用户名: 密码: 验证码:
应力及干湿循环作用下氯离子在混凝土中的渗透性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界范围内混凝土结构的耐久性问题日益凸显,受到各国科技人员和工业界的普遍重视。荷载和外界环境因素是影响混凝土结构耐久性的主要因素,研究应力及干湿循环条件下混凝土中氯离子的渗透性及其变化规律,并对处于该条件下混凝土结构的服役寿命进行预测,具有较高的实用价值。本文对这一课题进行了探索,研究内容和取得的成果如下:
     评价并改进了混凝土中氯离子渗透性应力加载装置,设计了应力条件下氯离子渗透性测试方法,实现了应力条件下混凝土中氯离子渗透性的快速测定。应力加载装置创新地采用碟簧加载的方式实现了对混凝土施加应力,借助应力传感器实现了装置的应力适时调控与恒载。氯离子渗透性测试方法首次将应力加载装置与NEL法和电通量法进行有效的结合(即CPS-NEL法和CPS-ASTM C1202法)。该方法具有操作快捷、评定准确和实用的特点,是一种用于评价氯离子在混凝土内渗透性的新型方法。
     系统分析了应力条件下氯离子在混凝土中的渗透行为。采用CPS-NEL法和CPS-ASTM C1202法,对氯离子在C30和C60混凝土中的渗透性进行了研究,分析了应力大小(应力比为0.1,0.3,0.5,0.7)和应力种类(拉应力和压应力)对渗透性的影响,得出了应力条件下混凝土中氯离子的渗透规律,获得了混凝土中氯离子渗透性变化的阈值应力比。
     研究了应力和干湿循环耦合作用下的混凝土中氯离子渗透性变化规律,创新地建立和论证了考虑应力和干湿循环因素的氯离子渗透模型。通过对混凝土中氯离子浓度的测试,分析了应力和干湿循环对混凝土渗透性的影响,同时采用基于硝酸银显色法对应力和干湿循环耦合作用下的氯离子渗透规律进行了验证。在Fick第二定律的基础上建立了应力和干湿循环耦合作用下的氯离子渗透模型(SDWM模型),并对SDWM模型的计算值和混凝土内部氯离子浓度的实测值进行了验证,结果证实SDWM模型具有较高的可靠性。
     依据超声波、SEM和MIP等测试设备,分析了混凝土中内部损伤对氯离子渗透性能的影响。利用超声波法声学参数变化曲线对应力作用下混凝土内部的损伤进行了分析;利用SEM法观察了拉应力和干湿循环耦合作用下的混凝土内部微观形貌变化;采用MIP法对拉应力和干湿循环耦合作用下混凝土的孔隙率和孔径分布进行了测试,对其变化规律进行了分析。超声波、SEM和MIP法测试结果解释了应力和干湿循环耦合作用下混凝土渗透性的变化规律。
     基于在应力和干湿循环因素作用下建立的SDWM模型,对实体机构进行了寿命预测。采用“PERMIT”法对实体结构渗透性进行了测试,通过SDWM模型,计算出混凝土中与钢筋接触界面处在不同龄期时的氯离子浓度,根据钢筋腐蚀时的氯离子临界浓度值对实体结构的服役寿命进行了预测。
The durability of concrete structures is becoming increasingly prominent in theworld at present, which draws worldwide attention of scientific and technical workersas well as industrial community. External load and environmental factors are the mainfactors affecting the durability of concrete structures. The permeability of the concreteto chloride ion and the variation law under the condition of the coupling of stress andwetting-drying cycles, and the life prediction of the concrete structures under thiscondition are valuable for practical projects. This paper investigates this area deeply.The research contents and the main results are as follows:
     The stress device were assessed and improved according to results of previousresearch, and it realizes the stress of concrete through the method of loading discspring, and realizes the timely regulate and control and dead load by virtue of stresssensor. It also combines the NEL method and the Electric Quantity method effectivelyand innovatively (namely CPS-NEL and CPS-ASTM C1202). It realizes themonitoring of chloride ion permeability on line under the condition of stress. Thismethod has the features of quick operation, accurate evaluation and practical. It is akind of new pattern method of permeability in the concrete used in the evaluation ofchloride ion.
     The permeability characteristics of concrete to chloride ion under the conditionof stress were analyzed systematically. The methods of CPS-NEL and CPS-ASTMC1202were applied to the investigation of the permeability of the concrete of C30and C60to chloride ion. The influence of stress intensity (the stress ratio is0.1,0.3,0.5,0.7) and stress variety (tensile stress and pressure stress) on the permeability ofconcrete were studied. The transmission rule of chloride ion in the surface layer ofconcrete under the condition of stress and the stress threshold value of chloride ionpermeability were obtained.
