用户名: 密码: 验证码:
多种群强耦合种群动态模型的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Stability Analysis for Multi-species Strongly Coupled Population Dynamical Models
  • 作者:温紫娟
  • 论文级别:博士
  • 学科专业名称:基础数学
  • 学位年度:2009
  • 导师:钟承奎
  • 学科代码:070101
  • 学位授予单位:兰州大学
  • 论文提交日期:2009-04-01
摘要
在数学生态学中,一个生态系统共存态的存在性及各种群的长时间行为是种群动态模型研究的主要内容.近年来,随着对种群动态模型研究的深入,同时考虑了扩散、自扩散和交错扩散作用的强耦合反应扩散方程组受到越来越多的关注.在这篇博士学位论文中,我们主要考虑种群动力学中的一类具有代表性的强耦合非线性反应扩散系统,通过对此类系统解的整体性态以及非常数稳态解存在性的研究,得到了一系列新的结果.整篇论文由五章组成.
     第一章,介绍数学生态学及种群动态模型的背景、发展、研究进展及现状,给出本文所要讨论的主要问题和研究思想.
     第二章,给出文中要用到的一些重要引理、命题等辅助知识.
     第三章,讨论一类带非线性耗散的强耦合反应扩散系统的整体解.这类系统是同时考虑了扩散、自扩散和交错扩散作用的n种群SKT模型.以H.Amann建立的非负解的局部存在性为基础,采用PDE中标准的能量估计方法,结合恰当的Gagliardo-Nirenberg型插值不等式,我们在扩散矩阵和竞争矩阵正定的条件下得到该类系统解的整体存在性和一致有界性,并进一步由Lyapunov函数法得出非常数正平衡态的不存在性.
     第四章,主要考虑三种群强耦合HP食物链模型.在零流边界条件下,运用Leray-Schauder度理论,得到这个强耦合系统的非常数正稳态解的存在性.同时,由种群动力学中的一些基本概念及方法,讨论该模型的常数正平衡点的稳定性.结果表明,对于强耦合情形,当第二个种群的扩散或自扩散作用较强时,系统不存在非常数正平衡态,而当第二个种群相对于第一个种群或第三个种群相对于第二个种群的交错扩散足够大时,系统至少存在一个非常数正稳态解.在弱耦合情形,当第三个种群的扩散充分大时会出现非常数正平衡态.因此,较强的扩散或交错扩散对系统生成稳态模式(stationary patterns)起着促进作用.
     第五章,运用Rabinowitz局部和全局分歧定理,研究零边界条件下强耦合竞争-竞争-互惠模型的平衡态问题正解的大范围分歧.以第一个种群的内禀增长率作为分歧参数,根据Rabinowitz局部分歧定理得到了平衡态系统在第一个分量为0的半平凡平衡解支上的分歧解.进一步,由Rabinowitz正解的大范围分歧定理可知这个分歧解是全局存在的.因此当三个种群的内禀增长率适当大,并且某个相关的带非线性扩散项的特征值问题的第一特征值为0且为奇代数重数时,这三个种群至少有一个共存态.
In mathematical ecology, the coexistence and the long time behavior of various species in an ecosystem are the chief contents of population dynamical models. With the rapid development of researches, more and more attention is recently concentrated on the strongly coupled reaction-diffusion equations with diffusion, self-diffusions and cross-diffusions. In this doctoral dissertation, we mainly discuss a representational class of strongly coupled nonlinear reaction-diffusion systems arising in population dynamics. By investigating the global behavior and the existence of non-constant positive steady states, we get a series of new and meaningful results. This thesis consists of four chapters.
     In Chapter 1, the background, historical development, advances in research and present situation and prospects of mathematical ecology and population dynamical models are introduced. The problems considered in this paper and the main ideas are presented.
     In Chapter 2, the preliminaries used in the main body such as some important lemmas and propositions are listed.
     In Chapter 3, we discuss the global solutions for a class of strongly coupled reaction-diffusion systems with nonlinear dissipative terms. Such system is n species SKT model including the effects of diffusions, self-diffusions as well as cross-diffusions. Based on the local existence of the nonnegative solutions from H. Amann, we consider the global existence and boundedness of the solutions by employing the standard technique of energy estimates and a few well-chosen Gagliardo-Nirenberg interpolation inequalities. If the diffusion matrix and competition matrix are all positive definite, the nonnegative solution for the system can exist globally and be uniformly bounded. Moreover, the non-existence of non-constant positive steady state is also obtained by constructing an appropriate Lyapunov function.
