用户名: 密码: 验证码:
钢筋混凝土框架结构的概率地震易损性与风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以控制地震风险和地震损失为目标的新一代基于性能地震工程(Performance-Based Earthquake Engineering, PBEE)正成为国际地震工程领域的研究热点。由于地震灾害和工程结构本身均具有强烈的随机性和不确定性,因此美国太平洋地震工程研究中心(Pacific Earthquake Engineering ResearchCenter, PEER)提出了基于全概率表达式的新一代PBEE概率决策框架。该框架以概率地震风险为研究目标,将概率地震危险性、概率地震易损性和概率地震损失作为主要研究内容。
     为了适应基于性能地震工程(PBEE)的发展趋势,我国编制完成了《建筑工程抗震性态设计通则(试用)》。最新颁布的《建筑抗震设计规范GB50010-2010》也在构件层次提出了基于性能的抗震设计方法。但是,上述文献均采用的是第一代确定性的基于性能的抗震设计思想,基于全概率的PBEE在我国尚未得到广泛的研究。此外,2008年汶川特大地震也启示我们:即使按现行抗震规范进行设计的结构,在发生超过预期的罕遇地震甚至“巨震”时也有发生倒塌的可能性。因此,对按现行规范设计的结构进行地震安全与风险评估,对于进行科学的抗震加固和防震减灾规划具有重要的理论和实际意义。基于上述原因,本文以按我国规范设计的钢筋混凝土框架结构为研究对象,以概率地震风险为研究目的,以概率地震易损性为主要研究内容,从不确定性传递的角度,采用解析函数和高效随机模拟方法,对概率地震易损性和风险分析进行了理论和应用研究。本文的主要研究内容如下:
     1)按照我国规范,设计了23个不同高度、不同设防烈度的钢筋混凝土框架结构作为“索引原型(index achetype)结构”,并在OpenSees中对结构进行了有限元建模。通过与钢筋混凝土构件(柱)和结构整体的实验结果对比,验证了本文所建立OpenSees模型的合理性。
     2)将降维积分与Nataf变换相结合,提出了一种考虑随机变量边缘分布和相关性信息的点估计法,并提出了一种新的灵敏度参数。通过三个数值算例研究表明:本文提出的点估计法的精度满足要求,提出的灵敏度参数可以合理地描述随机变量在标准正态空间的变化对模型反应的影响。
     3)选取了100条实际地震动作为输入,对60个地震动强度参数和6个结构反应参数进行了地震动强度参数的概率评价。分别采用云图法和条带法建立了单体结构的概率地震需求模型,验证了地震需求与地震动强度之间对数线性关系的合理性。针对传统概率地震需求模型无法考虑倒塌状态对地震需求影响的缺点,提出了考虑倒塌状态的概率地震需求模型修正方法。提出了群体结构概率地震需求分析的云图-条带法,建立了群体结构的概率地震需求模型。
     4)提出了在结构Pushover曲线上定义非倒塌极限状态阈值的构件-整体混合损伤控制原则。考虑结构不确定性的影响,基于本文提出的点估计法,提出了一种随机Pushover方法来进行非倒塌极限状态的概率抗震能力分析。考虑地震动和结构不确定性的影响,提出了基于均值一次二阶矩法(MVFOSM)的随机增量动力分析(IDA)方法,以评估强震作用下结构的概率抗倒塌能力。采用随机Pushover方法和随机IDA方法,建立了23个索引原型结构的概率抗震能力模型。基于单体结构概率抗震能力分析结果,统计获得了群体结构的抗震能力概率分布特征,并对本文定义的四种极限状态阈值进行了概率评价。
     5)证明了基于地震动强度和基于结构位移的概率地震易损性函数的一致性。从不确定性传递的角度,推导了考虑本质不确定性的概率地震需求易损性和概率地震损伤易损性的解析函数,以及考虑知识不确定性的概率地震易损性点估计和区间估计解析函数,并获得了概率地震易损性点估计函数的置信度水平。利用解析概率地震易损性函数,得到了索引原型结构的地震易损性曲线,并计算了结构的极限状态和破坏状态失效概率。提出了一种定量描述结构地震安全的指标:安全裕度比,并对索引原型结构在不同极限状态下的安全裕度进行了概率评价。生成了与HAZUS软件相容的地震易损性曲线,并与HAZUS软件建议的地震易损性曲线进行了对比分析。对传统的地震易损性模型进行了考虑倒塌状态的模型修正。进行了群体结构的概率地震易损性分析,并与单体结构的地震易损性曲线进行了对比分析。
     6)基于概率地震易损性函数,采用经典的幂指数形式的概率危险性函数,推导了考虑本质和知识不确定性的概率地震风险的解析函数。在概率地震易损性分析的基础上,采用概率地震风险解析函数,分别在地震需求和地震损伤层次进行了索引原型结构的概率地震风险分析。为评估按我国规范设计的钢筋混凝土框架结构的地震概率安全水平,进一步计算了索引原型结构在使用期(50年)内的失效概率。根据群体结构的概率地震易损性分析结果,进一步进行了群体结构的概率地震风险分析。
In recent years, the new generation of performance-based earthquakeengineering (PBEE) aimed at controlling seismic risk and earthquake loss hasbecome one of world-wide research hot topics in the community of earthquakeengineering. Due to the strong randomness and uncertainties in earthquake srongmotions and engineering structures, the Pacific Earthquake Engineering ResearchCenter (PEER) proposed a fully probabilistic risk-informed decision framework forthe new generation of PBEE. In this PEER’s PBEE framework, probabilistic seismicrisk is defined as the seismic performance objective, which includes three mainbuilding blocks: probabilistic seismic hazard, probabilistic seismic fragility, andprobabilistic seismic loss.
     To adapt to the development trend of PBEE, a pilot edition of “general rule forperformance-based seismic design of buildings” was firstly published in2004inChina. Moreover, the new edition of the Chinese Seismic Design Code of Buildings(GB50010-2010) also carried out a performance-based seismic design method at thelevels of structural elements. However, both of the above important codes employedthe first generation of performance-based seismic design methodology. In fact, thenew generation of fully probabilistic PBEE has not been widely studied and appliedin China. In addition, the great Wenchuan earthquake in2008indicates us that eventhough the structures are designed according to the current seismic code, they arestill probable to collapse in face of unpredicted rare earthquakes or even “hugeearthquakes”. Therefore, it’s reasonable to evaluate seismic risk and safety ofcode-conforming structures. The assessment of seismic risk and safety for structurescan help make rational decisions on seismic retrofitting of structures and disastermitigation planning. Based on the above considerations, in this thesis, theassessment of probabilistic seismic fragility and risk for Chinese code-conformingreinforced concrete (RC) frame structures in the framework of new-generationPBEE is taken as research objective. From the viewpoint of uncertainty propagation,the analytical functions are derived for probabilistic seismic fragilty and risk. Usingthe derived analytical functions and highly effective simulation techniques, theprobabilities of seismic fragility, risk, and safety of Chinese code-conforming RCframe structures are systematically evaluated. The main contents are summarized asfollows:
     1) Twenty-three RC frame buildings with different fortification intensities andstoreys are designed according to Chinese codes as the “index archetype structures”. These structures are modeled in the platform OpenSees. Through comparing withthe test data of RC elements (columns) and a global structure, the OpenSees modelsare verified and validated to be adequate to describe the nonlinear behavior of theindex archetype structures.
     2) An advanced point estimate method incorportating marginal distributionsand correlation information of basic random variables is put forward by combiningdimension-reduction integration with Nataf transformation. In the presentedapproach, a new sensitivity factor is proposed. Through three numerical examples, itis illustrated that the developed method has adequate accuracy to estimate probilitymoments of model outputs. Moreover, the presented sensitivity factor is valid toanalyze the influences of the variation of random variables in the standard normalspace on the outputs of nonlinear complex models.
     3) One hundred real ground motion records are selected as inputs toprobabilistically evaluate the earthquake intensity measures through relating60intensity measures vs.6structural response parameters. The probabilistic seismicdemand models (PSDMs) for individual buildings are built by both cloud-methodand stripe-method, and the rationality of the log-linearity relationships betweenseismic demand and earthquake intensity is furhter verified. Since the conventionalPSDM cannot incorporate the case of collapse, a modified PSDM consideringcollapse case is presented. A new cloud-stripe method is developed for probabilisticseismic demand analysis for group buidlings, and the PSDM for group structures isbuilt up by the new approach.