     The change law of permeability of concrete to chloride ion under the coupling ofstress and wetting-drying cycles of concrete was studied, and the chloride ironpermeability model considering stress and drying-wetting cycles was established andproved innovatively. The influence of stress and wetting-drying cycles on thepermeability of concrete was analyzed by determining the chloride ion concentrationin the concrete. In the meanwhile, the result of chloride iron content under the coupling of wetting-drying cycles and stress was measured by the method of silvernitrate coloration. The chloride ion permeability model (SDWM Model) was set upunder the coupling of stress and wetting-drying cycles based on Fick’s second law.The calculated value from chloride ion penetration model (SDWM Model) andmeasured chloride ion concentration were very close to each other, indicating that themodel has good reliability.
     The influence of internal damage on permeability of concrete to chloride ion wasanalyzed by using modern test equipments including ultrasonic, SEM and MIP. Theinternal damage defect of concrete caused by stress was analyzed by the method ofultrasonic with the acoustic parameters changing curve. The internal micro structureof concrete under the coupling of the stress and wetting-drying cycles was observedby SEM. The porosity and pore structure distributions of concrete under the couplingof the stress and wetting-drying cycles were determined by MIP. The test results ofultrasonic, SEM and MIP explained the permeability changing law of concrete underthe coupling of stress and wetting-drying cycles.
     Based on the SDWM Model of concrete under the coupling environment ofstress and wetting-drying cycles, the life of entity structure was predicted. The“PERMIT” device was adopted to conduct the test for the concrete structure entity.The chloride ion concentrations of the contact interface between concrete andreinforced bar were calculated at different ages based on the SDWM Model. The lifeof the entity structure was predicted according to the critical concentration of chlorideion corrosion of steel.
引文
[1]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社,2006:1-8
    [2]赵铁军.混凝土渗透性[M].北京:科学出版社,2006:1-6
    [3]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].浙江大学硕士论文,2007:1-4
    [4]美国ACI222委员会报告.混凝土中金属的腐蚀[C].海工钢筋混凝土耐久性译文集.上海,通部第三航务工程科研所,1988,8-13
    [5]洪定海.论防止混凝土结构中钢筋腐蚀破坏的规范问题[R].全国钢筋混凝土结构标准技术委员会混凝土耐久性成立大会报告,1991,33-36
    [6]卢木.混凝土耐久性研究的现状和研究方向[J].工业建筑,1997(5):1-5
    [7]王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社,2001:3-11
    [8]孟春芳.影响结构耐久性的建筑构造及其评价方法[D].西安建筑科技大学硕士论文,2005:1-7
    [9]陈肇元.土建结构工程的安全性与耐久性——现状、问题与对策.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004:3-9
    [10]赵尚传,盖国晖.荷载作用下混凝土中氯离子侵蚀性研究现状与发展[J].公路,2009(9):264-268
    [11] Meghdad Hoseini, Vivek Bindiganavile, Nemkumar Banthia. The effect of mechanical stresson permeability of concrete: A review. cement&Concrete Composites,2009(31):213–220
    [12] Samaha HR, Hover KC. Influence of microcracking on the mass transport properties ofconcrete. ACI Mater J1992,89(4):416-24.
    [13] Banthia N, Bhargava A. Permeability of stressed concrete and role of fiber reinforcement.ACI Mater J2007,104(1):70–76.
    [14] C.C.Lim,N.Gowripalan, V.Sirivivatnanon. Microcracking and chloride permeability ofconcrete under uniaxial compression[J]. Cement&Concrete Composites22(2000):350-360
    [15] Vincent Pic, Abdelhafid Khelidj, Guy Bastian. Effect of Axial Compressive Damage on GasPermeability of Ordinary and High-Performance Concrete[J]. Cement and ConcreteResearch,31(8),2001:1525-1532
    [16] Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressiveloadings[J]. Cement and Concrete Research,1995,25(4):803-808.
    [17] Choinska M, Khelidj A, Chatzigeorgiou G, Pijaudier-Cabot G. Effects and interactions oftemperature and stress-level related damage on permeability of concrete[J]. Cement and ConcreteResearch,2007,37(1):79–88
    [18] Sugiyama T, Bremner TW, Holm TA. Effect of stress on gas permeability in concrete[J]. ACIMater,1996,93(5):443–450
    [19] Kermani A. Permeability of stressed concrete[J]. Building Research and Information.1991,19(6):360–366
    [20]邢锋,冷发光,冯乃谦等.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土,2004,5:3-8
    [21] Schneider U., Nagele E., Dumat F.. Stress Corrosion Initiated Cracking of Concrete[J].Cement Concrete Research,1986,16(4):535-544.
