用户名: 密码: 验证码:
复杂动态场景中运动目标检测与跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于严峻的公共安全形势,智能视频监控作为安防领域中最核心的技术之一,得到了广泛应用。智能视频监控的目标是利用信号处理、图像处理、模式识别、机器学习、计算机视觉、人工智能,数据挖掘以及多媒体检索等学科的技术,对采集到的视频进行自动地分析处理,发现监控场景中存在的潜在危险、违规行为或者可疑目标,并对这些行为和目标进行实时报警、提前预警、存储以及事后检索。其研究内容从底层至高层包括:图像预处理、背景建模、运动目标检测、目标跟踪,物体识别和分类、场景语义理解、行为分析以及大范围场景监控中多摄像机之间的联动等。其中运动目标检测与跟踪是智能视频监控系统中的两个核心部分,是实现智能视频监控应用的基础,因而得到了研究者的广泛关注并且积累了大量的研究成果,但实践表明复杂动态场景中的运动目标检测与跟踪算法还远未成熟。特别是真实监控场景中运动目标的快速检测、物体的姿态、尺度、表观和光照的变化,非刚性运动、物体自遮挡和物体之间互遮挡的处理,动态场景(云、烟、雨、雾、阴影、波浪、喷泉、随风摆动的树叶和摄像机的抖动)等给运动目标检测与跟踪的研究带来了极大的挑战。本文针对这些问题进行了研究,包括动态场景中的运动目标检测与分割、基于分块表观模型和局部背景估计的自适应视觉目标跟踪、以及从多个不是很完美的预言中进行弱监督学习的视觉目标跟踪等。本文主要工作和贡献如下:
     1.研究了动态场景中的背景建模与运动目标检测。动态场景中存在的挑战主要包括:随风摆动的树叶、波浪、阴影、光照变化、摄像机抖动、云、烟、雨和雾灯。通过对动态场景的数据进行分析,我们发现动态场景中相邻像素之间存在着空间域上的关联性,即一种共生关系,如果能够有效地描述这种共生关系或对其进行建模,我们将可以实现鲁棒有效的背景建模和运动目标检测。因此,本文研究了如何对动态场景中相邻像素之间的共生关系进行建模,提出了基于纹理和运动模式融合的运动目标检测算法、基于标准差特征的运动目标检测算法、以及基于局部前景/背景标记直方图的运动目标检测算法。实验结果验证了所提出算法,在显示考虑动态场景中相邻像素之间共生关系的情况下,能够实现鲁棒有效的背景建模和运动目标检测。
     2.提出了一种动态场景中,基于背景剪除驱动种子选择的运动目标的自动精细分割方法。该方法首先应用一种新的背景剪除方法作为注意选择机制,所提出的背景剪除方法融合了基于像素和基于图像块的背景建模方法的互补特性,因而能够在保证生成尽可能少虚警数和漏检数的前提下,生成尽可能多的前景像素,然后提取前景像素的连通区域。为了得到更为精细的分割目标,我们进一步根据一定的启发式规则,将连通区域和及其周围邻域内的像素分为前景种子像素、背景种子像素和未标记像素。之后使用基于封闭形式的抠图算法,对包含运动目标的连通区域及其周围邻域进行更为精细的分割,这是一种自上而下的启发式抠图和分割方法。实验结果表明,本文所提出的方法能够产生较好的分割效果及较快的分割速度。
     3.提出了一种基于分块表观模型和局部背景估计的自适应视觉目标跟踪算法。近年来,为了在复杂动态环境下,实现鲁棒的视觉跟踪,在线构建自适应的目标表观模型引起来越来越多学者的关注。然而,基于自适应表观模型的跟踪方法,有一个固有的“漂移”问题,也就是说在在线更新目标表观的过程,由于跟踪累积误差造成了目标模型会最终脱离真正要跟踪的物体。为了缓解视觉跟踪中的“漂移”问题,同时为了有效地对目标进行遮挡和干扰判断,我们提出了基于分块表观模型和局部背景估计的自适应视觉目标跟踪算法,该算法使用分块表观模型来对前景目标进行建模,同时对前景目标周围的背景进行估计。分块表观模型使得所提出的算法具有了遮挡处理能力,局部背景估计为我们更新目标的表观模型,提供了监督信息,因此能够有效地缓解“漂移”问题。此外,通过使用积分图技术和自适应Bin的核密度估计技术,我们可以快速地计算目标的表观模型和局部背景模型。实验结果表明,相比于其他基于分块表观模型的跟踪算法和基于在线学习的跟踪算法,本文所提出的算法在公开的测试序列上取得了更好的跟踪结果。
     4.研究了复杂监控场景下目标的长时间持续跟踪问题,提出了一种从多个不是很完美的预言中进行弱监督学习的视觉目标跟踪通用框架。在该跟踪框架中,我们将视觉跟踪视为一种新的从多个标记源进行联合学习的弱监督学习问题,使用一种概率算法无缝地融合了多个不是很完美的预言者所做出的预言(即:多个具有互补特性的跟踪算法给出的跟踪结果),最终取得了鲁棒有效的跟踪效果。与无监督学习、有监督学习、半监督学习以及直推学习不同,在这种新的从多个标记源进行联合学习的弱监督学习问题中,每个训练样本从多个标记精度(即专家程度)未知的标记源得到多个候选的标记,同时每个训练样本真实的标记也是未知的。学习算法根据这些输入数据,需要同时学习和推论出分类器,每个训练样本的真实类别标记,每个训练样本的标记难度以及每个标记源的标记精度。所提出的跟踪算法,相比其他跟踪算法,具有如下优点: 1)我们使用一种自然的算法无缝地融合了多个具有互补特性的跟踪算法,有效地避免了使用单一跟踪算法的缺陷,最终取得了鲁棒有效的跟踪效果。2)所提出的算法,能够同时对目标的位置和每个跟踪器的精度进行联合概率推论,有效地缓解了跟踪算法的“漂移”问题。3)如何自动和在线评价跟踪算法的精度,是跟踪系统的一个研究热点和难点问题,本文所提出的算法能够在无法事先得到目标真实位置的跟踪问题中,在线评价跟踪算法的精度。4)本文所提出的跟踪算法,能够处理缺失标记的问题,也就是说每一个不是很完美的预言者不需要标记所有的训练样本。5)本文提出了一种可扩展和灵活定制的跟踪框架,在我们的跟踪框架中,每一个不是很完美的预言者不仅可以是任何一种通用的跟踪算法,也可以是任何一种鲁棒的或只针对某类跟踪场景有效的跟踪算法。