     4) The first three non-collapse limit states (i.e. minor damage, moderatedamage, and severe damage) are identified from the pushover curves of structureswith a local-global hybrid damage controlling criterion. Considering the effects ofstructural random parameters on seismic capacity of buildings, a random pushoveranalysis approach with the advanced point estimate method is developed forprobabilistic seismic capacity analysis (PSCA) of non-collapse limit states ofstructures. To consider the effects of both randomness in structural parameters anduncertainty in earthquake strong motions on seismic collapse capacity of structures,a random incremental dynamic analysis (IDA) approach based on mean value firstorther second moment (MVFOSM) is developed for PSCA of collapse state ofstructures. The probabilistic seismic capacity models for23index archetypebuildings are built by the random pushover analysis approach and the random IDAmethod. Then, the probabilistic seismic capacity models for group structures arefitted from the PSCA results for all the index archetype structures. In addition, thethreshold values for the four limit states determined in this study areprobabilistically evaluated.
     5) The consistence between the intensity-based and displacement-based seismic fragility functions is proved. From the viewpoint of uncertainty propagation,the analytical formulations for probabilistic seismic demand and damge fragilityfunctions considering aleatory uncertainty are derived, and the point and intervalestimate functions of seismic fragility considering epistemic uncetianty are furthergiven. Then the interval confidence level of the point estimate function of seismicfragility is obtained. Using these analytical fragility functions, the seismic fragilitycurves for the index archetype structures are generated. Then the failureprobabilities of various limit states and damage states are calculated for all thearchetype structures from the obtained seismic fragility curves. A new index tomeasure structural safety named as “safety marginal ratio (SMR)” is proposed toevaluate the safety margins of the index archetype structures at various limit states.The HAZUS-compatible seismic fragility curves are generated, and compared withthe recommended seismic fragility curves in HAZUS. Considering the case ofcollapse, the conventional seismic fragility functions are modified. Seismic fragilityanalysis is further carried out for group structures, and then the generated seismicfragility curves for group structures are compared with those for each indexarchetype building.
     6) Incorporationg the generally used power-law seismic hazard function, theprobabilistic seismic risk functions considering both aleatory and epistemicuncetianties are derived based on the developed analytical fragility functions. Usingthese analytical functions, the probabilistic seismic risks of the index archetypestructures are evaluated at the levels of both seismic demand and seismic damage,based on the results of probabilistic seismic fragility analysis. To evaluate theprobabilistic safety of Chinese code-conforming RC frame structures, the failureprobabilities during the service life (50years) are further computed for the indexarchetype structures. Based on the calculated probabilistic seismic fragilities ofgroup structures, the probabilistic seismic risks for group structures are furtherevaluated.
引文
[1] CECS160.建筑工程抗震性态设计通则(试行)[S].北京:中国工程建设标准化协会,2004.
    [2] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [3] Cornell C A. et al. The probabilistic basis for the2000SAC/FEMA steelmoment frame guidelines [J]. ASCE Journal of Structural Engineering,2002,128(4):526-533.
    [4] Abrams D P, Elnashai A S, Beavers A P. A New Engineering Paradigm:Conseguence-Based Engineering [R]. http://mae.cee.illinois.edu/documents/cbepaper.pdf
    [5] Whitman R V, Reed J W, Hong S T. Earthquake damage probability matrices
    [C]. Proceedings of the5thworld conference on earthquake engineering, Rome,Italy.1973,2:2531-2540.
    [6] Braga F, Dolce M, Liberatore D. A statistical study on damaged buildings andan ensuring review of the MSK-76scale [C]. Proceedings of the seventhEuropean conference on earthquake engineering, Athens, Greece.1982:431-450.
    [7] Dolce M. et al. Earthquake damage scenarios of the building stock of Potenza(southern Italy) including site effects [J]. Bulletin of Earthquake Engineering,2003,1(1):115-140.
    [8] Di Pasquale G, Orsini G, Romeo R W. New develops in seismic riskassessment in Italy [J]. Bulletin of Earthquake Engineering,2005,3(1):101-128.
    [9]杨玉成等.现有多层砖房震害预测的方法及其可靠度[J].地震工程与工程振动,1982,2(3):75-85.
    [10]刘恢先.唐山大地震震害(二)[M].北京:地震出版社,1986.
    [11]非明伦等.施甸地震震害分析[J].地震研究,2002,25(2):192-199.
    [12]张家涛等.2002年四川仁寿双流4.6级地震震害调查[J].四川地震,2003,1:6-16.
    [13]蔡辉腾等.福建顺昌M4.7级地震建筑物震害分析[J].华南地震,2007,27(4):54-59.
    [14]贾强,孙剑平.汶川大地震底框结构建筑物震害调查[J].山东建筑大学学报.2008,23(6):560-564.
    [15]郑超.建筑物震害与地震烈度相关性研究[D].工学硕士学位论文,中国地震局工程力学研究所,2010.
    [16]李思齐.中外地震烈度标准对比研究[D].工学硕士学位论文,中国地震局工程力学研究所,2010.
    [17] Spence R J, Coburn A W, Pomonis A, Sakai S. Correlation of ground motionwith building damage: The definition of a new damage-based seismic intensityscale [C].10thWorld Conference on Earthquake Engineering. Balkema,Rotterdam,1992.
    [18] Orsini G. A model for buildings’ vulnerability assessment using theparameterless scale of seismic intensity (PSI)[J]. Earthquake Spectra,1999,15(3):463-483.
    [19] Sabetta F, Goretti A, Lucantoni A. Empirical fragility curves from damagesurveys and estimated strong ground motion [C]. Proceedings of the11thEuropean conference on earthquake engineering, Paris, France,1998:1-11.
    [20] Yamaguchi N, Yamazaki F. Fragility curves for buildings in Japan based ondamage surveys after the1995Kobe earthquake [C]. Proceedings of the12thEuropean conference on earthquake engineering, Auckland, New-Zealand,2002, Paper ID:2451.
    [21] Basoz N I, et al. Statistical analysis of bridge damage data from the1994Northridge, CA, Earthquake [J]. Earthquake Spectra,1999,15(1):25-54.
    [22] Shinozuka M, Feng M Q, Kim H, Uzawa T, Ueda T. Statistical analysis offragility curves [R]. Technical report MCEER,2001.
    [23] Yakut A, Ozcebe G, Yucemen M S. Seismic vulnerability assessement usingregional empirical data [J]. Earthquake Engineering and Structural Dynamics,2006,35(10):1187-1202.
    [24] Rossetto T, Elnashai A. Derivation of vulnerability functions forEuropean-type RC structures based on observational data [J]. EngineeringStructures,2003,25(10):1241-1263.
    [25] Aslani H, Miranda E. Fragility assessment of slab-column connection inexisting non-ductile reinforced concrete buildings [J]. Journal of EarthquakeEngineering,2005,9(6):777-804.
    [26] Pagni C A, Lowes L N. Fragility functions for older reinforced concretebeam-column joints [J]. Earthquake Spectra,2006,22(1):215-238.
    [27] Brown P C, Lowes L N. Fragility function for modern reinforced-concretebeam-column joints [J]. Earthquake Spectra,2007,23(2):263-289.
    [28] Porter K, Kennedy R, and Bachman R. Creating fragility functions forperformance-based earthquake engineering [J]. Earthquake Spectra,2007,23(2):471-489.
    [29] Applied Technology Council (ATC). Earthquake damage evaluation data forCalifornia [R]. Palo, Alto,1985, ATC-13.
    [30] Fah D, et al. Earthquake scenarios for the city of Basel [J]. Soil Dynamics andEarthquake Engineering,2001,21(5):405-413.
    [31] Cardona, O D, Yamin, L E. Seismic microzonation and estimation ofearthquake loss scenarios: integrated risk mitigation project of Bogota,Colombia [J]. Earthquake Spectra,1997,13(4):795-814.
    [32] Veneziano D, et al. Earthquake loss under limited transportation capacity:assessment, sensitivity and remediation [C]. Proceedings of the7thUS nationalconference on earthquake engineering, Boston, USA.
    [33] Gioviazzi S, Lagomarsino S. A macroseismic method for the vulnerabilityassessment of buildings [C]. Proceedings of the13th world conference onearthquake engineering, Vancouver, Canada.2004, Paper ID:121.
    [34] Gioviazzi S. The vulnerability assessment and the damage scenario in seismicrisk analysis [D]. PhD thesis, Technical University Carolo-Wilhelmina atBraunschwig, Germany and University of Florence, Italy.
    [35] Oliveira C S, et al. Application of two different vulnerability methodologies toassess seismic scenarios in Lisbon [C]. Proceedings of InternationalConference:250thAnniversary of the1755Lisbon Earthquake, Lisbon,Portugal,2005, Paper ID:37.