    [22]方永浩,李志清,张亦涛.持续压荷载作用下混凝土的渗透性[J].硅酸盐学报,2005,33(10):1281-1286
    [23]王中平,吴科如,阮世光.单轴压缩作用对混凝土气体渗透性的影响[J].建筑材料学报,2001,4(2):127-131.
    [24] Hearn N. Effect of shrinkage and load-induced cracking on water permeability of concrete[J].ACI Mater,1999,96(2):234–241
    [25] Banthia N., Biparva A., Mindess S.. Permeability of concrete under stress[J]. CementConcrete Research,2005,35(9):1651–1655.
    [26] Aldea C-M, Shah SP, Karr A. Effect of cracking on water and chloride permeability ofconcrete[C]. ASCE J Mater Civil Eng.,1999,11(3):181–187.
    [27] Aldea C-M, Shah SP, Karr A. Permeability of cracked concrete[J]. RILEM Mater Struct.,1999,32:370–376
    [28]张俊芝,王梁英,刘华挺等.弯曲荷载对混凝土氯离子扩散与钢筋初锈时间的影响[J].自然灾害学报.2010,19(3):13-18
    [29]何世钦,贡金鑫.弯曲荷载作用对混凝土中氯离子扩散的影响[J].建筑材料学报,2005,8(2):134-138
    [30]高建明,余振新,宋鲁光.荷载和干湿交替耦合作用下混凝土抗氯离子侵蚀研究[C].2011年混凝土与水泥制品学术讨论会论文集,37-43
    [31] Tsukamoto M. Tightness of fiber concrete. Darmstadt Concr: Annu[J],1990:215–225
    [32] Wang K, Jansen DC, Shah SP, Karr A. Permeability study of cracked concrete[J]. Cement andConcrete Research,1997,27(3):381–393
    [33] Lawler JS, Zampini D, Shah SP. Permeability of cracked hybrid fiber-reinforced mortar underload[J]. ACI Mater,2002,1999(4):379–385
    [34] Lawler JS, Zampini D, Shah SP. Microfiber and macrofiber hybrid fiber-reinforcedconcrete[C]. ASCE J Mater Civil Eng2005,17(5):595–604
    [35] Banthia N, Bhargava A. Permeability of stressed concrete and role of fiber reinforcement[J].ACI Mater,2007,104(1):70–76
    [36] Biparva A. Permeability and durability of high volume flyash concrete under an appliedcompressive stress[D]. M.A.Sc. Thesis, University of British Colombia,2005:103-111
    [37] Hearn N, Lok G. Measurement of permeability under uniaxial compression: a test method[J].ACI Mater,1998,95(6):691-694
    [38] Hearn N. Saturated permeability of concrete as influenced by cracking and sew-sealing[D].Ph.D. Thesis, University of Cambridge, Cambridge, UK;1992
    [39] Picandet V, Khelidj A, Bastian G. Effect of axial compressive damage on gas permeability ofordinary and high-performance concrete[J]. Cem Concr Res,2001,31(11):1525–1532
    [40] AASHTO T277. Standard method of test for rapid determination of the chloride permeabilityof concrete[D]. Washington (DC, USA): American Association of State Highway andTransportation Officials,1993
    [41]彭智.干湿循环和荷载耦合作用下氯离子侵蚀混凝土模型研究[D].浙江大学硕士论文,2010:23-28
    [42]黄鹏飞.钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究[D].中国建筑材料科学研究院博士论文,2004:21-33
    [43]邓宏卫.轻质高强粉煤灰陶粒的制备及其混凝土性能[D].哈尔滨工业大学博士论文,2009:32-37
    [44]林毓梅,冯琳.在海水中混凝土应力腐蚀试验研究[J].水利科学,1995(2):40-44
    [45] Klaus-Christian Werner, Yaoxing Chen and Ivan Odler. Investigations on Stress Corrosion ofHardened Cement Paste[J]. Cement and Concrete Research,30,2000:1443-1451
    [46] U. Schneider, S.W. Chen. The Chemomechanical Effect and the Mechanochemical Effect onHigh-performance Concrete Subjected to Stress Corrosion[J]. Cement and ConcreteResearch,28(4),1998:509-552
