用户名: 密码: 验证码:
混凝土结构耐久性环境区划与耐久性设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以混凝土结构耐久性设计区划为研究对象,是混凝土结构耐久性环境区划标准(Durability Environmental Zonation Standard, DEZS)研究的承接和深化。围绕混凝土结构耐久性设计区划研究方法的建立和具体实施,研究服役环境对结构的作用效应和结构对环境作用效应的抵抗能力,基于环境对结构作用效应的量化结果进行自然服役环境的作用等级区划,并建立相应环境分区的耐久性设计方法与设计规定。具体包括以下几点:
     1.针对混凝土结构耐久性设计的要求,给出混凝土结构耐久性设计区划研究的内涵,提出混凝土结构耐久性设计区划研究的总体规定、原则体系和框架体系。讨论混凝土结构耐久性设计的多维空间属性,给出考虑区域环境差异、局部环境差异、结构与材料个性差异和使用年限差异的耐久性环境作用等级区划方法以及基于区划的耐久性设计方法体系。
     2.分析和确定混凝土结构耐久性劣化的主要机理及不同机理的环境影响因素和对应的量化指标,有针对性的获取基础数据资料和混凝土结构耐久性观察与检测数据,研究与耐久性有关的统计值及区域分布值,作为区划研究的数据基础。
     3.确定一般大气环境研究的基准环境与标准试件;结合环境温度、湿度和混凝土强度对混凝土碳化深度影响的标准化试验研究,建立适合于区划的碳化深度计算模型及相应耐久性寿命预测的概率方法。以环境作用系数为分区指标,一般大气环境基准环境作用等级区划方法,对局部环境给出了概念性的等级调整方法,建立一般大气环境的环境区划体系;基于环境区划结果,建立包含标准试件分区设计规定、考虑不同强度等级的材料修正系数和不同设计年限的时间修正系数的分区耐久性设计体系。
     4.确定海洋竖向环境与近海大气环境的基准环境和标准试件;从工程意义上提出混凝土名义表面氯离子浓度的概念,建立其与混凝土表层实测氯离子含量的统计关系;建立海洋竖向环境中名义表面氯离子浓度和龄期系数随高程变化的关系式,以及近海环境下的混凝土表层氯离子含量随离海岸距离的关系式;基于采用类似NT Build443试验方法的试验研究成果,建立考虑溶液氯离子含量和温度修正的的混凝土氯离子表观扩散系数计算公式,并基于Fick第二定律建立基于可靠度的海洋氯离子环境下混凝土结构耐久性概率预测方法。以海水浸润时间比为指标,完成对海洋竖向环境的环境区划;界定近海大气环境的影响范围为550m,以离海岸距离为指标,完成近海大气环境的环境区划;建立包括基准环境下标准试件的分区设计规定、考虑不同水胶比的材料修正系数、不同设计年限的时间修正系数和不同环境条件的温度修正系数与氯离子含量修正系数的分区耐久性设计体系。
     5.确定冻融环境下的基准环境和标准试件;以年均负温天数为指标建立了现场冻融循环次数的统计方法,并进一步给出了计算现场冻融循环次数的实用公式;以环境的平均降温速率为指标,基于静水压理论,针对饱水状态下的混凝土得到了不同冻融环境下混凝土损伤之间的比例关系,给出了等效室内冻融循环次数的计算方法,并给出利用室内等效冻融循环次数对混凝土抗冻耐久寿命进行预测的方法。以室内等效冻融循环次数为分区指标,建立冻融环境环境作用等级区划方法和以饱含水时间比例系数进行区划等级调整的方法;给出相应的分区耐久性设计规定。等效室内冻融循环次数是考虑了冰冻降温速率、饱水时间比例和冰冻时长等因素的量化指标,可以直接标识各地环境的严酷程度,又与混凝土的抗冻等级直接联系,可直接建立环境分区与分区耐久性设计的联系,直观的指导混凝土的抗冻耐久性设计。
     6.依托数据点分布较为密集的浙江省环境基础数据,基于提出的混凝土结构耐久性设计区划研究体系,完成浙江省一般大气环境、海洋氯离子环境和冻融环境的环境区划与分区设计规定,开发混凝土结构耐久性设计区划地理信息查询系统。浙江省耐久性设计区划的实施,一方面可以作为一个完整的实施案例,细化指导浙江省混凝土结构耐久性设计,另一方面可以作为数据分布较为稀疏的全国环境区划结果的校核。
     7.基于建立的环境耐久性环境区划体系和分区耐久性设计体系,选取不同的典型工程实例进行对应环境下混凝土结构的耐久性设计,说明所建混凝土结构耐久性设计区划方法体系的可行性。
Research in this paper is the deepening and development of the methodology of Durability Environmental Zonation Standard (DEZS). Focusing on the interaction between the external environments and the structures, the area of natural environments related to the durability of concrete structures are divided into different parts according to the degree of external environments' effects on the structures, and the corresponding durability design regulations and design methods are presented and established. Research work in this paper could be introduced as:
     1. Based on the requirements of durability design of concrete structures, basic connotation of research on environmental zonation based durability design of concrete structure is given, and also systems of the general provisions, principles and framework are put forward. With the discussion of multi-dimensional spatial attribute of durability design, the method system of environmental zonation and durability design for zones obtained is presented. Differences in regional environment, in local environment, in structure/component, in material composition, and in expected life time are taken into consideration in the method system.
     2. The durability of concrete structures is closely related to its exposure environments. Effect of various environmental factors and the corresponding quantitative index on the deterioration mechanism for different durable problems is analyzed and determined. Also, their statistical values and regional characteristic distribution are achieved by analyzing the historical climatological data and data obtained from observations or durability tests of concrete structure. These works lay a foundation of the environmental durability zonation.
     3. The reference environment and standard specimen are fixed for general atmospheric environment. The carbonation depth prediction model is established correspondingly based on the experimental study of the influence of temperature, humidity and concrete strength on carbonation depth in concrete. Then, the limit state and the target reliability index under carbonation are determined, and the probabilistic method is applied for the prediction of concrete structural durability. Taking the environmental action coefficient as the zoning index, the environmental zonation method system of general atmospheric environment is established with zonation map of the reference environment and zonation level adjustment according to local environment. Based on the results of environmental zonation, the corresponding durability design method for each zone level is given, which contains the design regulations of specimen in each zone, correction coefficient for different strength and correction coefficient for different age.