    [36] Lantada N, Pujades L G, Barbat A H. Risk scenarios for Barcelona Spain [C].Proceedings of the13th World Conference on Earthquake Engineering,Vancouver, Canada.2004, Paper ID:423.
    [37] Kiremidjian A. Subjective probabilisties for earthquake damage and loss [J].Structural Safety,1985,2(4):309-317.
    [38] Federal Emergency Management Agency. Multi-hazard loss estimationmethodology. Earthquake model [R]. HAZUS-MH MR1Technical Manual,Washington, DC,2003.
    [39] Shinozuka M, et al. Nonlinear static procedure for fragility curve development[J]. ASCE Journal of Engineering Mechanics,2000,126(12):1287-1295.
    [40] Rossetto T, Elnashai A. A new analytical procedure for the derivation ofdisplacement-based vulnerability curves for populations of RC structures [J].Engineering Structures,2005,27(3):397-409.
    [41] Jeong S-H, Elnashai A S. Probabilistic fragility analysis parameterized byfundamental response quantities [J]. Engineering Structures,2007,29(6):1238-1251.
    [42] Erberik M A. Fragility-based assessment of typical mid-rise and low-rise RCbuildings in Turkey [J]. Engineering Structures,2008,30(5):1346-1347.
    [43] Calvi G M. A displacement-based approach for vulnerability evaluation ofclasses of buildings [J]. Journal of Earthquake Engineering,1999,3(3):411-438.
    [44] Glaister S,Pinho R. Development of a simplified deformation-based methodfor seismic vulnerability assessment [J]. Journal of Earthquake Engineering,2003,7(S1):107-140.
    [45] Crowley H, Pinho R, Boomer J J. A probabilistic displacement-basedvulnerability assessment procedure for earthquake loss estimation [J].Bullletin of Earthquake Engineering,2004,2(2):173-219.
    [46] Cosenza E, Manfredi, Polese M, et al. A multilevel approach to the capacityassessment of existing RC Buildings [J]. Journal of Earthquake Engineering,2005,9(1):1-22.
    [47] Priestley M J N. Displacement-based seismic assessment of reinforcedconcrete buildings [J]. Journal of Earthquake Engineering,1997,1(1):157-192.
    [48] Borzi B, Elnashai A S. Assessment of inelastic response of buildings usingforce-and displacement based approaches [J]. The structural design of tallbuildings,2000,9(4):251-277.
    [49] D’Ayala D, Speranza E. Force and displacement based vulnerabilityassessment for traditional buildings [J]. Bulletin of earthquake engineering,2005,3(3):235-265.
    [50] Singhal A, Kiremidjian A S. Method for probabilistic evaluation of seismicstructural damage [J]. ASCE Journal of structural engineering,1996,122(12):1459-1467.
    [51] Dumova-Jovanoska E. Fragility curves for RC structures in Skopje region [C].Proceedings of the13th World Conference on Earthquake Engineering,Vancouver, Canada.2004, Paper ID:3.
    [52] Elnashai A S, Borzi B. Deformation-based vulnerability functions for RCbridges [J]. Structural Engineering and Mechanics,2004,17(2):215-244.
    [53] Erberik MA, and Elnashai AS. Fragility analysis of flat-slab structures [J].Engineering Structures,2004,26(7):937-948.
    [54] Ji J, Elnashai AS, and Kuchma D. Seismic fragility relations of reinforcedconcrete high-rise buildings [J]. The Structural Design of Tall and SpecialBuildings,2009,18(3):259-277.
    [55] Hwang H.,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004;37(6):47-51.
    [56] Hwang H, Liu J B, and Chiu Y H. Seismic fragility analysis of highwaybridges [R]. Center for Earthquake Research and Information, the Universityof Memphis,2001, Report.
    [57]刘晶波,刘阳冰,闫秋实,韩强.基于性能的方钢管混凝土框架结构的地震易损性分析[J].土木工程学报,2010,43(2):39-47.
    [58]朱建.钢筋混凝土结构易损性分析与地震风险分析[D].工学博士学位论文,西安建筑科技大学,2010.
    [59] Lagaros N D, et al. Computationally efficient seismic fragility analysis ofgeostructures [J]. Computers and Structures,2009,87(19-20):1195-1203.
    [60] Lagaros N G, Fragiadakis M. Fragility assessment of steel frames using neuralnetworks [J]. Earthquake Spectra,2007,23(4):735-752.
    [61] Mitropoulou C C, Papadrakakis M. Devloping fragility curves based on neuralnetwork IDA prediction [J]. Engineering Structures,2011,33(12):3409-3421.
    [62] Kinali K, Ellingwood B R. Seismic fragility assessment of steel frames forconsequence-based engineering: A case study for Memphis, TN [J].Engineering Structures,2007,29(6):1115-1127.
    [63] Ellingwood B R, Celik O C, Kinali K. Fragility assessment of buildingstructural systems in Mid-America [J]. Earthquake Engineering and StructuralDynamics,2007,36(13):1935-1952.
    [64] Celik O C, Ellingwood B R. Seismic fragilities for non-ductile reinforcedconcrete frames–Role of aleatoric and epistemic uncertainties [J]. StructuralSafety,2010,32(1):1-12.
    [65] Celik O Z, Ellingwood B R. Modeling beam-column joints in fragilityassessment of gravity load designed reinforced concrete frames [J]. Journal ofEarthquake Engineering,2008,12(3):37-381.
    [66] Rosowsky D V, Ellingwood B R. Performance-based engineering of woodframe housing: fragility analysis methodology [J]. ASCE Journal of StructuralEngineering,2002,128(1):32-38.
    [67] Mackie K, Stojadnovic B. Fragility curves for reinforced concrete highwayoverpass brides [C].13thWorld Conference on Earthquake Engineering,Vancouver, B.C., Canada,2004.
    [68] Makie K R, Sojadinovic B. R-factor parameterized bridge damage fragilitycurves [J]. ASCE Journal of Bridge Engineering,2007,12(4):500-510.
    [69] Dimova S L, Negro P. Seismic assessement of an industrial frame structuredesigned according to Eurocodes. Part2: capacity and vulnerability [J].Engineering Structures.2005,27(5):724-735.
    [70]王丹.钢框架结构的地震易损性及概率风险分析[D].工学硕士学位论文,哈尔滨工业大学,2006.
    [71]常泽民.钢筋混凝土结构非线性抗震可靠度及地震易损性分析[D].硕士学位论文,哈尔滨工业大学,2006.
    [72]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006;15(2):107-114.
    [73]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报,2006;15(4):157-162.
    [74]万正东. RC框架结构基于概率损伤模型的地震易损性与风险分析[D].工学硕士学位论文,哈尔滨工业大学,2009.
    [75]黄明刚.钢筋混凝土连续梁桥的地震易损性、危险性和风险分析[D].硕士学位论文,哈尔滨工业大学,2009.
    [76] Schotanus M I J, et al. Seismic fragility analysis of3D structures [J]. StructureSafety,2004,26(4):421-441.
    [77] Buratti N, Ferracuti B, Savoia M. Response surface with random factors forseismic fragility of reinforced concrete frames [J]. Structural Safety,2010,32(1):42-51.
    [78] Lupoi G, et al. Seismic fragility analysis of structural systems [J]. ASCEJournal of Engineering Mechanics,2006,132(4):385-395.
    [79] Kafali C, Grigoriu M. Seismic fragility analysis: application to simple linearand nonlinear systems [J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1885-1900.
    [80] Iervolino I, Fabbrocino G, Manfredi G. Fragility of standard industrialstructures by a response surface based method [J]. Journal of EarthquakeEngineering,2004,8(6):927-945.
    [81]吴子燕,王其昂,韩晖,曹君.基于响应面的桥梁地震易损性分析研究[J].西北工业大学学报,2011,29(1):103-107.
    [82] Kappos A J, Stylianidis K C, Pitilakis K. Development of seismic riskscenarios based on a hybrid method of vulnerability assessment [J]. NaturalHazard,1998,17(2):177-192.
    [83] Barbat A H, Yepez M F, and Canas J A. Damage scenarios simulation forseismic risk assessment in urban zones [J]. Earthquake Spectra,1996,12(3):371-394.
    [84] Singhal A, Kiremidjian A S. Byesian updating of fragilities with application toRC frames [J]. ASCE Journal of structural engineering,1998,124(8):922-929.
    [85] Berahman F, Behnamfar F. Seismic fragility curves for un-anchored on-gradesteel storage tanks: Bayesian approach [J]. Journal of Earthquake Engineering,11(2):166-192.
    [86] Wong J M, Mackie K, Stojadinovic B. Bayesian updating of bridge fragilitycurves using sensor data [C]. In Proceedings of the Fifth National SeismicConference on Bridges and Highway, Porto, Portugal,2006, Poster No:14.