In recent years intelligent video surveillance technique is popularly used due to serious public safety situation. The goal of intelligent video surveillance technique is to automatically analyze the captured videos for finding potential danger, illegal behaviors or suspicious targets in the scenes. Thus, the technique can provide real-time alarm, early warning, storage and later retrieval. This intelligent video surveillance task underlies several subfields, such as signal processing, image processing, pattern recognition, machine learning, computer vision, artificial intelligence, data mining and multi-media retrieval. From low level to high level, the research content of an intelligent video surveillance system mainly comprises the following key components: image preprocessing, background modeling, moving object detection, visual tracking, object recognition and classification, semantic scene understanding, behavior analysis and continuously tracking multiple objects between multiple cameras. Among these components, the most two basic algorithms are moving object detection and tracking and they have attracted significant attention in the literature. However, practical experience has shown that moving object detection and tracking technologies are currently far from mature. A great number of challenges need to be solved before one can implement a robust visual tracking system for commercial applications, such as fast moving object detection, pose variations, scale variations, appearance variations of the object, illumination changes, non-rigid shape variations, occlusions, cluttered scenes, dynamic scenes, etc. This dissertation proposes several algorithms to addressing these problems, such as moving object detection and segmentation in dynamic scenes, adaptive tracking via patch-based appearance model and local background estimation, and visual tracking via weakly supervised learning from multiple imperfect oracles. The main work and contributions of this thesis are as follows.
     Firstly, moving object detection in dynamic scenes is addressed. The challenges in dynamic scenes include trees waving, water rippling, moving shadow, illumination changes, camera jitters, cloud, smoke, fog, rain, etc. After analyzing the video data from dynamic scenes, we found that neighboring pixels tend to be similarly affected by environmental effects (e.g., dynamic scenes.) and can explicitly utilize the correlation of image variations (i.e., co-occurrence statistics) at neighboring pixels to achieve robust detection performance. Thus, we systematically study how to modeling the co-occurrence statistics at neighboring pixels in dynamic scenes and propose three algorithms, such as, texture and motion pattern fusion for moving object detection, standard variance feature for moving object detection, and local histogram of figure/ground segmentation for moving object detection. Experimental results verify that the proposed algorithms can achieve robust and effective moving object detection when they explicitly utilize the co-occurrence statistics at neighboring pixels.