     4. The reference environment condition and standard specimen are determined respectively for marine vertical environment and offshore atmospheric environment. Concept of the nominal surface chloride concentration is proposed based on the engineering practice, and its statistical relation with the measured chloride content of concrete surface is given. Relations between the nominal surface chloride concentration and altitude, between the age coefficient and altitude, between the surface chloride concentration and distance from sea are given based on tested data. Introducing into the influence of environmental temperature and chloride content, formula for calculating the apparent chloride diffusion coefficient is established by considering only data from "bulk diffusion tests"(similar to the procedure outlined in the Scandinavian standard test NT Build443) are used in the analysis. Then, the probabilistic method is applied for the prediction of durability of concrete structures based on Fick's second law. Taking the ratio of wetting time as the zoning index of marine vertical environment and distance from sea as the zoning index of offshore atmospheric environment, the environmental zonation method system is established for marine chloride environment. Based on the results of environmental zonation, the corresponding durability design method for each zone level is given, which contains the design regulations of specimen in each zone, correction coefficient for different water binder ration, correction coefficient for different age, correction coefficient for different temperature, and correction coefficient for different chloride content.
     5. The reference environment condition and standard specimen are determined for freezing-thawing environment. A statistical method is put forward to get the on-site freeze-thaw cycles by using the average annual number of negative-temperature days as an index. In addition, a practical formula is obtained accordingly to predict the natural freeze-thaw cycles. Then, according to the average freezing rate in the freezing and thawing, the proportion of concrete damage between different freeze-thaw environments is obtained based on the hydrostatic pressure theory, and a method for predicting the equivalent laboratory freeze-thaw cycles from on-site freeze-thaw cycles is given. Furthermore, the durable life of concrete in natural frost environments can be predicted easily by the equivalent cycle number. Taking the equivalent laboratory freeze-thaw cycles as the zoning index of freezing-thawing environment, the environmental zonation method system of frost environment is established with zonation map of the reference environment and zonation level adjustment considering time of concrete in saturated condition. Based on the results of environmental zonation, the corresponding durability design method for each zone level is given. The equivalent laboratory freeze-thaw cycles considering the influence of the average freezing rate, the lowest freezing temperature and the proportional coefficient of water saturation time for concrete during the freezing and thawing, can be used easily in the prediction and assessment of the structural durability in natural frost environments.
     6. Zhejiang province, with more intensive distribution of environmental data obtained, is taken as a complete implementation of the method system of environmental zonation and durability design for concrete structures in each zone proposed in this paper. With achievements for the general atmospheric environment, the marine chloride environment and the freezing-thawing environment of Zhejiang province, a geography information query system for durability design zonation of concrete structures is developed. The implementation of Zhejiang province, on the one hand, can be a refining guidance for durability design of concrete structure in Zhejiang province; on the other hand, can be taken as sample for checking the results of the national environmental zonation with a relatively sparse data distribution.
     7. Based on the methodology of environmental zonation and durability design for zones established, durability design of concrete structures in differenent environments has been achieved for the chosen typical projects. The results of the design aplications show that the established methodology of durability design for concrete structures is reasonable.
引文
[1—1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [1—2]中华人民共和国国家统计局网站,http://www.stats.gov.cn.
    [1-3]U.S. Geological SurveyNational Minerals Information Center, http://minerals. usgs.gov/minerals/pubs/commodity/cement/.
    [1-4]World Steel Association, http://www.worldsteel.org/?action=stats_search.
    [1-5]U.S. Energy Information Administration, http://www.eia.gov
    [1-6]Carbon Dioxide Information Analysis Center, http://cdiac.ornl.gov
    [1—7]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学,博士学位论文,2008.
    [1-8]Comite Euro-International du beton (1991) "CEB-FIP Model Code 1990". Thomas Telford Services LTD (London).
    [1—9]武海荣,金伟良,吕清芳,王海龙,基于可靠度的混凝土结构耐久性环境区划,浙江大学学报(工学版),优先出版,DOI:CNKI:33-1245/T.20110428.1506.002,2011.
    [1—10]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T50476-2008)[S].北京:中国建筑工业出版社,2008.
    [1—11]中华人民共和国国家标准.混凝土结构设计规范(GB 50010—2010)[S].北京:中国建筑工业出版社,2010.
    [1-12]金伟良,武海荣.落塘桥质量检测及静载试验报告[R].浙江大学项目研究报告,杭州,2008.
    [1-13]TOMOSAWA F. Japan's experiences and standards on the durability problems of reinforced concrete structures[J]. International Journal of Structural Engineering,2009,1(1):1-12.
    [1—14]金伟良.混凝土结构耐久性研究主要进展及其发展趋势[A].国家自然科学基金委员会‘十一·五”发展战略研究报告:建筑、环境与土木工程Ⅱ”(土木工程卷)[R].北京:科学出版社,2006.
    [1—15]陈传康,伍光和,李昌文.综合自然地理学[M].北京:高等教育出版社,1993.
    [1-16]http://baike.baidu.com/view/444851.htm
    [1-17]赵松乔.现代自然地理[M].北京:科学出版社,1988.
    [1-18]冯绳武,中国自然地理,兰州大学出版社,1990
    [1—19]国家地震局.中国地震烈度区划图(1990)概论[M].北京:地震出版社,1996.
    [1—20]中国科学院自然区划工作委员会.中国地貌区划(初稿)[M].北京:科学出版社,1959.
    [1—21]中国科学院自然区划工作委员会.中国综合自然区划(初稿)[M],北京:科学出版社,1959.
    [1—22]张家诚.中国气候总论[M].北京:万象出版社,1991.
    [1-23]刘光明.中国自然地理图集[M].北京:中国地图出版社,2010.