    [87] Gardoni P, Der kiureghian A, Mosalam K M. Probabilistic capacity models andfragility estimates for reinforced concrete columns based on experimentalobservations [J]. ASCE Journal of Engineering Mechanics,2002,128(10):1024-1038.
    [88] Choe D-E, Gardoni P, Rosowsky D. Closed-form fragility estimates, parametersensitivity, and Bayesian updating for RC columns [J]. ASCE Journal ofEngineering Mechanics,2007,133(7):833-843.
    [89] Chelapati C V, Wall I B. Probabilistic assessment of seismic risk for nuclearpower plants [J]. Nuclear Engineering and Design,1974,29(3):346-359.
    [90] Kennedy R P, Ravindra M K. Seismic fagilities for nuclear power plant riskstudies [J]. Nuclear Engineering and Design,1984,79(1):47-68.
    [91] Kazuta H, Takahiro S. Fragility estimation of an isolated FBR structureconsidering the ultimate state of rubber bearings [J]. Nuclear Engineering andDesign,1994,147(2):183-196.
    [92] Akira Y. Seismic failure probability evaluation of redundant fast breaderreactor piping system by probabilistic structural response analysis [J]. NuclearEngineering and Design,1997,195(3):237-245.
    [93] Hwang H H M, Huo J-R. Seismic fragility analysis of electric substationequipment and structures [J]. Probabilistic Engineering Mechanics,1998,13(2):107-116.
    [94] Ghiocel D.M., et al. Seismic response and fragility evaluation for an EasternUS NPP including soil–structure interaction effects [J]. Reliability Engineeringand System Safety,1998,62(3):197-214.
    [95] Ozaki M., et al. Improved response factor methods for seismic fragility ofreactor building [J]. Nuclear Engineering and Design.1998,185(2-3):277-291.
    [96] Bhargava K, Ghosh A K, Ramanujama S. Seismic response and fragilityanalysis of a water storage structure [J]. Nuclear Engineering and Design,2005,235(14):1481-1501.
    [97] Kircil M S, Polat Z. Fragility analysis of mid-rise R/C frame buildings [J].Engineering Structures.2006,28(9):1335-1345.
    [98] Ramamoorthy S K, Gardoni P, Bracci J M. Probabilistic demand models andfragility curves for reinforced concrete frames [J]. ASCE Journal of StructuralEngineering.2006,132(10):1563-1572.
    [99]张号浩.单层钢筋混凝土柱厂房地震易损性分析[D].工学硕士学位论文,中国地震局工程力学研究所,2011年.
    [100]Lourenco P B, Roque J A. Simplified indexes for the seismic vulnerability ofancient masonry buildings [J]. Construction and Building Material,2006,20(4):200-208.
    [101]Mallardo V., et al. Seismic vulnerability of historical masonry buildings: Acase study in Ferrara [J]. Engineering Structures,2008,30(8):2223-2241.
    [102]Park J., et al. Seismic fragility analysis of low-rise unreinforced masonrystructures [J]. Earthquake Structures,2009,31(1):125-137.
    [103]于德湖,王焕定.配筋砌体结构地震易损性评价方法初探[J].地震工程与工程振动,2002;22(4):97-101.
    [104]田军伟.砖砌体结构地震易损性矩阵分析[J].工学硕士学位论文,中国地震局工程力学研究所,2005
    [105]Kim J H, Rosowsky D V. Fragility analysis for performance-based seismicdesign of engineered wood shearwalls [J]. ASCE Journal of StructuralEngineering,2005,131(11):1764-1773.
    [106]Pang W C., et al. Seismic fragility analysis and retrofit of conventionalresidential wood-frame structures in the central United States [J]. ASCEJournal of Structural Engineering,2009,135(3):262-271.
    [107]Choi E, DesRoches R, Nielson B G. Seismic fragility of typical bridges inmoderate seismic zones [J]. Engineering Structures,2004,26(2):187-199.
    [108]Nielson B G, DesRoches R. Analytical seismic fragility curves for typicalbridges in the central and southeastern United States [J]. Earthquake Spectra,2007,23(3):615-633.
    [109]Pan Y, Agrawal K, Ghosn M. Seismic fragility of continuous steel highwaybridges in New York State [J]. ASCE Journal of Bridge Engineering,2007,12(6):689-699.
    [110]Pan Y, Agrawal K, Ghosn M, Alampalli S. Seismic fragility of multispansimply supported steel highway bridges in New York State. II: Fragilityanalysis, fragility curves, and fragility surfaces [J]. ASCE Journal of BridgeEngineering,2010,15(5):462-471.
    [111]郑成龙,龙晓鸿,彭元诚等.大跨斜腿钢构桥地震易损性分析[J].土木工程与管理学报,2011,28(3):391-394.
    [112]Giuliano A., et al. Seismic vulnerability of monumental buildings [J]. StructureSafety,2001,23(3):253-274.
    [113]Tekie P B, Ellingwood B.R. Seismic fragility assessment of concrete gravitydams [J]. Earthquake Engineering and Structural Dynamics,2003,32(14):2221-2240.
    [114]Torres-Veraa M A, Canas J A. Lifeline vulnerability study in Barcelona, Spain[J]. Reliability Engineering and System Safety,2003,80(2):205-210.
    [115]Menoni S, et al. Lifelines earthquake vulnerability assessment: A systemicapproach [J]. Soil Dynamics and Earthquake Engineering,2002,22(9-12):1199-1208.
    [116]蒋凤梅.考虑结构-电气设备相互作用的大型变电站地震易损性分析研究
    [D].硕士学位论文,西安建筑科技大学,2011.
    [117]Kwon O S, Elnashai A S. Fragility analysis of RC bridge pier consideringsoil-structure interaction [C]. ASCE Proceedings of the Structural Congress:Structural Engineering and Public Safety, St. Louis, MO,2006.
    [118]Aslani H, Miranda E. Fragility assessment of slab-column connections inexisting non-ductile reinforced concrete buildings [J]. Journal of EarthquakeEngineering,2005,9(6):777-804.
    [119]李立峰,吴文朋,黄佳梅,王连华.板式橡胶支座地震易损性分析[J].湖南大学学报,2011,38(11):1-6.
    [120]Garcia D L, Soong T T. Soliding fragility of block-type non-structualcomponent. Part1: Unrestrained components [J]. Earthquake Engineering andStructural Dynamics,2003,32(1):111-129.
    [121]Garcia D L, Soong T T. Soliding fragility of block-type non-structualcomponent. Part1: Restrained components [J]. Earthquake Engineering andStructural Dynamics,2003,32(1):131-149.
    [122]Chaudhuri S R, Hutchinson T. Fragility of bench-mouted equipmentconsidering uncertain parameters [J]. ASCE Journal of Structural Engineering,2006,132(6):884-898.
    [123]Hutchinson T C, Chaudhuri S R. Simplified expression for seismic fragilityestimation of soliding-dominated equipment and contents [J]. EarthquakeSpectra,2006,22(3):709-732.
    [124]Hwang H, Jernigan J B, and Lin Y W. Evaluation of seismic damage toMemphis bridges and highway systems [J]. ASCE Journal of BridgeEngineering,2000,5(4):322-330.
    [125]Shinozuka M, et al. Fragility curves of concrete bridges retrofitted by columnjacketing [J]. Earthquake Engineering and Engineering vibration,2002,1(2):195-204.
    [126]Kim S H, Shinozuka M. Development of fragility curves of bridges retrofittedby column jacketing [J]. Probabilistic Engineering Mechanics,2004,19(1-2):105-112.
    [127]Nielson B, DesRoches R. Seismic fragility curves for bridges: A tool forretrofit prioritization [C]. ASCE Proceeding of6th U.S: Conference andWorkshop on Lifeline Earthquake Engineering,2004, TCLEE Monograph.
    [128]Padgett J E, DesRoches R. Methodology for the development of analyticalfragility curves for retrofitted bridges [J]. Earthquake Engineering andStructural Dynamics,2008,37(8):1157-1174.
    [129]Padgett J E, DesRoches R. Retrofitted bridge fragility analysis for typicalclasses of multi-span bridges [J]. Earthquake Spectra,2009,25(1):117-141.
    [130]Karim K R, Yamazaki F. Effect of isolation on fragility curves of highwaybridges based on simplified approach [J]. Soil Dynamics and EarthquakeEngineering,2007,27(5):414-426.
    [131]Dimova S L, Hirata K. Simplified seismic fragility analysis of structures withtwo types of friction devices [J]. Earthquake Engineering and StructureDynamics,2000,29(8):1153-1175.
