用户名: 密码: 验证码:
大跨度PC斜拉桥评价关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外大跨度PC斜拉桥的评价工作存在诸多问题,本文针对这一研究现状对大跨度PC斜拉桥评价的关键技术进行了深入研究,主要完成了以下五个方面的工作:
     (1)首次提出了荷载效率系数的优化(降低)问题,并以降低荷载效率系数为目的设计了实际工程的荷载试验工况,通过回归分析方法得出了结构反应(应力、应变、索力等)与荷载效率系数的一元线性回归方程;并对所得到的线性回归方程做了显著性检验,通过检验后的回归方程预测了设计荷载作用下的结构反应值;最后以实际工程中一座大跨度PC斜拉桥荷载效率系数的降低优化为例,验证了该方法在实际工程中的有效性与准确性。研究结果表明:分析计算得出的一元线性回归方程高度显著,可以作为有效的预测方程;总的来说,随着荷载效率系数的提高,预测误差有随之减小的趋势。应当降低大跨度桥梁的荷载效率系数,大跨度PC斜拉桥荷载效率系数可以降低至0.6。
     (2)针对目前斜拉桥荷载试验中存在的不规范、不统一现象,分析了斜拉桥各构件的受力特点,从而明确了大跨度斜拉桥荷载试验的基本测试工况、测试项目及辅助测试工况。在研究荷载效率系数降低优化的基础上,提出了荷载试验工况的优化合并问题;最后以实际工程中的PC斜拉桥荷载试验工况的优化合并为例,验证了合并荷载试验工况的可靠性和实用性。一般的,主梁最大挠度工况和主梁最大正弯矩工况可以合并为一个工况;主塔最大偏位工况和主塔最大弯矩工况可以合并为一个工况。
     (3)首次提出了分构件对校验系数的取值范围进行研究。采用工程数学的统计方法,利用统计软件Minitab对各构件的校验系数样本进行分析计算,最后确定了斜拉桥结构的主梁构件、拉索构件及主塔构件各自校验系数的取值范围。研究结果表明:斜拉桥结构的承载力评价按主梁构件、拉索构件及主塔构件三部分构件的校验系数来进行。斜拉桥主梁构件的应变校验系数在0.60~1.00是合理取值范围,挠度校验系数在0.72~1.00是合理取值范围;拉索构件的索力校验系数在0.76~1.00是合理取值范围;主塔构件的应变校验系数在0.18~1.00是合理取值范围,偏位校验系数在0.47~1.00是合理取值范围。
     (4)运用模糊理论,建立了PC斜拉桥安全性模糊综合评价模型,并采用模糊综合评价方法完成了实际桥梁的整体安全性评价。评价结果表明:德州新河大桥的整体安全性评价为一类。拉索安全性为一类;索塔安全性为一类;主梁安全性为二类;基础安全性为一类。其各构件的安全性评价等级与根据各构件校验系数范围确定的评价等级相互进行了验证,其桥梁总体安全性评价结果与采用JTG H11-2004《公路桥涵养护规范》的评定方法得到的结果一致。
     (5)根据层次分析法的思想,建立了完整的PC斜拉桥耐久性评价模型,并引入模糊理论与神经网络技术,提出了基于模糊神经网络的PC斜拉桥耐久性评价模型。最后以拉索模块的耐久性评价为例,验证了本章建立的模糊神经网络的准确性。研究结果表明:大跨度PC斜拉桥的耐久性评价模型可以采用层次分析法建立,第一层评价指标为主梁的耐久性、拉索的耐久性、主塔的耐久性、基础的耐久性、附属设施的耐久性五项;采用动态BP算法训练网络时,网络的收敛速度优于常用BP算法;训练好的模糊神经网络很好地获得并储存了评价专家的知识、经验和判断,可将网络应用于斜拉索模块的耐久性评价。
At present, many problems exist on the evaluation of long-span PC(prestressed concrete) cable-stayed bridges. In order to solve these problems, key technologies for evaluation of long-span PC cable-stayed bridges are studied in depth in this thesis. The main content of the research includes five aspects as follows:
     (1) Load efficiency coefficient decreasing optimization is discussed at the first time. For reducing load efficiency coefficient, the load test conditions of a practical example are designed. The linear regression equations of structural response (stress, strain and cable forces, etc.) and load efficiency coefficient are obtained by regression analysis, and test of significance of the equations is finished. Using the linear regression equations, the structural response can be predicted. Finally, the decreasing optimization of load efficiency coefficient of a long-span PC bridge is presented, and the effectiveness and accuracy of this method are verified. The research results show that the linear regression equations are highly significant and can predict structural response accurately. Generally, the prediction error is decreasing with the increasing of load efficiency. In addition, the load efficiency of long-span PC bridge should be decreased. Furthermore, the load efficiency of long-span PC cable-stayed bridge can be reduced to 0.6.