    [1—24]中华人民共和国国家标准.《建筑气候区划标准》(GB50178-93)[S].北京:中国建筑工业出版社,1993.
    [1—25]李世奎.中国农业气候资源和农业气候区划[M]北京:科学出版社,1988.
    [1—26]中华人民共和国交通部标准.《公路自然区划标准》(JTJ003-86)[S].北京:人民交通出版社,1986.
    [1-27]Rui Jin, Xin Li, Tao Che. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature [J]. Remote Sensing of Environment,2009, 113(12):pp.2651-2660.
    [1—28]谢守穆.《建筑气候区划标准》GB50178-93介绍[J].建筑科学,1994(4):57-61.
    [1—29]孙寿成.关于地震区划图编制的几个历史性问题[J].地震学刊,1994(3).
    [1-30]徐坚如.地震区划和地震动参数区划图简介[J].科学技术通讯,2002(4).
    [1—31]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2004.
    [1—32]中华人民共和国水利行业标准.《水工混凝土结构设计规范》(SL 191—2008)[S].北京:中国水利水电出版社,2009.
    [1—33]中华人民共和国行业标准.《铁路混凝土结构耐久性设计规范》(TB 1005-2010)[S].北京:中国铁道出版社,2011.
    [1-34]General Guidelines for Durability Design and Redesign[S]. The European Union-Brite Euram Ⅲ. Document BE95-1347/R15,2000.
    [1-35]European Standard. Eurocode2:《Design of Concrete Structures》prEN1992-1-1(Revised final draft).
    [1-36]EN 206-1:2000 Concrete-Part 1:Specification performance production,and conformity.
    [1-37]Ausralia StandardTMAS 3600-2001[S]. Sydney:Standards Australia International Ltd,2001.
    [1-38]ACI committee 318,. building Code Requirement for structure concrete and Commentary (ACI 318M-05),2005.
    [1-39]CSA A23.1-94 Concrete. Matetials and Methods of Concete Construction.
    [1-40]DIN 1045/A1:2001. Structure use of concrete-design and construction.
    [1-41]NS 3473-92. Prosjektering av betongkonstruktioner-Beregnings-ogkostruksjonsregler.
    [1-42]Swedish Building Centre.'High Performance Concrete Structures-Design Handbook'. Printed by Elanders Svenskt AB, Stockholm,2000.
    [1-43]LIFECON. Service Life Models, Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe[R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainability.2003.
    [1—44]浙东沿海高桩码头耐久性调查和研究报告[R].浙江大学研究报告.杭州:2002.
    [1—45]浙江省公路混凝土桥梁结构耐久性调查报告[R].浙江大学研究报告.杭州:2004.
    [1—46]张苑竹,金伟良.浙东沿海高桩码头耐久性调查与对策[C].中国工程院工程技术论坛,混凝土结构耐久性学术研讨会.2002.
    [1-47]Jin Wei-liang, Lv Qing-fang. Study on durability zonation standard of concrete structural design[C]//Durability of Reinfored Concrete on the Combined Mechanical Climatic Loads. Qingdao:[s.n],2005:35-42.
    [1-48]Jin Weiliang, Lv Qingfang. Durability zonation standard of concrete structure design[J]. Journal of Southeast University (English Edition),2007,23(1):98-104.
    [1-49]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州,浙江大学,2007.
    [1-50]金伟良,卫军,袁迎曙等.氯盐环境下混凝土结构耐久性理论与方法(国家自然科学基金重点项目No.50538087,2006-2009)[M].北京:科学出版社,2011.
    [l-51]宋峰.基于混凝土结构耐久性能的环境区划研究[D]浙江大学,杭州,2010.
    [1-52]王艳.混凝土结构耐久性环境区划研究[D].西安,西安科技大学,2007
    [1-53]HUANG Qing-hua, XU Ning, GU Xing-lin, et al. Environmental zonation for durability assessment and design of reinforced concrete structures in China[C].//Proceedings of the first International Conference on Microstructure Related Durability of Cementitious Conposites, Nanjing:[s.n.],2008:735-743.
    [1—54]阿列克谢耶夫著,黄可信,吴兴祖等译,钢筋混凝土结构中钢筋腐蚀与保护[5-M],北京,中国建筑工业出版社,1983.
    [1-55]Papadakis VG, Vayenas CG, Fardis MN. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal,1991(88):363-373.
    [1—56]卢峰,刁波混凝土碳化及钢筋锈蚀预测模型对比验证[J].混凝土,2009(1):36-42.
    [1—57]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992(6).
    [1—59]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑,1998,28(1):16—19.
    [1—60]邸小坛,周燕.混凝土碳化规律研究[R].中国建筑科学研究院.北京,1995.
    [1-61]Lesage de Contenay C. Deterrioration and repair[A]. Bahrain Proc.1995:467-483.
    [1—62]牛荻涛 混凝土结构耐久性与寿命预测P23-29
    [1—63]徐善华,牛荻涛,王庆霖.大气环境条件下混凝土保护层取值的研究[J].土木工程学报,2005,38(11):45-50.
    [1-64]Anders Lindvall. DuraCrete—Probabilistic performance based durability design of concrete structures[C],2nd Int. PhD. Symposium in Civil Engineering,1998
    [1-65]Collepardi M,et al. Penetration of Chloride Ions into cement pastes and concrete [J]. American Ceramic Society,1972,55.
    [1-66]Mangat P. S., Molloy B. T. Prediction of long term chloride concentration in concrete [J]. Material and structures,1994, (27).
    [1-67]Boddy A., Bentz E., Thomas M. D. A., et al. An overview and sensitivity study of a multimechanistic chloride transport model [J]. Cement and concrete research,1999, (29): 827-837.
    [1-68]Tumidajski P. J. Boltzmann-Matano analysis of chloride diffusion into blended Cement Concrete. Journal of Materials in Civil Engineering,1996,195(11).
    [1-69]Tang L, Nilsson L O. Chloride Binding Capacity and Bingding Isotherm of OPC Paste and Mortars [J]. Cement and Concrete Research,1993,23 (11)
    [1—70]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1).