    [132]Wanitkorkul A, Filiatrault A. Influence of passive supplemental dampingsystems on structural and nonstructural seismic fragilities of a steel building[J]. Engineering Structures,2008,30(3):675-682.
    [133]Guneyisi E M, Altay G. Seismic fragility assessment of effectiveness ofviscous dampers in R/C buildings under scenario earthquakes [J]. StructuralSafety,2008,30(5):461-480.
    [134]Choe D-E, et al. Probabilistic capacity models and seismic fragility estimatesfor RC columns subject to corrosion [J]. Reliability Engineering and SystemSafety,2008,93(3):383-393.
    [135]Choe D-E, et al. Seismic fragility estimates for reinforced concrete bridgessubject to corrosion [J]. Structural Safety,2009,31(4):275-283.
    [136]Simon J, Bracci J W, Gardoni P. Seismic response and fragility of deterioratedreinforced concrete bridges [J]. ASCE Journal of Structural Engineering,2010,136(10):1273-1281.
    [137]Ghosh J, Padgett J E. Aging considerations in the development oftime-dependent seismic fragility curves [J]. ASCE Journal of StructuralEngineering,2010,136(12):1497-1511.
    [138]Wen Z P, Hu Y X, Chau K T. Site effect on vulnerability of high-rise shear wallbuildings under near and far field earthquakes [J]. Soil Dynamics andEarthquake Engineering,2002,22(9-12):175-1182.
    [139]Aygun B, et al. Efficient longitudinal seismic fragility assessment of amultispan continuous steel bridge on liquefiable soils [J]. Journal of BridgeEngineering,2011,16(1):93-107.
    [140]Mosalam K M, et al. Seismic fragility of LRC frames with and withoutmasonry infill walls [J]. Journal of Earthquake Engineering,1997,1(4):693-720.
    [141]Dymiotis C, Kappos A J, Chryssanthopoulos M K. Seismic reliability ofmasonry-infilled RC frames [J]. ASCE Journal of Structural Engineering.2001,127(3):296-305.
    [142]Kim S H, Feng M Q. Fragility analysis of bridges under ground motion withspatial variation [J]. International journal of non-linear mechanics,2003,38(5):705-721.
    [143]Dimova S L, Negro P. Assessment of seismic fragility of structures withconsideration of the quality of construction [J]. Earthquake Spectra,2006,22(4):909-936.
    [144]吕大刚,于晓辉,宋鹏彦等人.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动.2009,29(4):150-159.
    [145]Lu Da-Gang, Yu Xiao-Hui, Li Gang, Wang Guang-Yuan. Minimum life-cyclecost design and optimal earthquake intensity decision-making of aseismicstructures based on finite element reliability analysis [C]. In Biondini F&Frangopol DM (Eds.), Life-Cycle Civil Engineering: The InternationalSymposium on Life-Cycle Civil Engineering (IALCCE'08), Varenna, LakeComo, Italy, June10-14,2008, CRC Press-Taylor&Francis Group,361-366.
    [146]Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter [J]?Structural Safety,2009,31(2):105-112.
    [147]Wen Y K, Ellingwood B R, Veneziano D., et al. Uncertainty modeling inearthquake engineering [R]. MAE Center Project FD-2Report,2003.
    [148]Iervolino I, Cornell C A. Record selection for nonlinear seismic analysis ofstructures [J]. Earthquake Spectra,2005,21(3):685-713.
    [149]Bommer J J, Acevedo A B. The use of real earthquake accelerograms as inputto dynamic analysis [J]. Journal of Earthquake Engineering,2004,8(1):43-91.
    [150]Cornell, C.A. Engineer seismic risk analysis [J]. Bulletin of the SeismologicalSociety of America,1968,58(5):1583-1606.
    [151]McGuire R K. Probabilistic seismic hazard analysis and design earthquakes:closing the loop [J]. Bulletin of the Seismological Society of America,1995,85(5):1275-1284.
    [152]Abrahamson N A, Silva W J. Empirical response spectral attenuation relationsfor shallow crustal earthquakes [J]. Seismological Research Letters,1997,68(1):94-127.
    [153]Somerville P G, Smith N, Graves R, et al. Modification of empirical strongground motion attenuation relations to include the amplitude and durationeffects of rupture directivity [J]. Seismological Research Letters,1997,68(1):199-222.
    [154]U.S. Nuclear Regulatory Commision. Technical Basis for Revision ofRegulatory Guidance on Design Ground Motions: Hazard-and Risk-ConsistentGround Motion Spectra Guidelines [R]. Government Printing Office,Washington D.C,2001, NUREG/CR-6728.
    [155]Shome N, Cornell C A, Bazzurro P, Carballo J E. Earthquakes, records andnonlinear responses [J]. Earthquake Spectra,1998,14(3):469-500.
    [156]Krawinkler H, Medina R, Alavi B. Seismic drift and ductility demands andtheir dependence on ground motions [J]. Engineering Structures,2003,25(5):637-653.
    [157]Wen Y K, Wu C L. Uniform hazard ground motions for Mid-America cities [J].Earthquake Spectra,2001,17(2):359-384.
    [158]Baker J W, Cornell C A. A vector-valued ground motion intensity measuresconsisting of spectral acceleration and epsilon [J]. Earthquake Engineering andStructural Dynamics,2005,34(10):1193-1217.
    [159]Baker J W, Cornell C A. Spectral shape, epsilon and record selection [J].Earthquake Engineering and Structural Dynamics,2006,35(9):1077-1095.
    [160]Goulet C A, Haselton C B, Mitrani R J, et al. Evaluation of the seismicperformance of a code-conforming reinforced-concrete frame building-Fromseismic hazard to collapse safety and economic losses [J]. EarthquakeEngineering and Structural Dynamics,2007,36(13):1973-1997.
    [161]Yin Y J, Li Y. Seismic collapse risk of light-frame wood constructionconsidering aleatoric and epistemic uncertainties [J]. Structural Safety,2010,32(4):250-261.
    [162]Haselton C, Baker J W, Liel A B, Deierlein G G. Accounting for ground motionspectral shape characteristics in structural collapse assessment through anadjustment for epsilon [J]. ASCE Journal of Structural Engineering,2010,137(3):332-344.
    [163]Luco N, Cornell C A. Structure-specific scalar intensity measures fornear-source and ordinary earthquake ground motions [J]. Earthquake Spectra,2007,23(2):357-392.
    [164]Barroso L R, Winterstein S. Probabilistic seismic demand analysis ofcontrolled steel moment-resisting frame structures [J]. Earthquake Engineeringand Structural Dynamics,2002,31(12):2049-2066.
    [165]Haselton C B, Deierlein G G. Assessing seismic collapse safety of modernreinforced concrete moment-frame building [J]. Pacific EarthquakeEngineering Research Center. PEER Report:2007/08.
    [166]Ditlevsen O, Madsen H O. Structural reliability methods [M]. John Wiley&Sons,1996.
    [167]Melchers R E. Structural reliability analysis and prediction [M]. John Wiley&Sons,1999.
    [168]Nowak A S, Collins K R. Reliability of structures [M]. McGraw-Hill,2000.
    [169]Joint Committee on Structural Safety. Probabilistic model code [M/OL].Internet publication, http://www.jcss.eth.ch,2001.
    [170]Lee T H, Mosalam K M. Seismic demand sensitivity of reinforced concreteshear-wall building using FOSM method [J]. Earthquake Engineering andStructural Dynamics,2005,34(14):1719-1736.
    [171]Thomos G C, Trezos C G. Examination of the probabilistic response ofreinforced concrete structures under static non-linear analysis [J]. EngineeringStructures,2006,28(1):120-133.
    [172]Kwon O S, Elnashai A. The effect of material and ground motion uncertaintyon the seismic vulnerability curves of RC structure [J]. Engineering Structures,2006,28(2):289-303.
    [173]Padgett J E, DesRoches. Sensitivity of seismic response and fragility toparameter uncertainty [J]. ASCE Journal of Structural Engineering,2007,133(12):1710-1718.
    [174]Dolsek M. Incremental dynamic analysis with consideration of modelinguncertainties [J]. Earthquake Engineering and Structural Dynamics,2008,38(6):805-825.
    [175]Liel A B, Haselton C B, Deierlein G G, Baker J W. Incorporating modelinguncertainties in the assessment of seismic collapse risk of buildings [J].Structural Safety,2009,31(2):197-211.
    [176]Grossi P A. Quantifying the uncertainty in seismic risk and loss estimation
    [M/OL]. http://www.iiasa.ac.at/Research/RMS/july2000/Papers/grossi.pdf
    [177]Kunnath S K, Larson L, Miranda E. Modelling considerations in probabilisticperformance-based seismic evaluation: case study of the I-880viaduct [J].Earthquake Engineering and Structural Dynamics,2006,35(1):57-75.