     Secondly, we propose a background subtraction driven seeds selection method for moving object segmentation. Specifically, the proposed method can be divided into three main steps. First, we use a novel BGS method as attention mechanisms, generating many possible foreground pixels by tuning it for low false-positives and false-negatives as much as possible. Second, a connected components algorithm is used to give bounding boxes of the labeled foreground pixels. Finally, matting of the object associated to a given bounding box is performed using a heuristic seeds selection scheme. This segmentation and matting task is guided by top-down knowledge. Experimental results demonstrate the efficiency and effectiveness of the proposed method.
     Thirdly, we propose a robust visual tracking algorithm via a patch-based adaptive appearance model driven by local background estimation. Long-term persistent tracking in ever-changing environments is a challenging task, which often requires addressing difficult object appearance update problems. To solve them, most top-performing methods rely on online learning-based algorithms. Unfortunately, one inherent problem of online learning-based trackers is drift, a gradual adaptation of the tracker to non-targets. To simultaneously address the tracker drift and occlusion problem, we propose a robust visual tracking algorithm via a patch-based adaptive appearance model driven by local background estimation. First, an object is represented with a patch-based appearance model, in which each patch outputs a confidence map during the tracking. Then, these confidence maps are combined via a robust estimator to finally get more robust and accurate tracking results. Moreover, we present a local spatial co-occurrence based background modeling approach to automatically estimate the local context back-ground model of an interested object captured from a single camera, which may be stationary or moving. Finally, we utilize local background estimation to provide supervision to an analysis of possible occlusions and the adaption of patch-based appearance model of an object. Qualitative and quantitative experimental results on challenging videos demonstrate the robustness of the proposed method.
     Fourthly, we systematically study long-term persistent tracking in ever-changing environments and propose a general tracking framework via weakly supervised learning from multiple imperfect oracles. Within this framework, we consider visual tracking in a novel weakly supervised learning scenario where (possibly noisy) labels but no ground truth is provided by multiple imperfect oracles (i.e., trackers), some of which may be mediocre. The problem of learning from multiple labeling sources is different from the unsupervised, supervised, semi-supervised or transductive learning problems, in which each training instance is given a set of candidate class labels provided by different labelers with varying accuracy and the ground truth label of each instance is unknown. Without the ground truth, how to learn classifiers, evaluate the labelers, infer the ground truth label of each data point, and estimate the difficulty of each data point are the main issues addressed by the task of learning from multiple labeling sources. Our method has the following advantages: (1) We propose a natural way of fusing multiple imperfect oracles to get a final reliable and accurate tracking result. The imperfect oracles can be arbitrary tracking algorithms in the literature. This avoids the pitfalls of purely single tracking approaches.(2) The proposed algorithm gives an estimate of the ground truth labeling of training data during tracking in a robust probabilistic inference manner and thus can alleviate the tracker drift problem.(3) We can online evaluate tracking algorithms in the absence of ground truth, which is an important and challenging problem in visual tracking systems.(4) The proposed approach can also handle missing labels (i.e., each tracker is not required to label all the image patches).(5) We propose a scalable and off the shelf tracking framework, in which the imperfect oracles are not necessarily to be primitive trackers, but may be rather powerful and, perhaps problem specific trackers.
引文
1王建宇.基于序列蒙特卡洛滤波算法的视觉目标跟踪.哈尔滨工业大学博士论文, 2006
    2梁大为.视频运动对象跟踪技术研究.哈尔滨工业大学博士论文, 2009
    3廖胜才.基于在线学习的多摄像机目标跟踪.中国科学院研究生院博士论文, 2010
    4 B.P.L. Lo and S.A. Velastin. Automatic congestion detection system for underground platforms. International Symposium on Intelligent Multimedia, Video and Speech Processing, 2000:158-161
    5 C. Anderson, P. Bert and G. V.Wal. Change Detection and Tracking Using Pyramids Transformation Techniques. Proceeding of SPIE Conference on Intelligent Robots and Computer Vision, Cambrige, MA, 1985:72-78
    6 A. J. Lipton, H. Fujiyoshi and R. S. Patil. Moving Target Classification and Tracking from Real-time Video. Proceeding of the 4th IEEE Workshop on Application of Computer Vision, 1998:8-14
    7 C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder:Real-time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
    8 C. Stauffer, W.E.L. Grimson. Learning Patterns of Activity using Real-time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757
    9 Z. Zivkovic. Improved Adaptive Gaussian Mixture Model for Background Subtraction. IEEE International Conference on Pattern Recognition, 2004: 28-31
    10 A. Elgammal, D. Harwood, and L.S. Davis. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceeding of IEEE, 2002, 90(7): 1151-1163
    11 Y. Sheikh and M. Shah. Bayesian Modeling of Dynamic Scenes for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 22(11): 1778-1792
    12 I. Haritaoglu, D. Harwood, and L. Davis. W4: Real-time Surveillance of People and Their activities. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2000, 22(11): 809-830
    13 K. Kim, T.H. Chalidabhongse, D. Harwood and L. Davis. Real-time Foreground-Background Segmentation using Codebook Model. Real-Time Imaging, 11(3): 167-256
    14 B. Han, D. Comaniciu, and L. Davis. Sequential Kernel Density Approximation through Mode Propagation: Applications to Background Modeling. Asian Conference on Computer Vision, 2004
    15 M. Piccardi and T. Jan. Mean-Shift Background Image Modeling. IEEE International Conference on Image Processing, 2004:3399-3402
    16 N. M. Oliver, B. Rosario, and A. P. Pentland. A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843
    17 T. Parag, A. Elgammal, and A. Mittal. A Framework for Feature Selection for Background Subtraction. IEEE International Conference on Computer Vision and Pattern Recognition, 2006, 2: 1916-1923
    18 H. Grabner and Horst Bischof. Online Boosting and Vision. IEEE International Conference on Computer Vision and Pattern Recognition, 2006, 1: 260-267
    19 W.Z. Hu, H.F Gong and S.C Zhu. An Integrated Background Model for Video Surveillance Based on Primal Sketch and 3D Scene Geometry. IEEE International Conference on Computer Vision and Pattern Recognition, 2008.