    [1-71]Griesel E J, G A lexander. Effect of Controlled Environmental Conditions on Durability Index Parameters of Portland Cement Concretes[J]. Cement, Concrete and Aggregates CCAGDP,2001,23 (1).
    [1-72]Per G. Chloride Ingress in Concrete Structures:Extrapolation of Observations[J]. ACI Materials Journal,2003,100 (2).
    [1-73]G.R.Meria, C.Andrade, C. Alonso, J.C. Borba Jr, M. Padilha Jr. Durability of concrete structures in marine atmosphere zones-The use of chloride deposition rate on the wet candle as an environmental indicator[J]. Cement and Concrete Composites Volume 32(6), 2010, P 427-435
    [1-74]McGee R. Modeling of durability performance of Tasmanian bridges. In:Melchers RE, Stewart MG, editors. ICASP8 applications of statistics and probability in civil engineering, vol.1,1999. p.297-306.
    [1-75]姚昌建.沿海码头混凝土设施受氯离子侵蚀的规律研究[D].浙江大学硕士学位论文,杭州,2007.
    [1—76]张奕,姚昌建,金伟良.干湿交替区域混凝土中氯离子分布随高程的变化规律[J].浙江大学学报(工学版),2009,43(2):360-365.
    [1-77]王传坤,混凝土氯离子侵蚀和碳化试验标准化研究[D].杭州,浙江大学,2010:54-67.
    [1-78]P. S. Mangat, B. T. Molloy. Prediction of long term chloride concentration in concrete [J]. Materials and Structures,1994,27(6):338-346.
    [1-79]吴瑾,程吉听.海洋环境下钢筋混凝土结构耐久性评估[J].水力发电学报,2005,24(1):69-73.
    [1-80]General Guidelines for Durability Design and Redesign [M], DuraCrete, Feb,2000.
    [1-81]Gehlen C. Probability-based service life design of reinforced concrete structures. Reliability studies for prevention of reinforcement corrosion, Thesis, RWTH-Aachen, D82(Diss.RWTH+Aachen), Heft 510 der Schriftenreihe des DAfStb,2000.
    [1—82]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学博士学位论文,杭州,2008.
    [1—83]刘西拉,唐光谱.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412-2418.
    [1-84]李金平,盛煜,丑亚玲.混凝土冻融破坏研究现状[J].路基工程,2007,(3):1-3.
    [1-85]Fagerlund G. The significance of critical degree of saturation at freezing of pore and brittle materials. In:Durability of concrete. Detroit:ACI,1975.
    [1-86]Bazant Z P. Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society,1998,71(9):776-783.
    [1—87]蔡昊.棍凝土抗冻耐久性预测模型[D].北京:清华大学博士学位论文,1998.
    [1—88]许丽萍,吴学礼,黄士元.抗冻混凝土的设计[J].上海建材学院学报,1993,6(2):112—123.
    [1—89]李金玉,曹建国等.混凝土冻融破坏机理的研究[J].水利学报,1999,(1).
    [1-90]宋玉普,冀晓东.混凝土冻融损失可靠度分析及剩余寿命预测[J].水利学报,2006,37(3):256-263.
    [1—91]王立久,混凝土抗冻耐久性预测数学模型[J].混凝土,2009(4):1—4.
    [1—92]李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[J].水利学报,1999,1:41-49.
    [1-93]Vesa Penttala. Surface and inemal deterioration of concrete due to saline and non-saline freeze-thaw loads. Cement and concrete research,2006(36):921-928.
    [1-94]李晔,姚祖康,孙旭毅等.铺面水泥混凝土抗冻标号预估模型[J].长安大学学报(自然科学版),2005,25(2):21—25.
    [1-95]徐晓巍.不同环境下混凝土冻融试验标准化研究[D].浙江大学硕士学位论文,杭州,2010.
    [2-1]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2004.
    [2—2]王艳.混凝土结构耐久性环境区划研究[D].西安,西安科技大学,2007.
    [2-3]Jin Wei-liang, Lv Qing-fang. Study on durability zonation standard of concrete structural design[C]//Durability of Reinfored Concrete on the Combined Mechanical Climatic Loads. Qingdao:[s.n.],2005:35-42.
    [2-4]Jin Weiliang, Lv Qingfang. Durability zonation standard of concrete structure design[J]. Journal of Southeast University(English Editon),2007,23(1:98-104.)
    [2—5]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州,浙江大学,2007.
    [2—6]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国建筑工业出版社,2008.
    [2—7]金伟良,卫军,袁迎曙等.氯盐环境下混凝土结构耐久性理论与方法(国家自然科学基金重点项目No.50538087,2006-2009)[M].北京:科学出版社,2011.
    [2—8]武海荣,金伟良,吕清芳,王海龙,基于可靠度的混凝土结构耐久性环境区划,浙江大学学报(工学版),DOI:CNKI:33-1245/T.20110428.1506.002,2011.
    [2—9]宋峰.基于混凝土结构耐久性能的环境区划研究[D].浙江大学,杭州,2010.
    [2-10]HUANG Qing-hua, XU Ning, GU Xing-lin, et al. Environmental zonation for durability assessment and design of reinforced concrete structures in China[C].//Proceedings of the first International Conference on Microstructure Related Durability of Cementitious Conposites, Nanjing:[s.n.],2008:735-743.
    [2-11]武海荣,金伟良,混凝土冻融环境区划与抗冻性寿命预测,浙江大学学报(工学版),2012,46(4):650—657.
    [2-12]Jin Weiliang, Wu Hairong.Grading the environmental area according to its effect on the durability of concrete structures.International conference on advances in construction materials through science and engineering.Hong Kong, China,September5-7,2011;
    [3-1]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2004.
    [3—2]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国 建筑工业出版社,2008.
    [3-3]S. C. Dyxter, C. H. Culberson. Global variability of natural sea water[J]. Material Performance, 1980,19(9):26???
    [3—4]李金桂,赵闺彦.腐蚀和腐蚀控制手册[M].北京,国防工业出版社,1988,39.
    [3-5]C.D. O'Dowd, M.H. Smith, I.A. Consterdine, J.A. Lowe. Marine aerosol, sea-salt, and the marine sulphur cycle:a short review[J]. Atmospheric Environment 1997(31):73-80.