     In Chapter 4, the strongly coupled HP food chain model with three interacting species is investigated. When zero population flux across the boundary, by using the Leray-Schauder degree theory, we obtain the existence of non-constant positive steady states for this model. In addition, the stability of constant positive equilibrium point is discussed by elementary concept and methods in population dynamics. The results indicate that for strongly coupled system, when the effect of diffusion or self-diffusion of the second species is strong, there is no non-constant positive steady state for the system, whereas there is at least one non-constant positive steady state if cross-diffusion of the second species due to the first species or the third species due to the second species is large enough, and there is at least one non-constant positive steady state for weakly coupled system when diffusion of the third species is strong enough. Therefore, the emergence of stationary patterns is due to strong diffusion or cross-diffusions.
     In Chapter 5, we mainly discuss the golbal bifurcation of the steady state problem for the strongly coupled competitor-competitor-mutualist model under zero boundary conditions. The tools used in this chapter are the local and global bifurcation theorems of Rabinowitz. Regarding the intrinsic rate of natural increase of the first species as bifurcation parameter, we can obtain the positive solution branch of the steady state system which bifurcates from the semitrivial solution set the first component of which is zero by Rabinowitz's local bifurcation theorem. Further, Rabinowitz's global bifurcation theorem of positive solution shows that the local bifurcation branch is global. Therefore, the competitor-competitor-mutualist cross-diffusions system possess at least one coexistence if the intrinsic increasing rates of the three species fulfill proper conditions and the principal eigenvalue of an eigenvalue problem with nonlinear diffusion term is 0 and the algebra multiplicity of it is odd.
引文
[1]张凤琴,生物数学发展概述,运城学院学报23(2005)1-3.
    [2]张庆国,国际数学生态学研究进展--Alcal(?)第2届国际数学生态学大会介绍,生态学报 24(2004)393-394.
    [3]陈兰荪,王东达,数学、物理学与生态学的结合--种群动力学模型,物理7(1994)408-413.
    [4]马国芳,生物数学的应用和发展,生物学教学10(1997)42-43.
    [5]M.L.Rosenzweig,Exploitation in three trophic levels,Am.Nat.107(1973)275-294.
    [6]陈兰荪,数学生态学模型与研究方法,科学出版社,北京,1988.
    [7]J.D.Murray,Mathematical Biology I:An Introduction,Third Edition,Springer,New York,2002.
    [8]R.A.Fisher,The wave of advance of advantageous genes,Ann.Eugenics 7(1937)353-369.
    [9]B.Dubey,B.Hussain,A predator-prey interaction model with self and cross-diffusion,Ecol.Modelling 141(2001)67-76.
    [10]A.M.Turing,The chemical basis of morphogenesis,Phil.Trans.Roy.Soc.Lond.B237(1952)37-72.
    [11]N.Shigesada,K.Kawasaki,E.Teramoto,Spatial segregation of interacting species,J.Theor.Biol.79(1979)83-99.
    [12]E.N.Dancer,On the existence and uniqueness of positive solutions for competing species models with diffusion,Tran.Amer.Math.Soc.326(1991)829-859.
    [13]Shim Seong-A,Uniform boundedness and convergence of solutions to cross-diffusion systems,J.Diff.Eqs 185(2002)281-305.
    [14]Y.S.Choi,R.Lui,Y.Yamada,Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak coupled cross-diffusion,Discrete Contin.Dynam.Systs 9(2003)1193-1200.
    [15]Y.S.Choi,R.Lui,Y.Yamada,Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,Discrete Contin.Dynam.Systs 10(2004)719-730.
    [16]D.Le,L.Nguyen,T.Nguyen.Shigesada-Kawasaki-Teramoto model on higher dimensional domains,Electronic J.Diff.Eqs 72(2003)1-12.
    [17]Y.Lou,W.Ni,Diffusion,self-diffusion and cross-diffusion,J.Diff.Eqns 131(1996)79-131.
    [18]Y.Lou,W.Ni,Diffusion vs cross-diffusion:An elliptic approach,J.Diff.Eqns 154(1999)157-190.
    [19]W.H.Ruan,Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,J.Math.Anal.Appl.197(1996)558-578.