     (2) According to the existing problems of load test of cable-stayed bridge, the loading characteristics of different components of cable-stayed bridge are studied. Then, the basic test conditions, test items and secondary test conditions of long-span cable-stayed bridge are determined. Based on the load efficiency coefficient decreasing optimization, the problem of mergence of load test conditions is proposed. Finally, the mergence of load conditions of a practical PC cable-stayed bridge is presented, and the effectiveness and practicability of load test condition mergence are verified. Generally, the condition of maximum deflection of main beam can merge with maximum positive moment condition of main beam; and maximum horizontal displacement condition of tower can merge with maximum positive moment condition of tower.
     (3) The ranges of verification coefficient aiming at different components are proposed in the first time. Using statistics method of engineering mathematics, the samples of different components’verification coefficients are analyzed with statistics software named Minitab. The range of verification coefficient of main beam, cable and tower are determined. The research results show that the bearing capacity of cable-stayed bridge can be evaluated based on the verification coefficients of main beam, cable and tower; the reasonable range of verification coefficient of main beam strain is 0.60~1.00, the range of main beam deflection is 0.72~1.00; the range of cables is 0.73~1.00; the range of tower stain is 0.18~1.00, the range of tower horizontal displacement is 0.47~1.00.
     (4) Based on fuzzy theory, a fuzzy safety evaluation model of PC cable-stayed bridge is established, and the safety evaluation of a practical bridge is completed using fuzzy evaluation theory. The results show that the whole safety level of Dezhou bridge is in the first class; cable safety level is in the first class; tower safety level is in the first class; main beam safety level is in the second class; foundation safety level is in the first class. The obtained classes of the structural components are verified with the classes ranged by verification coefficient, and the whole safety evaluation class of the bridge is consistent with the class calculated by JTG H11-2004《Code for Maintenance of Highway Bridges and Culverts》.
     (5) According to the theory of analytic hierarchy process, a complete durability evaluation model of PC cable-stayed bridge is established. Then, combined with fuzzy theory and neural network theory, a durability evaluation model based on fuzzy neural network is proposed. Finally, taking the cable module as an example, the validity of the model based on fuzzy neural network is verified. The research results show that: the durability evaluation model of long-span PC cable-stayed can be established using analytic hierarchy process method, and the first level evaluating indexes include the durability of main beams, cable, tower, foundation and accessory facilities. Dynamic BP algorithm is prior to common BP algorithm in network’s training speed. The trained fuzzy-neural network can store the experts’knowledge and experiences, and can be used in durability evaluation of cable module.