    [3-6]Petelski T, Chomka M. Sea salt emission from the coastal zone[J]. Oceannologia,2000(42): 399-410.
    [3-7]Ausralia StandardTMAS 3600-2001[S]. Sydney:Standards Australia International Ltd,2001.
    [3—8]王冰,王命平,赵铁军.近海陆上盐雾区的分区研究[A].第四届混凝土结构耐久性科技论坛论文集:混凝土结构耐久性设计与评估方法[C].北京:机械工业出版社,2006.
    [3—9]赵尚传.基于混凝土结构耐久性的海潮影响区环境作用区划研究[J].公路交通科技,2010,27(7):61-64,75.
    [3-10]Ha-Won Song, Chang-Hong Lee, Ki Yong Ann. Factors influencing chloride transport in concrete structures exposed to marine environments[S]. Cement & Conrete composites, 2008,30(2):113-121.
    [3-11]LIFECON. Service Life Models, Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe[R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainability.2003:1-27.
    [3—12]杨全冰,黄士元.对混凝土结构抗冻融及盐冻侵蚀耐久性设计的建议[G]//.中国工程院土木水利与建筑学部.混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2004:130—142.
    [3-13]李晔,姚祖康,孙旭毅等.铺面水泥混凝土冻融环境量化研究[J].同济大学学报(自然科学版),2004,32(10):1408—1412.
    [3—14]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州,浙江大学,2007.
    [3-15]马文彬,李果.自然气候条件下混凝土北部温湿度相应规律研究[J].混凝土与水泥制品,2007(2):18-21.
    [3-16]Janssen D J. Moisture in portland cement conerete[R]. Washington D C:Transportation Research Board,1987.
    [3-17]C. Andrade, J. Sarria, C. Alonso. Relative humidity in the interior of concrete exposed to natural and artificial weathering [J]. Cement and Concrete Research,1999(29):1249-1259.
    [3—18]陆秀峰,刘西拉,覃维祖.自然环境条件下混凝土孔隙水饱和度分布[J].四川建筑科学研究,2007,33(5):114-121.
    [3-19]Parrot L J. Moisture profiles in drying concrete. Advances in Cement Research.1988,1(1): 164-170.
    [3-20]Mette R. Geiker, Peter Laugesen. On the effect of laboratory conditioning and freeze/thaw exposure on moisture profiles in HPC[J]. Cement and Concrete Research,2001,31: 1831-1836.
    [3—21]宋晓冰.钢筋混凝土结构中的钢筋腐蚀[D].北京:清华大学土木工程系,1999.
    [3-22]葛勇,孙迎迎,袁杰等.混凝土水饱和程度影响因素的研究[J].低温建筑技术,2006(6):1—3.
    [3—23]徐道富.环境气候条件下混凝土碳化速度研究[J].西部探矿工程,2005(10):147—149.
    [3-24]Manu Santhanam, Menashi D. Cohen, Jan Olek. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cement and Concrete Research. 2002,32(4):585-592.
    [3-25]Fevziye Akoz, Fikret Turker, Sema Koral, Nabi Yuzer. Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume[J]. Cement and Concrete Research,1999,29(4):537-544.
    [3-26]王晓东,刘丽娟,赵铁军.混凝土碱-集料反应[J].海岸工程,2005,24(3):67-71.
    [3-27]王仁超,朱琳,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报,2004,36(6):824-828.
    [3-28]蒋清野.混凝土碳化数据库与混凝土碳化分析[R].攀登计划一钢筋锈蚀与混凝土冻融破坏的预测模型1997年度研究报告,1997.
    [3-29]M. D. A. Thomas, and J. D. Matthews. Carbonation of Fly Ash Concrete[J]. Magazine of Concrete Research,1992,44(160):217-228.
    [3-30]K. IRIYA, T. HTTOMI, N. TAKEDA and N. NITO. DEVELOPMENT OF CONCRETE WITH HIGH DURABILITY TO SULFATE ATTACK[A]. proceedings of International Conference on Durability of Concrete Structures,2008, Hangzhou, China.449-452.
    [3—31]刘日波,王辉.碱-集料反应综述[J].混凝土,2006(10):47-48.
    [3-32]李林.客运专线高性能混凝土箱梁氯离子耦合作用下碳化寿命研究[D].北京,北京交通大学,2008.
    [3-33]方祥位,申春妮,杨德斌,陈正汉,张忠发.混凝土硫酸盐侵蚀速度影响因素研究[J].建筑材料学报,2007,10(1):89-96.
    [3-34]Raphael Tixier, Barzin Mobasher. Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. II:Comparison with Experiments[J]. Journal of Materials in Civil Engneering,2003,15(4):314-322.
    [3-35]秦琰琰,李柏,张沛源.降水的雷达反射率因子与大气相对湿度的相关关系研究[J].大气科学,Vol.30 No.2,2006.
    [3-36]Paul Wencil Brown. An evaluation of the sulfate resistance of cements in a controlled environment[J]. Cement and Concrete Research,1981,11(5-6):719-727.
    [3-37]中国气象局国家气象信息中心.中国气象科学数据共享服务[OL/EB], [2008-06-15]. http://cdc.cma.gov.cn/index.jsp.
    [3-38]林宝玉.我国港工混凝土抗冻耐久性指标的研究与实践[C].混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2004.158-168.
    [3-39]王美秀.酸雨问题概述[J].内蒙古教育学院学报(自然科学版),1999,12(2):25—27.
    [4-1]http://baike.baidu.com/view/17349.htm
    [4—2]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国建筑工业出版社,2008.
    [4—3]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州,浙江大学,2007.
    [4-4]AHMAD S. Reinforcement corrosion in concrete structures, its monitoring and seivice life prediction_a review[J]. Cement & Concrete Composites,2003,25:459-471.
    [4—5]中华人民共和国国家标准.GB 50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [4-6]Duracrete.EU-Project (Brite Euram Ⅲ) No. BE95-1347 Probabilistic performance based durability design on concrete structures, Report No.T7-01-1, General Guidelines for Durability Design and Redesign[S]. Brussels:European Union-Brite EuRam Ⅲ,1999.