    [178]Chaudhuri S R, Hutchinson T C. Fragility of bench-mounted equipmentconsidering uncertain parameters [J]. ASCE Journal of structural engineering,2006,132(6):884-898.
    [179]Bradley B A. Epistemic uncertainties in component fragility functions [J].Earthquake Spectra,2010,26(1):41-62.
    [180]Jalayer F, Iervolino L Manfredi G. Structural modeling uncertainties and theirinfluence on seismic assessment of existing RC structures [J]. Structural Safety,2010,32(3):220-228.
    [181]Ellingwood B R, Wen Y K. Risk-benefit based design decisions for lowprobability/high consequence earthquake events in Mid-America [J]. Progressin Structural Engineering and Materials.2005,7(2):56-70.
    [182]Ibarra L, Krawinkler H. Effect of uncertainty in system deteriorationparameters on the variance of collapse capacity [C]. ICOSSAR,2005.
    [183]Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimatingseismic performance sensitivity and uncertainty [J]. Earthquake Engineeringand Structural Dynamics,2010,39(2):141-163.
    [184]Porter K A, Bech J L, Shaikhutdinov R V. Sensitivity of building loss estimatesto major uncertain variables [J]. Earthquake Spectra,2002,18(4):719-743.
    [185]Nielson B G, DesRoches R. Influence of modeling assumptions on the seismicresponse of multi-span simply supported steel girder bridges in moderateseismic zones [J]. Engineering Structures,2006,28(8):1083-1092.
    [186]Der Kiureghian A. Structural reliability methods for seismic safety assessment:a review [J]. Engineering Structures,1996,18(6):412-424.
    [187]Pinto P E. Reliability methods in earthquake engineering [J]. Progress inStructural Engineering and Materials,2001,3(1):76-85.
    [188]Au S K, Beck J L. Subset simulation and its application to seismic risk basedon dynamic analysis [J]. ASCE Journal of Engineering Mechanics,2003,129(8):901-917.
    [189]Pinto P E, Giannini R, Franchin P. Seismic Reliability Analysis of Structures
    [M]. Pavia: Edizioni Cardano,2004.
    [190]Franchin P. Reliability of uncertain inelastic structures under earthquakeexcitation [J]. ASCE Journal of Engineering Mechanics,2004,130(2):180-191.
    [191]Cornell C A. Risk-based structural design [C]. Proceedings of Symposium onRisk Analysis, Nowak A., Ed., Department of Civil Engineering, University ofMichigan,1994:37-48.
    [192]Jalayer F. Direct probabilistic seismic analysis: implementing non-lineardynamic assessments [D]. Ph.D. Dissertation. Department of Civil andEnvironmental Engineering, Stanford University, Stanford, CA,2003.
    [193]Song J L, Ellingwood B R. Seismic reliability of special moment steel frameswith welded connections: II [J]. ASCE Journal of Structural Engineering,1999,125(4):372-384.
    [194]Ellingwood B R. Earthquake risk assessment of building structures [J].Reliability Engineering and System Safety,2001,74(3):251-262.
    [195]Ellingwood B R, Kinali K. Quantifying and communicating uncertainty inseismic risk assessment [J]. Structural safety,2009,31(2),179-187.
    [196]Zareian F, Krawinkler H. Assessment of probability of collapse and design forcollapse safety [J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1901-1914.
    [197]Lupoi A, Franchin P, Schotanus M. Seismic risk evaluation of RC bridgestructures [J]. Earthquake Engineering and Structural Dynamics,2003,32(8):1275-1290.
    [198]Bradley B A, Dhakal R P. Error estimation of closed-form solution for annualrate of structural collapse [J]. Earthquake Engineering and StructuralDynamics,2008,37(5):1721-1737.
    [199]FEMA-350. Recommended Seismic Design Criteria for New SteelMoment-Frame Buildings [R]. Federal Emergency Management Agency,2000,Washington, D.C.
    [200]Lupoi G, Lupoi A, Pinto P E. Seismic risk assessment of RC structures withthe “2000SAC/FEMA” method [J]. Journal of Earthquake Engineering,2002,6(4):499-512.
    [201]Kim T, Foutch D A. Application of FEMA methodology to RC shear wallbuildings governed by flexure [J]. Engineering Structures,2007,29(10):2514-2522.
    [202]Mackie K R, Stojadinovic B. Performance-based seismic bridge design fordamage and loss limit states [J]. Earthquake Engineering and StructuralDynamics,2007,36(13):1953-1971.
    [203]Dol ek M, Fajfar P. Simplified probabilistic seismic performance assessmentof plan-asymmetric buildings [J]. Earthquake Engineering and StructuralDynamics,2007,36(13):2021-2041.
    [204]Dol ek M, Fajfar P. Effects of masonry infills on the seismic response of a fourstorey reinforced concrete frame–A probabilistic assessment [J]. EngineeringStructures.2008,30(11):3186–3192.
    [205]Bazzurro P., et al. Three proposals for characterizing MDOF nonlinear seismicresponse [J]. ASCE Journal of Structural Engineering,1998,124(11),1281-1289.
    [206]Li Y, Ellingwood B R. Reliability of woodframe residential constructionsubjected to earthquakes [J]. Structural Safety,2007,29,294-307.
    [207]Li Y, Ellingwood B R. Framework for multihazard risk assessment andmitigation for wood-frame residential construction [J]. ASCE Journal ofStructural Engineering,2009,135(2),159-168.
    [208]Shome N. Probabilistic Seismic Demand Analysis of Nonlinear Structures [D].Ph.D. Thesis, Department of Civil and Environmental Engineering, StanfordUniversity, Stanford, CA,1999.
    [209]Luco N. Probabilistic Seismic Demand Analysis, SMRF Connection Fractures,and Near-Source Effects [D]. Ph.D. Thesis, Department of Civil andEnvironmental Engineering, Stanford University, Stanford, CA,2002.
    [210]Applied Technology Council. Quantification of building seismic performancefactors [S].2008, ATC-63Project Report–90Draft.
    [211]McKenna F, Fenves GL, and Scott MH. Open System for EarthquakeEngineering Simulation [R]. Pacific Earthquake Engineering Research Center,University of California at Berkeley, California,2008.
    [212]Scott B D, Park R and Priestley M J N. Stress-strain behavior of concreteconfined by overlapping hoops at low and high strain rates [J]. ACI Journalproceedings,1982,79(2):13-27.
    [213]Karsan I D, Jirsa J O. Behavior of concrete under compressive loading [J].ASCE Journal of structural Division1969,95(ST12):2543-2563.
    [214]Menegotto, M., and Pinto, P.E. Method of analysis of cyclically loaded RCplane frames including changes in geometry and non-elastic behavior ofelements under normal force and bending [R]. Preliminary Report IABSE,1973, vol13.
    [215]Dhakal, R.J., and Maekawa, K. Path-dependent cyclic stress-strain relationshipof reinforcing bar including buckling [J]. Engineering Structures,2002,24(11):1383-96.
    [216]Gomes A, Appleton J. Nonlinear cyclic stress-strain relationship of reinforcingbars including bucking [J]. Engineering Structures,1997,19(10):822-826.
    [217]Spacone E, Filippou F.C and Taucer F.F.Fiber beam-column model fornonlinear analysis of R/C frames: part1. formulation [J]. EarthquakeEngineering and Structural Dynamics,1996,25(7):711-725.
    [218]Panagiotakos T B, Fardis M N. Deformations of reinforced concrete membersat yielding and ultimate [J]. ACI Structural Journal,2001,98(2):135-148.
    [219]Stratan A, Fajfar P. Influence of modeling assumptions and analysis procedureon the seismic evaluation of reinforced concrete GLD frames [R]. IKPIRreport, Ljubljana, August2002.
    [220]Haselton C B, Deierlein G G. Assessing seismic collapse safety of modernreinforced concrete moment-frame buildings [R]. Pacific EarthquakeEngineering Research Center, College of Engineering University of California,Berkeley.2008, PEER Report2007/08.
    [221]Haselton C B, Liel A B, Lang S T, Deierlein G G. Beam-Column ElementModel Calculated for Predicting Flexural Response Leading to GlobalCollapse of RC Frame Buildings [R]. Pacific Earthquake Engineering ResearchCenter, College of Engineering University of California, Berkely, PEERReport2007/03.
    [222]Park R, Paulay T. Reinforced concrete structures [M]. New York: John Wiley&Sons;1975:769.
    [223]Priestley M J N, Seible F, Calvi G M S. Seismic design and retrofit of bridges
    [M]. New York: John Wiley&Sons;1996.