    [20]Y.Lou,W.Ni,Y.Wu,On the global existence of a cross-diffusion system,Discrete Contin.Dynam.Systs 4(1998)193-203.
    [21]G.Galiano,A.J(u|¨)ngle,M.Garzdn,Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,Numer.Math.93(2003)655-673.
    [22]J.Barrett,J.Blowey,Finite element approximation of a nonlinear cross-diffusion population model,Numer.Math.98(2004)195-221.
    [23]L.Chen,A.J(u|¨)ngel,Analysis of a multi-dimensional parabolic population model with strong cross-diffusion,SIAM J.Math.Anal.36(2004)301-322.
    [24]L.Chen,A.J(u|¨)ngel,Analysis of a parabolic cross-diffusion population model without self-diffusion,J.Diff.Eqns 224(2006)39-59.
    [25]Y.Lou,T.Nagylaki,W.Ni,On diffusion-induced blowups in a mutualistic model,Nonl.Anal.45(2001)329-342.
    [26]M.Wang,Stationary patterns of strongly coupled prey-predator models,J.Math.Anal.Appl.292(2004)484-505.
    [27]C.V.Pao,Strongly coupled elliptic systems and applicitions to Lotka-Volterra models with cross-diffusion,Nonlinear Analysis 60(2005)1197-1217.
    [28]K.Kuto,Stability of steady-state solutions to a prey-predator system with cross-diffusion,J.Diff.Eqs 197(2004)293-314.
    [29]K.Kuto,Y.Yamada,Multiple coexistence states for a preypredator system with cross-diffusion,J.Diff.Eqs 197(2004)315-348.
    [30]Z.Lin,M.Pedersen,Coexistence of two species in a strongly coupled cooperative model,Math.Comput.Modelling 45(2007)371-377.
    [31]H.Zhou,Z.Lin,Coexistence in a strongly coupled system describing a two-species cooperative model,Appl.Math.Ltee.20(2007)1126-1130.
    [32]X.Zeng,Non-constant positive steady states of a prey-predator system with cross-diffusions,J.Math.Anal.Appl.332(2007)989-1009.
    [33]X.Zeng,Z.Liu,Nonconstant positive steady states for a ratio-dependent predator-prey system with cross-diffusion,Nonlinear Anal.:RWA(In Press).
    [34]P.Y.H.Pang,M.Wang,Strategy and stationary pattern in a three-species predator-prey model,J.Diff.Eqs 200(2004)245-273.
    [35]P.Y.H.Pang,M.Wang,Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion,Proc.London Math.Soc.88(2004)135-157.
    [36]W.Chen,R.Peng,Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model,J.Math.Anal.Appl.291(2004)550-564.
    [37]Y.Lou,M.Salom(?),W.Ni,On 3×3 Lotka-Volterra competition system with cross-diffusion,Discrete Contin.Dynam.Systs 6(2000)175-190.
    [38]K.Kim,Ik Kwang,Z.Lin,Coexistence of three species in a strongly coupled elliptic system,Nonl.Anal.55(2003)313-333.
    [39]K.Kim,Z.Lin,Blowup in a three-species cooperating model,Appl.Math.Lett.17(2004)89-94.
    [40]K.Kim,Z.Lin,Blowup estimates for a parabolic system in a three-species cooperating model,J.Math.Anal.Appl.293(2004)663 - 676.
    [41]L.Hei,Global bifurcation of co-existence states for a prey-predator-mutualist model with diffusion,Nonl.Anal.:RWA 8(2007)619-635.
    [42]W.Ko,I.Ahn,Analysis of ratio-dependent food chain model,J.Math.Anal.Appl.335(2007)498-523.
    [43]Z.Wang,J.Wu,Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion,Nonl.Anal.:RWA 9(2008)2270-2287.
    [44]Y.Xiao,L.Chen,Modeling and analysis of a predator-prey model with disease in the prey,Math.Biosc.171(2001)59-82.
    [45]S.Gao,L.Chen,Z.Tent,Hopf bifurcation and global stability for a delayed predator-prey system with~ stage structure for predator,Appl.Math.Comput.202(2008)721-729.
    [46]B.Rat,W.Krawcewicz,Hopf bifurcation in symmetric configuration of predator-prey-mutualist systems,Nonl.Appl.(In Press).
    [47]C.(?)elik,Hopf bifurcation of a ratio-dependent predator-prey system with time delay,Chaos,Solit.Fract.(In Press).
