陶瓷材料Ti3SiC2制备技术的研究进展[J].粉末冶金技术,2005,23(4):301-305.
    [31]T. El-Raghy, M.W. Barsourm, A. Zaraliangos. Processing and mechanical properties of Ti3SiC2 effect of grain size and deformation temperature. J. Am. Ceram. Soc.1999,82(10):2855-2860.
    [32]J.C. Nappe, P. Grosseau, F. Audubert, B. Guilhot, M. Beauvy, M. Benabdesselam, I. Monnet. Damages induced by heavy ions in titanium silicon carbide:Effects of nuclear and electronic interactions at room temperature[J]. J. Nucl. Mater, (2009),385(2):304-307.
    [33]X.M. Liu, M.L. Flem, J.L. Bechade, F. Onimus, T. Cozzika,1. Monnet. XRD investigation of ion irradiated Ti3Si0.90AI0.10C2[J]. Nucl. Instrum. Methods B.,2010,268:506-512.
    [34| K.R. Whittle, M.G Blackford, R.D. Aughterson, S. Moricca, GR. Lumpkin, D.P. Rilcy, N.J. Zaluzec, Radiation tolerance of Mn+1AXn phases, Ti3AIC2 and Ti3SiC2[J], Acta Mater,2010,58:4362-4368.
    [35]R.Pampuch R, J. Lis, L. Stobierski, et al. Solid Combusition Synthesis of Ti3SiC2 [J]. J. Eur. Ceram. Soc, 1989,5:283
    [36]M.W. Barsoum, T. EI-Raghy. Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2[J]. J. Am. Ceram. Soc.,1996,79 (7):1953
    [37]朱教群,梅炳初,陈艳林.层状三元碳化物Ti3SiC2及其制备研究[J].武汉理工大学学报,2002,24(5):36-39.
    [38]Sun Z M, Zhang Y, Zhou Y C. Sythesis of Ti3SiC2 Powders by a Solid-Liquid Reaction Process|J]. Scripta Mater,1999,41(1):61.
    [39]Zhang Z F, Sun Z M, Hashimoto H, et al. Application of Pulse Discharge Sintering (PDS) Technique to Rapid Synthesis of Ti3SiC2 from Ti/Si/C Powders [J]. J Eur Ceram Soc,2002,22:2957
    [40]朱教群,梅炳初,陈艳林.以铝为助剂结合放电等离子烧结制备Ti3SiC2.无机材料学报,2003,18(3):700
    [41]Veen A van, Schut H, Vries J de, et al. [A].In:P J Schultz, G R Massoumi, P J Simpson. Positron Beams for Solids and Surfaces AlP Conf Proc No.218[C]. USA:AIP, New York,1990:171-178.
    [42]M. Samaras, P.M. Derlet, H.V. Swygenhoven, M. Victoria. Phys. Rev. Lett.2002,88:12.
    [1]R.Lasser. Tritium and Helium-3 in metals[M]. Springer-Verlag Berlin Heidelberg,1989
    [2]H. Trinkaus et al. J. Nucl. Matter,1973,323:229
    [3]王佩璇、宋家树.材料中的氦及氚渗透[M].国防工业出版社,北京,2002.
    [4]张崇宏,陈克勤,王引书,孙继光.金属材料中氦的扩散与氦泡的形核生长研究[J].原子核物理评论,2001,18(1):51-55.
    [5]R.A. Ferrell. Theory of Positron Annihilation in Solids[J]. Rev. Mod. Phys,1956,28,308-337.
    [6]V.S. Subrahmanyam, P. Sen. Helium implanted vanadium studied by the positron annihilation technique[J]. Appl. Radiat. lsot.1995,46(10):981-985.
    [7]K.O. Jensen, R.M. Nieminen. Helium bubbles in metals:Molecular-dynamics simulations and positron states. Phys. Rev. B,1987,35(4):2087-2090.
    [8]G.M. Dunn, P. Rice-Evans, J.H. Evans. Pseudopotential calculations of positron annihilation rates in bubbles of the heavier noble gases contained in copper[J]. J. Phy. Condens. Matter,1990,2(51):10529-10547.
    [9]K.O. Jensen, M. Eldrup, B.N. Singh, M. Victoria. Helium bubble in aluminium studied by positron annihilation: determination of bubble parameter[J], J. Phys. F. Met. Phys,1988,18(6):1069-1089.
    [10]K..O. Jensen, R.M. Nieminen. Helium bubbles in metals:Molecular-dynamics simulations and positron states [J]. Phys. Rev. B,1987,35:2087-2090.
    [11]郁金南.材料辐照效应[M].化学工业出版社,2001.
    [12]王隆保,吕曼祺和李依依.金属氚化物的时效和时效效应[J].金属学报,2003,39:449-469.
    [13]S.Nagata, B.Tsuchiya, T.Sugawara, N. Ohtsu. J. Nucl. Mater.,2002,1513:307-311.
    [14]S. R. Lee, S. M. Myers and R. G. Spulak. J. Appl. Phys.,1989,66:1137.
    [15]O. Blaschko, J. Pleschiutschning, R. Glas, P. Weinzierl. Phys Rev. A,1991,44:9164.
    [16]万发荣.金属材料的辐照损伤[M].北京:科学技术出版社,1991.
    117] T. S. Duh, et al.. J. Nucl. Matter,2004,518:329-333.
    [18]T.Taguchi, et al.. J. Nucl. Matter,2002,1135:307-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700