引文
[1]范立础.桥梁工程(下册)[M].北京:人民交通出版社, 1996
    [2]小西一郎.钢桥(第四分册)[M].北京:中国铁道出版社, 1991
    [3]林元培.斜拉桥[M].北京:人民交通出版社, 1994
    [4] Long Wen Yi, Troistsky M S, Zielinski Z A. Optimum design of Cable-stayed bridge[J]. Structural Engineering and Mechanics, 1999, 7(3): 241-257
    [5] Hassan I A, Hegab. Parametric Investigation of Cable-stayed bridge[J]. Journal of Structure Eng, ASCE 1988, 114(8): 1917-1928
    [6]许俊,史家均.济南黄河公路大桥主桥换索过程的索力监测[J] .同济大学学报(自然科学版), 1998, 26(4): 471-475
    [7]张喜刚.苏通大桥总体设计[J] .公路, 2004, (7): 1-11
    [8]宋一凡.公路桥梁荷载试验与结构评定[M].北京:人民交通出版社, 2002
    [9]王建华,孙胜江.桥涵工程试验检测技术(第二版)[M].北京:人民交通出版社, 2004
    [10]湛润水,胡钊芳.公路桥梁荷载试验[M].北京:人民交通出版社, 2003
    [11]周宏业,张肇伸.宜宾南门大桥的设计缺陷[J].市政技术, 2002, 110(1): 58
    [12]李丽娟.宜宾南门大桥塌陷事故带来的思考[J].中国建设信息, 2001, 34(12): 69-70
    [13]张德沛.安全疏散设计:密云县彩虹桥事故的联想[J].建筑创作, 2004, (6): 124-127
    [14]王毅娟.从桥梁事故分析中得到的警示[J].北京建筑工程学院学报, 2003, 19(3): 50-54
    [15]范立础.桥梁工程安全性与耐久性—展望设计理念进展[J].上海公路, 2004, (1): 1-7
    [16] Malta. Safety, Risk and Reliability-Trends in Engineering[R]. International Conference, 2001, (3): 21-23
    [17]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利电力出版社, 1984
    [18] Freudenthal A M. The Safety of Structure[J]. ASCE Trans., 1947, 112: 125-129
    [19] Freudenthal A M. Safety and the Probability of Structural Failure[J]. ASCE Trans., 1956, 121: 1337-1397
    [20]工程结构可靠度设计统一标准(GB 50153-92)[S].北京:中国计划出版社, 1992
    [21]建筑结构设计统一标准(GBJ 68-84)[S].北京:中国建筑工业出版社, 1984
    [22]公路工程结构可靠度设计统一标准(GB/T 50283-1999)[S].北京:中国计划出版社, 1999
    [23] Melchers R E. Structural Reliability Analysis and Prediction[J]. ASCE Trans., 1947, 112: 125-129
    [24]邹天一.结构可靠度[M].北京:人民交通出版社, 1998
    [25]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社, 1996
    [26]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社, 2003
    [27]贡金鑫,赵国藩.结构体系可靠度分析中的最小方差抽样[J].上海力学, 1996,17(3): 245-252
    [28]伍朝辉.工程结构可靠度分析研究[D].大连:大连理工大学, 1997
    [29] Zhang Jianren,Yang Liu. The Use of Gas and ANN in Reliability Analysis for Cable-Stayed Bridges[C]. 16th Congress of IABSE, Lucerne, Switzerland,2000
    [30]许福友.可靠度实用算法及其在钢管混凝土拱桥中的应用研究[D].长沙:长沙交通学院, 2002
    [31]张建仁.基于概率理论的荷载分项系数分析研究[J].中国公路学报, 1993,6(1): 55-60
    [32]张建仁.新桥规和公预规预应力混凝土构件可靠度对比分析[J].长沙交通学院学报, 1989, 5(3、4): 52-62
    [33]沈惠申,王宇新.斜拉桥主梁静动力可靠性分析[J].中国公路学报, 1996, 9(1): 59-65
    [34]沈惠申,高峰.斜拉桥索塔的可靠性分析[J].中国公路学报, 1994, 7(4): 40-43
    [35]张建仁,刘扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报, 2001, 34(1): 7-13
    [36]李杨海,鲍卫刚.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社, 1997
    [37]郭彤,李爱群.蒙特卡罗数值模拟技术在桥梁状态评价中的应用[J].特种结构, 2004, 21(4): 44-47
    [38]孙光亮.多层次综合评判及应用[J].系统工程, 1996, 14(2): 64-67
    [39]王有志,徐鸿儒,任锋.钢筋混凝土梁式桥的安全性评价系统研究与开发[J].公路交通科技, 2002, 19(1): 51-54
    [40] Saaty T L. The Analytic Hierarchy Process[M]. New York, Mc Graw-Hill,1980