    [48]C.V.Pao,Nonlinear parabolic and elliptic equations,Plenum Press,New York,1992.
    [49]叶其孝,李正元,反应扩散方程引论,科学出版社,北京,1999.
    [50]M.Wang,P.Y.H.Pangs Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model,Appl.Math.Lett.21(2008)1215-1220.
    [51]X.Chen,Y.Qi,M.Wang,A strongly coupled predator-prey system with non-monotonic functional response,Nonl.Anal.67(2007) 1966-1979.
    [52]M.Wang,Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion,Phy.D 196(2004)172-192.
    [53]J.Shi,Persistence and bifurcation of degenerate solutions,J.Funct.Anal.169(1999)494-531.
    [54]F.Yi,J.Wei,J.Shi,Diffusion-driven instability and bifurcation in the Lengyel-Epstein system,Nonl.Anal.:RWA 9(2008)1038-1051.
    [55]K.Ryu,I.Ahn,steady-states for two interacting species models with linear self-cross diffusions,Discrete Contin.Dynam.Systs 9(2003)1049-1061.
    [56]K.Ryu,I.Ahn,Positive solutions of a certain nonlinear elliptic systems with self-diffusions:nondegenerate VS.degenerate diffusions,Nonl.Anal.63(2005)247-259.
    [57]J.E.Furter,J.L(?)pez-G(?)mez,On the existence and uniqueness of coexistence states for the Lotka-Volterra competition model with diffusion and spatially dependent coefficients,Nonl.Anal.25(1995)363-39s.
    [58]C.V.Pao,Quasisolutions and global attractor of reaction-diffusion systems,Nonl.Anal.26(1996)1889-1903.
    [59]L.Wang,K.Li,On positive solutions of the Lotka-Volterra cooperating models with diffusion,Nonl.Anal.53(2003)1115-1125.
    [60]H.Li,M.Wang,Existence and uniqueness of positive solutions to the boundary blow-up problem for an elliptic system,J.Diff.Eqns 234(2007)246-266.
    [61]H.Nie.J.Wu,Multiplicity and stability of a predator-prey model with non-monotonic conversion rate,Nonl.Anal.:RWA 10(2009)154-171.
    [62]K.Kuto.Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment,Nonl.Anal.:RWA 10(2009)943-965.
    [63]Y.Kan-on,Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion,J.Math.Anal.Appl.243(2000)357-372.
    [64]R.K.Upadhyay,Multiple attractors and crisis route to chaos in a model food-chain,Chaos Solit.Fract.16(2003)737-747.
    [65]C.Duque,K.Kiss,M.Lizana,On the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion,Appl.Math.Comput.208(2009)98-105.
    [66]J.Shen,J.Li,Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays,Nonl.Anal.:RWA 10(2009)227- 243.
    [67]R.Redllnger,Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics,J.Diff.Eqns 118(1995)219-252.
    [68]D.Le,Exponential attractors for a chemotaxis growth system on domains of arbitrary dimension,Proceed.of the fourth international conference on dynamical systems and differential equations May 24-27,2002,Wilmington,NC,USA.
    [69]D.Le,Cross diffusion systems on n spatial dimensional domains,Univ.Math.J.51(2002)625:643.
    [70]O.A.Ladyzenskaja,V.A.Solonnikov,N.N.Ural'ceva,Linear and quasilinear equations of parabolic types Translations of Mathematical Monographs,23,AMS,1968.
    [71]陈亚浙,二阶抛物型偏微分方程,北京大学出版社,北京,2003.
    [72]D.Le,Global existence for a calss of strongly coupled parabolic systems,Annali di Matematica 185(2006)133-154.
    [73]M.Dreher,Analysis of a population model with strong cross-diffusion in unbounded domains,Proc.Royal Soc.Edinburgh:Section A Mathematics 138(2008)769-786.
    [74]R.Peng,M.Wang,Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model,Appl.Math.Lett.20(2007)664-670.
    [75]R.Peng,J.Shi,Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator-prey systems:Strong interaction case,J.Diff.Eqns(In Press).
    [76]H.A.Abdusalam,E.S.Fahmy,Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system,Chaos Solit.Fract.18(2003)259-266.
    [77]A.Yagi,A priori estimates for some quasilinear parabolic system in population dynamics,Kobe J.Math.14(1997)91-108.
    [78]M.A.Pozio,A.Tesei,Global existence of solutions for a strongly coupled quasilinear parabolic systems,Nonl.Anal.14(1990)657-689.