    [4-7]LAY S, SCHISSEL P, CAIRNS J. Probabilistic service life models for reinforced concrete structures[R].Germany:Technical University of Munich,2003
    [4—8]王传坤.混凝土氯离子侵蚀和碳化试验标准化研究[D].杭州,浙江大学,2010:54-67.
    [4—9]张海燕,李光宇,袁武琴.混凝土碳化试验研究[J].中国农村水利水电,2006(8):78-81.
    [4—10]陈立亭.混凝土碳化模型及其参数研究[D].西安:西安建筑科技大学,2007:39-43.
    [4—11]蒋清野,王洪深,路新瀛.混凝土碳化数据库与混凝土碳化分析[R].北京:清华大学土木工程系,1997:12.
    [4—13]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:11—32.
    [4-14]金伟良,钟小平.结构全寿命的耐久性与安全性、适用性的关系[J].建筑结构学报,2009,30(6):1-7.
    [4—15]金伟良,赵羽习.混凝土结构耐久性[N].北京:科学出版社,2002
    [4—16]中华人民共和国建设部.建筑结构可靠度设计统一标准(GB 50068-2001)[S].北京:中国建筑工业出版社,2001.
    [4-17]邸小坛,周燕.混凝土结构的耐久性设计方法[J].建筑科学,1997(1):16-20.
    [4-18]SODERQVIST M K, VESIKARI E. Generic technical handbook for a predictive life cycle management system of concrete structures (LMS)[R]. Finland:The Finnish Road Administration,2003,42-62.
    [4-19]ISO 13823, General principles on the design of structures for durability[S]. Switzerland:International Organization for Standardization, Inc.2008.
    [4-20]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(5):328—333.
    [4-21]SIEMES T, ROSTAM S. Durable safety and serviceability—a performance based design format[C]//IABSE Report 74, Proceedings IABSE Colloquium Basis of Design and Actions on Structures-Background and Application of Eurocode 1. Delft, Zurich:ABSE ETH Hoenggerberg,1996:41-50.
    [4-22]中华人民共和国国家标准.工程结构可靠度设计统一标准(GB 50153—2008)[S].北京:中国建筑工业出版社,2008
    [4—23]牛荻涛,黄振平,浦聿修.预测混凝土碳化深度的随机模型[J].工业建筑,1999,29(9):41—45
    [4—24]中国气象局国家气象信息中心.中国气象科学数据共享服务[OL/EB], [2008-06-15]. http://cdc.cma.gov.cn/index.jsp.
    [5—1]中华人民共和国水利行业标准.水工混凝土结构设计规范(SL 191—2008)[S].北京:中国标准化委员会,2009.
    [5—2]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国建筑工业出版社,2008.
    [5-3]Ausralia StandardTMAS 3600-2001[S]. Sydney:Standards Australia International Ltd,2001.
    [5-4]王冰,王命平,赵铁军.近海陆上盐雾区的分区研究[A].第四届混凝土结构耐久性科技论坛论文集:混凝土结构耐久性设计与评估方法[C].北京:机械工业出版社,2006.
    [5—5]赵尚传.基于混凝土结构耐久性的海潮影响区环境作用区划研究[J].公路交通科技,2010,27(7):61-64,75.
    [5-6]Ha-Won Song, Chang-Hong Lee, Ki Yong Ann. Factors influencing chloride transport in concrete structures exposed to marine environments[S]. Cement & Conrete composites, 2008,30(2):113-121.
    [5-7]http://wanning.hainan.gov.cn/wngov/ztlm/wngjhd/wnjj/201012/t20101204_74824.html
    [5—8]嘉兴市海洋功能区划(修编)报告[EB].嘉兴海洋与渔业网.2007.(http://www.jxagri.net/).
    [5—9]中华人民共和国国家标准.GB 50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [5-10]Duracrete.EU-Project (Brite Euram Ⅲ) No. BE95-1347 Probabilistic performance based durability design on concrete structures, Report No.T7-01-1, General Guidelines for Durability Design and Redesign[S]. Brussels:European Union-Brite EuRam Ⅲ,1999.
    [5-11]ACI committee 318. building Code Requirement for structure concrete and Commentary (ACI 318M-05),2005.
    [5-12]Swedish Building Centre.'High Performance Concrete Structures-Design Handbook'. Printed by Elanders Svenskt AB, Stockholm,2000.
    [5—13]郭丰哲.既有钢筋混凝土桥梁的耐久性检测及评估研究[D].西南交通大学,2005.
    [5-14]陈肇元.土建结构工程的安全性与耐久性[M].北京:建筑工业出版社,2003.
    [5-15]European Standard. Eurocode2:《Design of Concrete Structures》prEN 1992-1-1(Revised final draft).
    [5-16]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi. Modeling of Concrete Performance [M]. E&FN Spon, London,1999.
    [5-17]Scheidegger A. E. Physics of flow through porous media [M]. University of Toronto Press, 1974.
    [5-18]Rice C.L., Whitehead R.. Electro kinetic flow in narrow cylindrical capillary [J]. Journal of Physical Chemistry,1965,69(11):4017-4024,
    [5-19]姚诗伟.氯离子扩散理论[J].港工技术与管理,2003(5):1—4.
    [5-20]LAY S, SCHISSEL P, CAIRNS J. Probabilistic service life models for reinforced concrete structures[R].Germany:Technical University of Munich,2003
    [5-21]SODERQVIST M K, VESIKARI E. Generic technical handbook for a predictive life cycle management system of concrete structures (LMS)[R]. Finland:The Finnish Road Administration,2003,42-62.
    [5-22]杭州湾大桥工程指挥部.杭州湾跨海大桥土建工程施工招标文件[R],2004.
    [5-23]王晓舟.混凝土结构耐久性能的概率预测与模糊综合评估[D].杭州,浙江大学,2009.
    [5—24]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].杭州,浙江大学,2008.
    [5—25]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国建筑工业出版社,2008.