    [224]Applied Technology Council (ATC-32). Improved seismic design criteria forCalifornia bridges: Provisional recommendations [S]. Redwood City (CA);1996.
    [225]Berry M, Parrish M, Eberhard. PEER structural performance database, user’smanual (version1.0)[M]. Pacific earthquake engineering research center,University of califonia, Berkeley,2004.
    [226]Rosenblueth E. Point estimates for probability moments [J]. Proceedings of theNational Academy of Science.1975,72(10):3812-3814.
    [227]Gorman MR.(1980). Reliability of structural systems [D]. Ph.D. Thesis, CaseWestern Reserve University, Cleveland, Ohio,1980.
    [228]Hong H P. An efficient point estimate method for probabilistic analysis [J].Reliability Engineering and System Safety,1998,59(3):261-267.
    [229]Zhou J H, Nowak A S. Integration formulas to evaluate functions of randomvariables [J]. Structural Safety,1988,5(4):267-284.
    [230]Zhao Y G, Ono T. New point estimates for probability moments [J]. ASCEJournal of Engineering Mechanics,2000,126(4):433-436.
    [231]Christian J T, Baecher G B. Point-estimate method as numerical quadrature [J].ASCE Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9):779-786.
    [232]Rosenblueth E. Two-point estimates in probability [J]. Applied MathematicalModelling,1981,5(10):329-335.
    [233]Wang Y, Tung Y K. Improved probabilistic point estimation schemes foruncertainty analysis [J]. Applied Mathematical Modelling,2009,33(2):1042-1057.
    [234]Panchalingam G, Harr M E. Modeling of many correlated and skewed randomvariables [J]. Applied Mathematical Modelling,1994,18(11):635-640.
    [235]Li KS. Point-estimate method for calculating statistical moments [J]. ASCEJournal of Engineering Mechanics,1992,118(7):1506-1511.
    [236]Zoppou C, Li K.S. New point estimate method for water resources modeling[J]. ASCE Journal of Hydrautic Engineering,1993,119(11):1300-1307.
    [237]Tsai C W, Franceschini S. Evaluation of probabilistic point estimate methodsin uncertainty analysis for environmental engineering applications [J]. ASCEJournal of Environmental Engineering,2005,131(3):387-395.
    [238]Lind N C. Modeling uncertainty in discrete dynamic systems [J]. AppliedMathematical Modelling,1983,7(3):146-152.
    [239]Harr M E. Probability estimates for multivariate analyses [J]. AppliedMathematical Modelling,1989,13(5):313-318.
    [240]Chang C H, Yang J C, Tung Y K. Uncertainty analysis by point estimatemethods incorporating marginal distributions [J]. ASCE Journal of HydraulicEngineering,1997,123(3):244-250.
    [241]He J, Sallfors G. An optimal point estimate method for uncertainty studies [J].Applied Mathematical Modelling,1994,18(9):494-499.
    [242]Rosenblatt M. Remarks on a multivariate transformation [J]. Annals ofMathmatical Statatistics,1952,23(3):470-472.
    [243]Der Kiureghian A, Liu PL. Structural reliability under incomplete probabilityinformation [J]. Journal of Engineering Mechanics,1986,112(1):85-104.
    [244]Liu P L, Der Kiureghian A. Multivariate distribution models with prescribedmarginals and covariances [J]. Probababilistic Engineering Mechanics,1986,1(2):105-112.
    [245]Xu H, Rahamn S. A generalized dimension-reduction method formultidimensional integration in stochastic mechanics [J]. International Journalfor Numerical Methods in Engineering,2004,61(12):1992-2019.
    [246]Rahamn S, Xu H. A univariate dimension-reduction method formulti-dimensional integration in stochastic mechanics [J]. ProbabilisticEngineering Mechanics,2004,19(4):393-408.
    [247]李洪双,吕震宙,袁修开.基于Nataf变换的点估计法[J].科学通报,2008,53(6):627-632.
    [248]Zellner A, Highfield R A. Calculation of maximum entropy distributions andapproximation of marginal posterior distributions. Journal of Econometrics,1988,37(2):195-209.
    [249]Chang C H, Tung Y K, Yang J C. Evaluation of probability point estimatemethods [J]. Applied Mathematical Modelling,1995,19(2):95-105.
    [250]Chang C H, Tung Y K, Yang J C. Monte Carlo simulation for correlatedvariables with marginal distributions [J]. ASCE Journal of HydraulicEngineering,1994,120(3):313-331.
    [251]Johnson P A. Reliability-based pier scour engineering [J]. ASCE Journal ofHydrant Engineering,1992,118(10):1344-1358.
    [252]吕大刚,于晓辉,王光远.基于改进云图法的结构概率地震需求分析[J].世界地震工程.2010,20(1):7-15.
    [253]Bommer J J, Acevedo A B. The use of real earthquake accelerograms as inputto dynamic analysis [J]. Journal of Earthquake Engineering,2004,8(1):43-91.
    [254]Gomes R C, Santos J, Oliveira C S. Design spectrum-compatible time historiesfor numerical analysis: generation, correction and selection [J]. Journal ofEarthquake Engineering,2006,10(6):843-865.
    [255]Wen Y K, Wu C L. Uniform hazard ground motion for Mid-America cities [J].Earthquake Spectra,2001,17(2):359-384.
    [256]Power M, Chiou B, Abrahamson N, Bozorgnia, et al. An overview of the NGAproject [J]. Earthquake Spectra,2008,24(1):3-22.
    [257]Chiou B, Darragh R, Gregor N, Silva W. NGA project strong-motion database[J]. Earthquake Spectra,2008,24(1):23-44.
    [258]PEER StrongMotion Database [M/O]. http://peer.berkeley.edu/smcat.
    [259]Medina R, Krawinkler H. Seismic Demands for nondeteriorating framestructures and their dependence on ground motions [R]. PEER Report:2003/15,Pacific Earthquake Engineering Research Center.
    [260]Joyner, W B, Boore D M. Peak horizontal acceleration and velocity fromstrong-motion records including records from the1979Imperial Valley,California, earthquake [J]. Bulletin of the Seismological Society of America,1981,71(6):2011-2038.
    [261]Campbell K W. Empirical near-source attenuation relationships for horizontaland vertical components of peak ground acceleration, peak ground velocity,and pseudo-absolute acceleration response spetra [J]. Seismological ResearchLetter,1997,68(1):154-179.
    [262]Mackie K R, Stojadinovic B. Improving probabilistic seismic demand modelsthrough refined intensity measures [C]. The13th World Conference onEarthquake Engineering.2004, August1-6, Vancouver, B.C., Canada. Paper ID:1556.
    [263]Padgett J E, Nielson B G, DesRoches. Selection of optimal intensity measuresin probabilistic seismic demand models of highway bridge portfolios [J].Earthquake Engineering and Structural Dynamics,2008,37(5):711-725.
    [264]Kramer S.L. Geotechnical Earthquake Engineering [M].1996, Prentice-Hall.
    [265]Mackie K. Fragility-based seismic decision making for highway overpassbridges [D]. Ph.D. Department of Civil and Environmental Engineering of UCBerkeley,2005.
    [266]Arias A. A measure of earthquake intensity [M]. Seismic Design for NuclearPower Plants (ed. R.J. Hansen), MIT Press, Cambridge, Massachusetts.1970,pp.438-483.
    [267]Bommer J J, Pereira A M. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering,1999,3(2):127-172.
    [268]Fajfar P, Vidic T, Fischinger M. A measure of earthquake motion capacity todamage medium-period structures [J]. Soil Dynamics and EarthquakeEngineering,1990,9(5):236-242.
    [269]Nuttli O.W. The relation of sustained maximum ground acceleration andvelocity to earthquake intensity and magnitude [R]. Miscellaneous PaperS-71-1, Report16, U.S. Army Corps of Engineers.1970, WaterwaysExperiment Station, Vicksburg, Mississippi.
    [270]Benjamin J.R, et al. A criterion for determining exceedance of the OperatingBasis Earthquake [R].1988, EPRI Report NP-5930, Electric Power ResearchInstitute, Palo Alto, California.
    [271]Sarma SK and Yang KS. An evaluation of strong motion records and a newparameter A95[J]. Earthquake Engineering and Structural Dynamics,1987,15(1):119-132.
    [272]Rathje E M, Abrahamson N A, Bray J D. Simplified frequency contentestimates of earthquake ground motions [J]. Journal of Geotechnical andGeo-environmental Engineering,1998,124(2):150-159.
    [273]Von Thun J L, Rochim L H, Scott G A, Wilson J A. Earthquake ground motionsfor design and analysis of dams [J]. Earthquake Engineering and SoilDynamics II-Recent Advances in Ground-Motion Evaluation, GeotechnicalSpecial Publication,1988,20:463-481.