    [41]孙炎焱,马小凡,杨宁宁.层次分析法在自然保护区公路路线方案选择中的应用[J].四川环境, 2006, 25(4): 79-81
    [42]林忠,宇仁德,田启华.公路网规划的综合评价方法研究综述[J].交通科技, 2006, 217(4): 57-59
    [43]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社, 1990
    [44]王有志,张宏同,徐鸿儒,等.在用钢筋混凝土梁式桥的安全性评价[J].长安大学学报(自然科学版), 2002, 22(5): 39-41
    [45]张永清,冯忠居.用层次分析法评价桥梁的安全性[J].西安公路交通大学学报, 2001, 21(3): 52-56
    [46]马保林,尚鑫,徐岳,等.混凝土斜拉桥结构健康状态评价模型[J].长安大学学报(自然科学版), 2006, 26(2): 47-50
    [47] Zadeh L A. Fuzzy Sets[J]. Information Control, 1965, 8: 338-353
    [48] Zadeh L A. Fuzzy Algorithm[J]. Information Control, 1968, 12: 94-102
    [49] Procyk T J,Mamdani E H. A Linguistic Self-Organizing Process Controller[J]. Automatica, 1979, 15(1): 15-30
    [50] Mamdani E H. Application of Fuzzy Algorithms for Simple Dynamic Plant[J]. Proc. IEEE, 1974, 121(12): 1585-1588
    [51] Tsukamoto Y. An Approach to Fuzzy Reasoning Method, in Advances in Fuzzy Set Theory and Application[M]. Amsterdam. North-Holland, 1997
    [52] Larsen PM. Industrial Application of Fuzzy Logic Control[J]. Int. J. Man Mach Studies, 1980, 12 (1): 3-10
    [53] Takagi T,Sugeno M. Fuzzy Identification of System and Its Application to Modeling and Control[J]. IEEE Trans. SMC, 1985, 15 (1): 116-132
    [54] Hirota H,Pedrycz W. Analysis and Synthesis of Fuzzy System by The Use of Fuzzy Sets[J]. Fuzzy Sets and Systems, 1983, 10 (1): 1-14
    [55] Pedrycz W. An Identification of Fuzzy Relational Systems[J]. Fuzzy Sets and Systems, 1984, 13
    [56] Sugeno M,Kang G T. Structure Identification Fuzzy Model[J]. Fuzzy Sets and Systems, 1988, 28 (1): 15-33
    [57] Hopfield J J. Neural networks and physical systems with emergent colletive computational abilities[J]. Proc. of the National Academy of Science. U.S.A., 1982, 79: 2554-2558
    [58] Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc. of the National Academy of Science. U.S.A., 1984, 81: 3088-3092
    [59] Hinton G E,Sejnowski T J. Optimal perceptual inference[C]. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, 1983, 448-453
    [60] Kosko B. Adaptive bidirectional associative memories[J]. Applied Optics, 1987, 26: 4947-4960
    [61] Kosko B. Bidirectional associative memories[J]. IEEE Trans. on systems. Man. Cybernetics, 1988, 18: 49-60
    [62] Hecht-Nielsen R. Counterpropagation networks[C]. Proc. of the International Conference on Neural Networks. 1987, 19-32
    [63] Hecht-Nielsen R. Nearest matched filter classification of spationtemporal patterns[J]. Applied Optics. 1987, 26:1892-1899
    [64]肖盛燮,王平义,吕恩琳.模糊数学在土木与水利工程中的应用[M].北京:人民交通出版社, 2004
    [65]沈波,艾翠玲.公路桥位模糊综合评价与选择[J].西安公路交通大学学报, 1997, 17(2): 55-58
    [66]张永水,王技.拱桥的健康检测与模糊综合评价理论研究[J].公路交通科技, 2005, 22(8): 78-81
    [67]吕颖钊,贺栓海.缺损钢筋混凝土梁桥模糊可靠性评价模型[J].交通运输工程学报, 2005, 5(4): 58-62
    [68]吕颖钊,贺栓海.在役桥梁承载力模糊可靠性的科尔科夫预测[J].长安大学学报(自然科学版), 2005, 25(4): 39-43