    [5-26]王传坤.混凝土氯离子侵蚀和碳化试验标准化研究[D].杭州,浙江大学,2010:54—67.
    [5-27]姚昌建.沿海码头混凝土设施受氯离子侵蚀的规律研究[D].杭州:浙江大学,2007.
    [5—28]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2004.
    [5—29]刘军,邢峰,董必钦,丁铸,马红岩.盐雾环境下氯离子在混凝土中的扩散.深圳大学学报理工版,2010,4(2):192-198.
    [5—30]王德全,张金喜,张建华.沿海公路混凝土桥梁氯盐侵蚀的调研与分析[J].北京工业大学学报,2006,32(2):187—192.
    [5-31]C.D. O'Dowd, M.H. Smith, I.A. Consterdine, J.A. Lowe. Marine aerosol, sea-salt, and the marine sulphur cycle:a short review[J]. Atmospheric Environment 1997(31):73-80.
    [5-32]Petelski T, Chomka M. Sea salt emission from the coastal zone[J]. Oceannologia,2000(42): 399-410.
    [5-33]G.R. Meira, I.J. Padaratz, C. Alonso, C. Andrade, Effect of distance from sea on chloride aggressiveness in concrete structures in Brazilian coastal site, Materiales de Construction (2003) issue 271-272 volume53 179-188.
    [5-34]G.R. Meira, C. Andrade, C. Alonso, I.J. Padaratz and J.C. Borb. Modelling sea-salt transport and deposition in marine atmosphere zone -A tool for corrosion studies[J]. Corrosion Science,2008,50(9):2274-2731.
    [5-35]I.S. Cole, D.A. Paterson, W.D. Ganther, Holistic model for atmospheric corrosion Part 1-Theoretical framework for production, transportation and deposition of marine salts, Corrosion, Engineering, Science and Technology 38 (2003) 129-134.
    [5—36]徐国葆.我国沿海大气中盐雾含量与分布[J].环境技术,1994(3):1—7.
    [5—37]曾靖尧.关于我国婿海地区近地面大气中的盐雾及其分布[J].特殊电工,1982(94)
    [5-38]Morcillo M, Chico B, Otero E, Mariaca L. Effect of marine aerosol on atmospheric corrosion. Mater Perform 1999;38:72-7.
    [5-39]Ambler HR, Bain AAJ. Corrosion of metals in the tropics. J Appl Chem 1955;5:437-67.
    [5-40]Corvo F, Betancourt N, Mendoza A. The influence of airborne salinity on the atmospheric corrosion of steel. Corros Sci 1995;37:1889-901.
    [5-41]G.R. Meira, C. Andrade, I.J. Padaratz, C. Alonso and J.C. Borba Jr. Chloride penetration into concrete structures in the marine atmosphere zone-Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement and Concrete Composites,29(9),2007:667-676.
    [5—42]张伦武,国防大气环境试验站网建设及试验与评价技术研究[D].天津大学,2008.
    [5—43]游劲秋,胥瑞芳,孟祥森,麻国忠.近海大气环境下的钢筋混凝土保护技术研究[J].浙江建筑,2005,22(zk):81-87.
    [5-44]McGee R. Modeling of durability performance of Tasmanian bridges. In:Melchers RE, Stewart MG, editors.ICASP8 applications of statistics and probability in civil engineering, vol.1,1999. p.297-306.
    [5-45]Vu K. A. T., Stewart M. G.. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Structural Safety,2000,22(4):313-333.
    [5-46]Morinaga S. Life prediction of reinforced concrete structures in hot and salt-laden environments. In:Walker MJ, editor. Concrete in hot climates, E&FN SPON; 1992. p.155-64.
    [5—47]中国工程院土木水利与建筑学部,工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [5-48]G.R.Meria, C.Andrade, C. Alonso, J.C. Borba Jr, M. Padilha Jr. Durability of concrete structures in marine atmosphere zones-The use of chloride deposition rate on the wet candle as an environmental indicator[J]. Cement and Concrete Composites Volume 32(6), 2010, P 427-435
    [5-49]M.D. A. Thomas, E.C. Bentz. Life-365 Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides.2 October 2000.
    [5—50]中国工程建设标准化协会标准.混凝土结构耐久性评定标准(CECS 220:2007)[S].北京:中国建筑工业出版社,2007.
    [5—51]赵羽习,王传坤,金伟良,许晨.混凝土表面氯离子浓度时变规律试验研究[J].土木建筑与环境工程,2010,32(3):8—13.
    [5-52]S. L. Amey, D. A. Johnson, M. A. Miltenberger, et al. Predicting the service life of concrete marine structure:an environmental methodology[J]. ACI Structural Journal,1998,95(2): 205-214.
    [5-53]Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete marine structures:an environmental methodology [J]. ACI Structural Journal,1998,95(2):205-214.
    [5-54]Mumtaz K, Michel G. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cement and Concrete Research,2002,32(1):139-143.
    [5-55]Mangat. P.S., Molloy.B.T., Prediciton of long-term chloride concentration in concrete[J]. Material and structures,1994,27(170):338-346.
    [5-56]Michael D.A. Thomas, Phil B. Bamforth. Modelling chloride diffusion in concrete Effect of fly ash and slag[J]. Cement and Concrete Reseach,1999(29),487-495.
    [5-57]Maage M, Helland S, Poulsen E, et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal,1996, no.93-M68,602-608.
    [5—58]赵尚传.氯盐环境下非承载力因素对受弯构件可靠性的影响[J].公路,2003(9),12-17.
    [5—59]徐小巍.不同环境下混凝土冻融试验标准化研究[D].杭州,浙江大学,2010.
    [5-60]Anna V. S., Roberto V. S., Renato V. V.. Analysis of chloride diffusion into partially saturated concrete [J]. ACI Material Journal,1993,90(5):441-451.
    [5-61]Nordtest Method:Accelerated Chloride Penetration into hardened Concrete, Nordtest, Espoo, Finland, Proj.11, pp:54-94,1995.
    [5—62]吴瑾,程吉听.海洋环境下钢筋混凝土结构耐久性评估[J].水力发电学报,2005,24(1):69-73.