    [274]Housner, G.W. Behavior of structures during earthquakes [J]. Journal ofEngineering Mechanics Division,1959,85(EM14):109-129.
    [275]Cordova P P, Mehanny S S F, Deierlein G G, Cornell C A. Development of atwo-parameter seismic intensity measure and probabilistic assessmentprocedure. The Second U.S.-Japan Workshop on Performance-BasedEarthquake Engineering Methodology for Reinforced Concrete BuildingStructures [R]. Report No.2000/10. Pacific Earthquake Engineering ResearchCenter, University of California, Berkeley.
    [276]Applied Technology Council (ATC). Tentative provisions for the developmentof seismic regulations for buildings [R].1978, Report No: ATC3-06.
    [277]Park Y J, and Ang AH-S. Mechanistic seismic damage model for reinforcedconcrete [J]. ASCE Journal of Structural Engineering,1985,111(4):722-739
    [278]Kunnath S K, Reinhorn A M, Lobo R F. IDARC: Inelastic damage analysis ofRC structures-Version3.0[M]. State University of New York at Buffalo, NewYork,1985, Report: NCEER-92-0022.
    [279]Park Y J, Reinhorn A M andKunnath SK. IDARC: Inelastic damage analysis ofreinforced concrete frame-shear-wall structures [M]. State University of NewYork at Buffalo, New York,1987, Report: NCEER-87-0008.
    [280]Kunnath S K, Bahy A, Taylor A W, Stome WC. Cumulative seismic damage ofreinforced concrete bridge pier [R]. United States Department of CommerceTechnology Administration, National Institute of Standards and Technology.Report: NISTIR6075.
    [281]Shome N, Cornell C A. Structural seismic demand analysis: consideration ofcollapse [C]. Proceedings of8th ASCE Specialty Conference on ProbabilisticMechanics and Structural Reliability. PMC2000-119.
    [282]Applied Technology Council (ATC). Rapid visual screening of buildings forpotential seismic hazard: A handbook [R]. Palo, Alto,1988, ATC21.
    [283]Earthquake Planning and Protection Organisation (EPPO). Post earthquakebuilding safety classification [R]. Ministry of Environment. Planning andPublic Works, Athens,1998.
    [284]Medvedev S W, Sponheuer W, Karnik V. Seismic intensity scale version MSK1964[R]. United Nations Educational Scientific and Cultural Organization,Working Group on Seismicity and Seismo-Tectonics.1965, Tbilisi.
    [285]Grunthal G. European macroseismic scale1998(EMS-98)[R]. EuropeanSeismological Commission, Subcommission on Engineering Seismology,Working Group Macroseismic Scales,1998.
    [286]GB/T17742-2008.中国地震烈度表[R].中华人民共和国国家标准,2008.
    [287]Earthquake Engineering Research Institute (EERI). Expected seismicperformance of buildings [M].1994, Edited by William H, and Tubbesing S.
    [288]Applied Technology Council (ATC). Seismic evaluation and retrofit ofconcrete buildings: Volume1[R]. California Seismic Safety Commission, ATC40.
    [289]Federal Emergency Management Agency (FEMA). NEHRP guidelines for theseismic rehabilitation of buildings [R]. FEMA Publication273,1997.
    [290]Eurocode8-Design of structures for earthquake resistance: Part3: Assessmentand retrofitting of buildings [R].1998-3:2005.
    [291]HAZUS-MH MR1. Multi-hazard Loss Estimation Methodology-EarthquakeModel: Advanced Engineering Building Module–Technical and User’sManual [R]. Federal Emergency Management Agency,2003, Washington D.C.
    [292]Frankie TM. Simulation-based fragility relationships for unreinforcedmansonry buildings [D]. Ph. D. University of Illinois at Urbana-Champaign,2010.
    [293]Rota M, Penna A, Magenes G. A methodology for deriving analytical fragilitycurves for masonry buildings based on stochastic nonlinear analysis [J].Engineering Structures,2010,32(5):1312-1323.
    [294]Pasticier L, Amadio C, Fragiacomo M. Nonlinear seismic analysis andvulnerability evaluation of a masonry building by means of the SAP2000V.10code [J]. Earthquake Engineering and Structural Dynamics,2008,37(3):467-485.
    [295]Erberik M A. Generation of fragility curves for Turkish masonry buildingsconsidering in-plane failure modes [J]. Earthquake Engineering and StructuralDynamics,2008,37(3):387-405.
    [296]Shome N, Bazzurro P. Comparison of vulnerability of a new high-rise concretemoment frame structure using hazus and nonlinear dynamic analysis [C].Safety, Reliability and Risk of Structures, Infrastructures and EngineeringSystems–Furuta, Frangopol&Shinozuka (eds),. Japan,2009.
    [297]于晓辉,吕大刚,王光远.多级力控制随机pushover方法[J].工程力学,2010,27(增刊I):6-10.
    [298]吕大刚,于晓辉,王光远.基于FORM有限元可靠度方法的结构整体概率抗震能力分析[J].工程力学.2012,29(2):1-8.
    [299]吕大刚,于晓辉,王光远.基于MVFOSM有限元可靠度方法的结构整体概率抗震能力分析[J].世界地震工程.2008,24(2):1-8.
    [300]吕大刚,于晓辉,王光远.基于Zhou-Nowak数值积分法的结构整体概率抗震能力分析[J].世界地震工程.2008,24(3):7-13.
    [301]吕大刚,于晓辉,王光远.基于改进点估计法的结构整体概率抗震能力分析[J].世界地震工程.2008,24(4):7-14.
    [302]Vamvatsikos D, Cornell C A. Incremental dynamic analysis [J]. EarthquakeEngineering and Structural Dynamics,2002,31(3):491-514.
    [303]GBJ68-84.建筑结构设计统一标准(试行)[S].北京:中国建筑工业出版社,1994.
    [304]GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社,1994.
    [305]Ellingwood B, Galambos T V, MacGregor J G, Cornell C A. Development of aprobability based load criterion for American national standard A58-Buildingcode requirements for minimum design loads in buildings and other structures
    [M].1980.
    [306]GB5001-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [307]中国建筑科学研究院译. ACI-318M-89美国钢筋混凝土房屋建筑规范(1992年公制修订版)[S].北京:1993.
    [308]Comite Euro-International du Beton. Bulletin D’information No.213/214CEB-FIP Model Code1990(Concrete Structures)[S]. Lausanne, May1993.
    [309]Mander J B, Priestley M J N, Park R. Theoretical stress-strain model forconfined concrete [J]. Journal of Structural Engineering,1988,114(8):1804-1826.
    [310]过镇海.混凝土的强度和本构关系-原理与应用[S].北京:中国建筑工业出版社,2004.
    [311]Barbato M, Gu Q, Conte J P. Probabilistic Push-Over analysis of structural andsoil-structure systems [J]. ASCE Journal of Structural Engineering.2010,136(11):1330-1341.
    [312]Olsson, A M J, Sandberg G E. Latin hypercube sampling for stochastic finiteelement analysis [J]. ASCE Journal of Engineering Mechanics,2002,128(1):121-125.
    [313]Federal Emergency Management Agency. Prestandard and Commentary for theseismic rehabilitation of buildings [R]. FEMA report356,2000.
    [314]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,29(6):33-39.
    [315]施炜,叶列平,陆新征,唐代远.不同抗震设防RC框架结构抗倒塌能力的研究[J].工程力学,2011,28(3):41-48.
    [316]吕大刚,于晓辉,陈志恒.钢筋混凝土框架结构侧向倒塌的地震易损性分析[J].哈尔滨工业大学学报,2011,43(6):1-5.
    [317]吕大刚,于晓辉,王光远.单地震动记录随机增量动力分析[J].工程力学,2010,27(增刊):53-58.
    [318]Wen YK, Ellingwood BR, Bracci J. Vulnerability Function Framework forConsequence-based Engineering [R]. MAE Center Project DS-4Report,2004.
    [319]Erberik M A, Elnashai A S. Loss estimation analysis of flat-slab structures [J].ASCE, Natural Hazards Reviews,2006,7(1):26-37.
    [320]Chopra A K, Goel R K. Capacity-demand-diagram methods for estimatingseismic deformation of inelastic structures: SDF systems [R]. PacificEarthquake Engineering Research Center, University of California, Berkeley.1999, PEER-1999/02.
    [321]Bradley B A., et al. Improved seismic hazard model with application toprobabilistic seismic demand analysis [J]. Earthquake Engineering andStructural Dynamics,2007,36(14):2211-2225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700