    [69]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学, 2004, 21(1): 42-47
    [70]包龙生,于玲,王澍,等.基于神经网络的桥梁结构损伤识别分析[J].沈阳建筑工程学院学报(自然科学版), 2004, 20(1): 33-35
    [71]王建雷,陈国华.人工神经网络在桥梁损伤智能诊断中的应用[J].建筑技术开发, 2004, 31(11): 89-91
    [72]薛飞宇,郝海霞.人工神经网络在桥梁结构等级评价中的应用[J].公路与汽运, 2004, 6: 71-73
    [73]张建仁,刘扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报, 2001, 34(1): 7-13
    [74]徐宜桂,周轶尘,王志华.用神经网络方法修正悬索桥动力模型[J].振动工程学报, 2000, 13(1): 42-52
    [75]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究[J].中国公路学报, 2004, 17(4): 55-58
    [76]胡雄,吉祥,陈兆能,等.拉索桥梁安全性与耐久性评价的专家系统设计[J].应用力学学报, 1998, 15(4): 122-126
    [77]兰海,史家钧.灰色关联分析与变权综合法在桥梁评价中的应用[J].同济大学学报, 2001, 29(1): 50-54
    [78]上海师范大学数学系.回归分析及其试验设计[M].上海:上海教育出版社, 1978
    [79]张启锐.实用回归分析[M].北京:地质出版社, 1988
    [80] Behnken D W,Draper N S. Residuals and their variance patterns[J]. Technometrics, 1972, 14: 101-111
    [81] LaMotte L R,Hocking R R. Computational efficiency in the selection of regression variable[J]. Technometrics, 1970, 12: 83-93
    [82] Till R. The use of linear regression in geomorphology[J]. Area, 1973, 5: 303-308
    [83] Hwang H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报, 2004, 37(6): 47-51
    [84]刘世安.后张法预应力混凝土T梁静载试验[J].科技情报开发与经济, 2002, 12(2): 77-79
    [85]王技,钟海辉.回归预测法在桥梁剩余寿命预测中的应用研究[J].湖南工程学院学报, 2005, 15(4): 78-80
    [86]王技,钟海辉.回归预测法在桥梁剩余寿命预测中的应用研究[J].公路交通技术, 2006, 1: 60-62
    [87]崔军,贺拴海,宋一凡,等.基于裂缝特征的钢筋混凝土板式结构评价研究[J].中国公路学报, 2001, 14(2): 58-60
    [88]刘扬,尚守平,张建仁.锈蚀条件下混凝土桥梁构件中钢筋强度的退化模型[J].桥梁建设, 2002, 3: 21-24
    [89]华孝良,徐光辉,范立础,等.桥梁结构非线性分析[M].北京:人民交通出版社, 1997
    [90]小西一郎.钢桥(第五分册)[M].北京:人民铁道出版社, 1981
    [91]施洲,曹发辉,蒲黔辉.大跨度独塔斜拉桥静动载试验研究[J].铁道建筑技术, 2005, 1: 16-19
    [92]曾特新.大跨斜拉桥荷载试验及静动力分析[J].湖南交通科技, 2005, 31(3): 95-97
    [93]蔡登山,党志杰.军山长江公路大桥主桥静动力特性试验研究[J].世界桥梁, 2003, 1: 38-41
    [94]崔爱民.银滩黄河大桥静动载试验研究[J].桥梁建设, 2002, 5: 23-25
    [95]钟军,郭庆辉,李旺新.青岛—银川高速公路丹山斜拉桥静载试验[J].山东交通科技, 2001, 4: 13-16
    [96]李海,张哲,刘春城.沈阳市公和斜拉桥静载试验分析[J].北华大学学报(自然科学版), 2003, 4(5): 435-438
    [97]谭晓琦.西双版纳大桥竣工荷载试验介绍[J].云南交通科技, 2002, 18(4): 35-39
    [98]谭晓琦,李桓兴,余庆平.西双版纳大桥竣工荷载试验简介[J].云南交通科技, 2000, 16(2): 36-38
    [99]冯云成(译).英国Flintshire桥的设计与监控[J].国外公路, 2000, 20(3): 14-17
    [100]李海.沈阳市公和斜拉桥静载试验分析[D].大连:大连理工大学,2002
    [101]仙桃汉江公路大桥荷载试验报告[R].西安:长安大学,2003
    [102]大同市同泉路十里河大桥荷载试验及结构评价报告[R].北京:北京市政工程研究院,2005
    [103]宿淮高速公路淮安段五河口特大桥主桥荷载试验报告[R].西安:长安大学,2005
    [104]安庆长江公路大桥主桥检测报告[R].成都:西南交通大学结构工程试验中心,2005
    [105] JTG H11-2004.公路桥涵养护规范[S]北京:人民交通出版社,2004
    [106]交通部公路科研所.公路桥梁承载能力检测评定规程(征求意见稿),2003
    [107]中华人民共和国交通部标准.公路旧桥承载能力鉴定方法[S].北京:人民交通出版社,1988
    [108] GB 50292-1999.民用建筑可靠性鉴定标准[S].北京:中国建筑工业出版社,1999
    [109]孙立军,扬阳,张小宁,等.上海市城市管理系统研究[J].华东公路, 2000, 2: 34-37
    [110]李昌铸,王丽云,胡佩佩,等.省市级公路桥梁管理系统的设计与实施[J].公路交通科技, 1992, 9(4): 31-37
    [111]王学智.桥梁损伤评价及专家系统(BEES)[D].上海:同济大学, 1990
    [112]刘健.基于GIS的城市管理系统研究与开发[D].上海:同济大学, 2002