    [47]张亦涛.应力作用下水泥基材料碳化和渗透特性研究[D].河海大学硕士论文,2004:16-18
    [48]张德锋.现代预应力混凝土结构耐久性研究[D].东南大学博士论文,2001:33-39
    [49]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].东南大学博士论文,2000:34-39
    [50]刘斯凤.荷载—复合离子—干湿交替下生态混凝土的损伤过程与寿命[D].东南大学博士论文,2000:39-48
    [51]李长成.水泥基材料碳硫硅钙石型硫酸盐侵蚀破坏及预防措施研究[D].中国建筑材料科学研究总院博士论文,2009:23-34
    [52]万小梅.力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D].西安建筑科技大学博士论文,2011:19-25
    [53]马立国,张云升,宋鲁光等.荷载作用下混凝土渗透性能实验方法研究[C].第八届耐久性混凝土会议论文集,2012:1-8
    [54]袁承斌,张德峰,刘荣桂.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版).2003(1):50-54
    [55]孟振全,吴振琏.表面渗透性对混凝土耐久性的影响[J].防渗技术,1997,3(4):6-10
    [56] Dhir R K, Hewlett P C, Chan Y N. Near surface characteristics of concrete: intrinsicpermeability[J].Magazine of Concrete Research,1989,41(147):87-89
    [57] Whiting D. Rapid Determination of the Chloride Permeability of Concrete[N]. ResearchReport FHWA/RD-81/119,August,1981:587-602
    [58] ASTM C1202. Standard test method for electrical indication of concrete’s ability to resistchloride ion penetration[S].1994:3-8
    [59]周啸尘.高性能混凝土气体渗透性研究[D].上海同济大学博士论文,2004:12-17
    [60]赵铁军.高性能混凝土的渗透性研究[D].清华大学博士论文,1997:22-23
    [61] Tang L.Chloride Transport in Concrete-Measurement and Prediction[D].[Ph.D.Thesis].Goteborg:Department of Building Materials, Chalmers University of Technology,1996:54-58
    [62] Otsuki N,Nagataki S,Nakashita K. Evaluation of AgNO3solution spray method formeasurement of chloride penetration into hardened cementitious matrix materials[J]. ACI Mater,1992,89(6):587-592.
    [63] Neville A M.Properties of Concrete:4th and Final Edition[M].London:Longman GroupLimited,1995:844
    [64]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:1-7
    [65] Rob B Polder, Willy H A Peelen. Characterisation of Chloride Transport and ReinforcementCorrosion in Concrete Under Cyclic Wetting and Drying by Electrical Resistivity[J]. Cement&Concrete Composites,2002,24:427-435
    [66]姬永生,袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J].工业建筑,2006,36(12):16-19
    [67]卫军,余璟,董荣珍等.干湿循环条件下混凝土内氯离子输运机理研究[J].东南大学学报(自然科学版),2006,S2:150-153
    [68]丁平华,高建明,汪廷秀.干湿循环作用下混凝土抗氯离子侵蚀研究[J].福建建筑,2009,12:3-5
    [69]乔巍,姬永生,张博雅等.海洋潮汐区混凝土中氯离子传输过程的试验室模拟方法[J].四川建筑科学研究,2012,38(3):224-229
    [70]陈春雷,邵林,郑建军.干湿循环下混凝土中氯离子的一些扩散特性[J].混凝土,2009,3:21-23
    [71]何富强,史才军,元强等.硝酸银显色法变色边界处氯离子浓度影响因素研究[J].硅酸盐学报,2008,36(7):590-595
    [72]何富强.硝酸银显色法测量水泥基材料中氯离子迁移[D].长沙:中南大学土木建筑学院,2010:43-48
    [73] GB/T1972-2005碟形弹簧[S]
    [74]曹青,谭克锋,袁伟.水泥基材料氯离子固化能力的研究[J].武汉理工大学学报,2009,31(6):24-27
    [75]余红发,孙伟,鄢良慧等.混凝土使用寿命预测方法的研究I——理论模型[J].硅酸盐学报,2002,30(6):686-690
    [76]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社,2003:73-74
    [77] Collepardi M., Marcialis A, Turizzani R. Penetration of ehloride ions into cement pastes andconcretes [J]. J AM CERAM SOC,1972,55:534-535
    [78]王显利.氯离子侵蚀的钢筋混凝土结构锈蚀损伤[D].大连:大连理工大学博士论文,2008:13-14
    [79]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].南京:东南大学材料科学与工程学院,2006:16-19
    [80] Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concretemarine structures: an environmental methodology[J]. ACI Structural Journal,1998,95(1):27-36