    [79]Y.Yamada,Global solutions for quasilinear parabolic systems with cross-diffusion effects,Nonl.Anal.24(1995)1395-1412.
    [80]W.Yang,A class of quasilinear parabolic systems with cross-diffusion effects,Commun.Nonl.Sci.Numer.Simulation 4(1999)271-275.
    [81]P.Deuring,An initial-boundary-value problem for a certain density-dependent diffusion system,Math.Z.194(1987)375-396.
    [82]Y.Wang,The global existence of solutions for a cross-diffusion system,Acta Math.Appl.Sinica,English Series 21(2005)519-528.
    [83]J.Jiang,The complete classification of asymptotic behavior for bounded cooperative Lotka-Volterra systems with the assumption (SM),Quart.hppl.Math.LVI(1998)37-53.
    [84]X.Abdurahman,Z.Teng,On the persistence of a nonautonomous n-species Lotka-Volterra cooperative system,Appl.Math.Comput.152(2004) 885-895.
    [85]F.Chen,X.Xie,J.Shi,Existence,uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays,J.Comput.Appl.Math.194(2006)368-387.
    [86]H.Amann.Dynamic theory of quasilinear parabolic equations-Ⅰ.Abstract evolution equations,Nonl.Anal.12(1988)895-919.
    [87]H.Amann,Dynamic theory of quasilinear parabolic equations-Ⅱ.Reaction-diffusion,Diff.Int.Eqs 3(1990)13-75.
    [88]H.Amann,Dynamic theory of quasilinear parabolic equations-Ⅲ.Global existence,Math.Z.202(1989)219-250.
    [89]Y.Du,Effects of degeneracy in the competition model.I.Classical and generalized steady-state solutions,J.Diff.Eqns 181(2002)92-132.
    [90]T.Kadota,K.Kuto,Positive steady states for a prey-predator model with some nonlinear diffusion terms,J.Math.Anal.Appl.323(2006) 1387-1401.
    [91]J.Wu,G.Wei,Coexistence states for cooperative model with diffusion,Comput.Math.Appl.43(2002)1277-1290.
    [92]M.G.Crandall,P.H.Rabinowitz,Bifurcation from simple eigenvalues,J.Funct.Anal.,8(1971)321-340.
    [93]P.H.Rabinowitz,Some global results for nonlinear eigenvalue problems,J.Funct.Anal.,7(1971)487-513.
    [94]L.Nirenberg,On elliptic partial equations,Ann.Scuola Norm.Sup.Pisa 13(1959)115-162.
    [95]A.Friedman,Partial Differential Equations,Holt,Rinehart and Winston,New York,1969.
    [96]王明新,非线性抛物型方程,科学出版社,北京,1993.
    [97]M.A.del Pino,A priori estimates and applications to existencenoneistence for a semilinear elliptic system,Indiana Univ.Math.J.43(1994)77-129.
    [98]钟承奎,范先令,陈文源,非线性泛函分析,兰州大学出版社,兰州,1998.
    [99]A.Hastings,T.Powell,Chaos in a three-species food chain,Ecology 72(1991)896-903.
    [100]陈亚浙,吴兰成,二阶椭圆型方程与椭圆型方程组,科学出版社,北京,1991.
    [101]D.Gilbarg,N.S.Trudinger,Elliptic partial differential equations of second order,Springer,New York,2003.
    [102]B.Rai,H.I.Freedman,J.F.Addicott,Analysis of three species models of mutualism in predator-prey and competitive systems,Math.Biosci.65(1983)13-50.
    [103]S.N.Zheng,A reaction-diffusion system of competitor-competitor-mutualist,J.Math.Anal.Appl.124(1987)254-280.
    [104]A.Tineo,Asymptotic behavior of solutions of a periodic reaction-diffusion system of a competitor-competitor-mutualist model,J.Diff.Eqns 108(1994)326-341.
    [105]Y.Du,Positive periodic solutions of a competitor-competitor-mutualist model,Diff.Int.Eqns 9(1996)1043-1066.
    [106]C.V.Pao,Periodic solutions of parabolic systems with nonlinear boundary conditions,J.Math.Anal.Appl.234(1999)695-716.
    [107]S.Fu,S.Cui,Persistence in a periodic competitor-competitor-mutualist diffusion system,J.Math.Anal.Appl.263(2001)234-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700