    [113]郭瑞.城市桥梁管理系统关键问题研究[D].上海:同济大学, 2004
    [114] Xia P Q,Brownjohon J M W. Bridges structural condition assessment using systematically validate finite-element model[J]. Bridge Engineering, 2004, 9(5): 418-423
    [115]王永平,张宝银,张树仁.桥梁使用性能模糊评价专家系统[J].中国公路学报, 1996,9(2): 62-67
    [116]禹智涛,韩大建.既有桥梁可靠性的综合评价方法[J].中南公路工程, 1997, 28(3): 8-12
    [117] Melham H G. Bridges condition rating using an eigenvector of priority settings[J]. Microcomputers in Civil Engineering, 1996, 50(5/6): 923-934
    [118] Melham H G,Cheng Y. Prediction of remaining service life of bridge decks using machine learning[J]. Computing in Civil Engineering, 2003, 17(1): 1-9
    [119] Wu X,Ghaboussi J,Garrett J H Jr. Using of neural networks in detection of structural damage[J]. Computers & Structures, 1992, 42: 649-659
    [120] Kaminski P C. The approximate location of damage through the analysis of natual frequencies with artificial neural networks[J]. Journal of Process Mechanical Engineering, 1995, 209: 117-123
    [121] Ko H,Arozullah M. Background noise suppression for signal enhancement by novelty filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36: 102-113
    [122] Maru S,Nagpal A K. Neural network for creep and shrinkage deflections in reinforced concrete frames[J].Computing in Civil Engineering, 2004, 18(4): 350-359
    [123]于大涛,廖朝华.欧洲现有桥梁的评价[J].中外公路, 2001, 21(5): 35-37
    [124]郭彤,李爱群,李兆霞,等.大跨桥梁结构状态评价方法研究进展[J].东南大学学报(自然科学版), 2004, 34(5): 699-704
    [125]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)[S].北京:人民交通出版社, 2004
    [126]公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社, 2004
    [127]公路工程技术标准(JTG B01-2003)[S].北京:人民交通出版社, 2003
    [128] Satty T L. Measuring the fuzziness of sets[J]. Journal of Cybernetics, 1974, 4: 53-61
    [129]赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,广西:广西科学技术出版社,1996
    [130] Lee S C,Lee E T. Fuzzy sets and neural networks[J]. Cybernetics, 1974, 4: 83-103
    [131] Lee S C,Lee E T. Fuzzy neural networks[J]. Biosci, 1975, 23: 151-177
    [132] Huntsberger T L. Parallel self-organizing feature maps for unsupervised pattern recognition[J]. General systems, 1990, 6(4): 357-372
    [133] Takagi H. Neural networks designed on approximate reasoning architecture and their applications[J]. IEEE. Trans, on neural network, 1992, 3(5): 752-760
    [134] Ojala T. Fuzzy self-organizing map using sugeno’s fuzzy rules[C]. Proc. 1#TUT symposium signal processing. Tampere. Finland, 1993: 169-172
    [135] Kim J H. Generalized predictive control using fuzzy neural network model[C]. Proc. of IEEE Conf. On Neural Network. 1994,4: 2596-2598
    [136]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业工业出版社, 2005
    [137]诸静.模糊控制原理与应用[M].北京:机械工业出版社, 2005
    [138]周金萍,王冉,吴斌. MATLAB6实践与提高[M].北京:中国电力出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700