    [81]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,9(3):240-247
    [82]王新友,李宗津.混凝土使用寿命预测的研究进展[J].建筑材料学报,1999,2(3):249-256
    [83]余红发,孙伟.混凝土氯离子扩散理论模型[J].东南大学学报(自然科学版),2006,11(增刊Ⅱ):68-76
    [84]唐修生.超声探测混凝土损伤和内部缺陷研究[D].南京:南京水利科学研究院硕士论文,2004:15-18
    [85]张治泰,邱平.超声波在混凝土质量检测中的应用[M].北京:化学工业出版社,2006:113-131
    [86]廖杰洪,陆洲导,余江滔.超声波检测混凝土构件循环荷载下的损伤.结构工程师,2012,28(5):149-151
    [87] Suaris W.,Fernando V..Ultrasonic pulse attenuation as a measure of damage growth duringcyclic loading of concrete[J].ACI Materials Journal,1987,84(30):185-193
    [88] Nogueira,Carnot L,Willam Kaspar J.Ultrasonic testing of damage in concrete underuniaxial compression[J]. ACI Materials Journal,2001,98(3):265-275
    [89] Selleck Scott F,Landis Eric N,Peterson Michael L,et al.Ultrasonic investigation of concretewith distributed damage[J].1998,95(1):27-36
    [90]王怀亮,宋玉普.不同尺寸混凝土试件受压状态下超声波传播特性研究[J].大连理工大学学报,2007,47(1):90-94
    [91]黄煜镔.混凝土脆性与力学参数的尺寸效应及其相互关系的研究[D].重庆大学博士论文,2002:3-16
    [92]方永浩,余韬,吕正龙.荷载作用下混凝土氯离子渗透性研究进展.硅酸盐学报,2012,40(11):1537-1543
    [93]邓宏卫,曾京生,郑俊等.受拉荷载作用下混凝土氯离子渗透性试验方法研究[J].低温建筑技术,2010(10):3-7
    [94] Basheer P, Andrews R, Robinson D, et al. PERMIT ion migration test for measuring thechloride ion transport of concrete on site. NDT&E International,2005(38):219-229
    [95]杨进波.混凝土保护层结构与渗透性现场检测方法的研究[D].北京:清华大学博士学位论文,2008:58-61
    [96] Nordtest Method. NT Build355. Chloride diffusion coefficient from migration cellexperiments[S],1997.
    [97]吴立朋.表层混凝土氯离子扩散性能及其测试方法研究[D].北京:清华大学博士学位论文,2011:38-41
    [98] Zhang T, Gjorv O E. An electrochemical method for accelerated testing of chloridediffusivity in concrete[J]. Cement and Concrete Research,1994,24(8):1534-1548.
    [99]李荻.电化学原理(第3版)[M].北京:北京航空航天大学出版社,2008:34-65
    [100] Nanukuttan S V, Basheer P A M, Robinson D J. Determining the chloride diffusivity ofconcrete in situ using the Permit ion migration test[D].Proceedings of Concrete platform. UK:Queen’s University of Belfast, Northern Ireland, United Kingdom,2007:76-83
    [101] GB/T50746-2008,混凝土耐久性设计规范[S]
    [102]阮欣,陈艾荣,石雪飞.桥梁工程风险评估[M].北京:人民交通出版社,2008:23-32
    [103]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000:72-75
    [104]韩理安.水平承载桩的计算[M].长沙:中南大学出版社,2004:44-47
    [105]吴晓明,郭伟.PERMIT法在桥梁结构混凝土氯离子渗透性现场测试中的应用[J].公路,2012(10):138-142
    [106] Basheer P A M, Andrews R J, Robinson D J, et al. PERMIT ion migration test formeasuring the chloride ion transport of concrete on site[J]. NDT&E International,38(3):219-229
    [107]郝挺宇,惠云玲,梅名虎等.结构混凝土耐久性无损检测技术[J].东南大学学报(自然科学版),2006(增刊Ⅱ):49-52
    [108]陶琦.钢筋锈蚀的临界氯离子浓度与混凝土的剩余寿命预测[D].黑龙江:哈尔滨工业大学博士论文,2010:3-19
    [109]安国栋.混凝土结构正常使用寿命预测.交通世界,2010(8):100-101
    [110]日本土木学会.混凝土认证标准书设计编写[S],2008:119-120
    [111]河野克哉,市川牧彦.混凝土中钢筋锈蚀的氯离子临界浓度及规范.梁承奎等译.混凝土世界,2011(10):34-36
    [112]宋国栋,赵尚传,付智等.氯离子临界浓度研究现状与进展.公路交通科技,2009(7):128-131
    [113] GB50010-2002,混凝土结构设计规范[S]
    [114] GB50476-2008,混凝土结构耐久性设计规范[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700