    [5-63]General Guidelines for Durability Design and Redesign [M], DuraCrete, Feb,2000.
    [1-64]Bamforth, P.B.1999. "The derivation of input data for modelling chloride ingress from eight-year U.K. coastal exposure trials." Magazine of Concrete Research, Vol.51, No.2, pp.
    [5-65]Glass G. K., Buenfeld N. R.. The presentation of the chloride threshold level for corrosion of steel in concrete [J]. Corrosion Science.1997,39(5):1001-1013.
    [5-66]Alonso C., Andrade C., Castellote M., et al. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar [J]. Cement and Concrete Research. 2000,30(7):1047-1055.
    [5-67]REHABCON, Strategy for maintenance and rehabilitation in concrete structures:ANNEX n, 2004.
    [5-68]Val D. V, Stewart M. G.. Life-cycle cost analysis of reinforced concrete structures in marine environments [J]. Structural Safety,2003,25(4):343-362.
    [5-69]张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验[J].水运工程,1999(3):6-13.
    [5-70]张奕.氯离子在混凝土中的输运机制及其应用研究[D].杭州:浙江大学,2008
    [6—1]李晔,姚祖康,孙旭毅等.铺面水泥混凝土冻融环境量化研究[J].同济大学学报(自然科学版),2004,32(10):1408—1412.
    [6-2]中华人民共和国国家标准.混凝土结构耐久性设计规范(GB/T 50476-2008)[S].北京:中国建筑工业出版社,2008.
    [6—3]中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2010)[S].北京:中国建筑工业出版社,2010.
    [6-4]EN 206-1:2000 Concrete-Part 1:Specification,performance production,and conformity.
    [6-5]ACI committee 318,. building Code Requirement for structure concrete and Commentary (ACI 318M-05),2005.
    [6-6]Swedish Building Centre.'High Performance Concrete Structures-Design Handbook'. Printed by Elanders Svenskt AB, Stockholm,2000.
    [6-7]CSA A23.1-94 Concrete. Matetials and Methods of Concete Construction.
    [6-8]European Standard. Eurocode2:《Design of Concrete Structures》 prEN1992-1-1(Revised final draft).
    [6-9]DIN 1045/A1:2001. Structure use of concrete-design and construction.
    [6—10]中国气象局国家气象信息中心.中国气象科学数据共享服务[OL]. http://cdc.cma.gov.cn/index.jsp.
    [6-11]BSI BS EN 206-1:2000, Concrete-Part 1:Specification, performance, production, and conformity[S]. London:British Standards Institution,2001.
    [6-12]邸小坛,周燕,顾红祥.WD13823的概念与结构耐久性设计方法研讨[C]//.第四届混凝土结构耐久性科技论坛论文集:混凝土结构耐久性设计与评估方法.北京:机械工业出版社,2006:80-92.
    [6-13]李金玉.冻融环境下混凝土结构的耐久性设计与施工[G]//.中国工程院土木水利与建筑学部.混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2004:120—129.
    [6-14]林宝玉.我国港工混凝土抗冻耐久性指标的研究与实践[G]//.中国工程院土木水利与建筑学部.混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2004:158-168.
    [6-15]刘西拉,唐光谱.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412—2418.
    [6-16]陆秀峰,刘西拉,覃维祖.自然环境条件下混凝土孔隙水饱和度分布[J].四川建筑科学研究,2007,33(5):114-121.
    [6-17]Mette R. Geiker, Peter Laugesen. On the effect of laboratory conditioning and freeze/thaw exposure on moisture profiles in HPC[J]. Cement and Concrete Research,2001,31: 1831-1836.
    [6-18]Dempsey B J, Herlache W A, Patel A J. Climatic-rnaterials-strucrural pavement analysis program[R]. Washington DC:Transportation Research Board,1986.
    [6-19]C. Andrade, J. Sarria, C. Alonso. Relative humidity in the interior of concrete exposed to natural and artificial weathering[J]. Cement and Concrete Research,1999(29):1249-1259.
    [6-20]蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
    [6—21]李晔,姚祖康,孙旭毅等.铺面水泥混凝土抗冻标号预估模型[J].长安大学学报(自然科学版),2005,25(2):21—25.
    [8—1]姚昌建.沿海码头混凝土设施受氯离子侵蚀的规律研究[D].杭州:浙江大学,2007.
    [8—2]国家重大工程项目报告“杭州湾跨海大桥混凝土结构耐久性长期性能研究”[R].浙江大学研究报告.杭州:2008.
    [8—3]干伟忠,Paupach M,金伟良,吕忠达.杭州湾跨海大桥混凝土结构耐久性原位监测预警系统[J].中国公路学报,2010,23(2):30-35.
    [8-4]吕忠达.杭州湾跨海大桥关键技术研究与实施[J].土木工程学报,2006,39(6):78-82.
    [8-5]张宝胜.杭州湾跨海大桥混凝土结构耐久性方案研究[C].//见:金伟良,赵羽习主编.混凝土结构耐久性的设计与评估方法:第四届混凝土结构耐久性科技论坛论文集.北京:机械工业出版社,2006,132—142。
    [8—6]张宝胜,干伟忠,陈涛.杭州湾跨海大桥混凝土结构耐久性解决方案[J].土木工程学报,2006,39(6):72-77.
    [8—7]杭州湾大桥工程指挥部.杭州湾跨海大桥土建工程施工招标文件[R],2004.
    [8-8]中航第二航务工程局.杭州湾跨海大桥土建施工第Ⅲ-A合同段施工组织设计[R],2003.
    [8-9]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].杭州:浙江大学,2008.
    [8—10]卢振永.氯盐腐蚀环境的人工气候模拟实验方法[D].杭州:浙江大学,2007.
    [8-11]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002,76-77.
    [8-12]宋恩来.东北地区大坝溢流面混凝土冻融与冻胀破坏[J].山东电力技术,2000(3):22-26.
    [8-13]于建军,姜殿威,薛捍军.云峰水电站大坝变形监测设计及检测成果[J].大坝与安全,2009(4):55—57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700