    20 K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and Practice of Background Maintenance. IEEE International Conference on Computer Vision, 1999, 1: 255-261
    21 A. Monnet, A. Mittal, N. Paragios, and R. Visvanathan. Background Modeling and Subtraction of Dynamic Scenes. IEEE International Conference on Computer Vision, 2003, 2: 1305-1312
    22 J. Kato, T. Watanabe, S. Joga, J. Rittscher, and A. Blake. An HMM-Based Segmentation Method for Traffic Monitoring Movies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1291-1296
    23 P. Kornprobst R. Deriche and G. Aubert. Image Sequence Analysis via Partial Differential Equations. Journal of Mathematical Imaging and Vision, 1999, 11: 5-26
    24 O. Javed, K. Shafique, and M. Shah. A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information. IEEE Workshop on Motion and Video Computing, 2002:22-27
    25 Y.L. Tian, M. Lu, A. Hampapur. Robust and Efficient Foreground Analysis forReal-time Video Surveillance. IEEE International Conference on Computer Vision and Pattern Recognition, 2005, 1: 1182-1187
    26 M. Heikkila and M. Pietikainen. A Texture-Based Method for Modeling the Background and Detecting Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662
    27 J. Yao and J.M. Odobez . Multi-Layer Background Subtraction Based on Color and Texture. IEEE International Conference on Computer Vision and Pattern Recognition, 2007:1-8
    28 G. Dalley, J. Migdal and W. Eric L. Grimson. Background Subtraction for Temporally Irregular Dynamic Textures. Proceedings of the IEEE Workshop on Applications of Computer Vision, 2008.
    29 M. Seki, T. Wada, H. Fujiwara and K. Sumi. Background Subtraction Based on Cooccurrence of Image Variations. IEEE International Conference on Computer Vision and Pattern Recognition, 2003, 2: 65-72
    30 K.A. Patwardhan, G. Sapiro and V. Morellas. Robust Foreground Detection in Video Using Pixel Layers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 746-751
    31 B. K. P. Horn, B. G. Schunck. Determining Optical Flow. Artificial Intelligence, 1981,17(1):185-203
    32 B. D. Lucas, T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. 7th International Joint Conference on Artificial Intelligence, 1981:674–679
    33 M. J. Black, P. Anandan. The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Understanding. 1996, 63(1):75-104
    34 R. Szeliski, J. Coughlan. Spline-Based Image Registration. International Journal of Computer Vision, 1997, 22(3):199-218
    35 J. L. Barron, D. J. Fleet and S. S. Beauchemin. Performance of Optical Flow Techniques. International Journal of Computer Vision. 1994, 12(1):43-77
    36 Tekalp A M.数字视频处理.北京:清华大学出版社. 1998(Tekalp A M. Digital Video Processing Bening: Tsinghua Press, 1998)
    37 G. Adiv. Determining Three-dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(4): 384-401
    38 J. Wang, E. Adelson. Representing moving images with layers. IEEE Transactions on Image Processing, 1994, 3(5): 625-638
    39 M. Hotter, R. Thoma. Image Segmentation based on Object Oriented Mapping Parameter Estimation. Signal Processing, 1988, 15(3):315-334
    40 H.G. Musmann, M. Hotter, J. Ostemann. Object-oriented Analysis-synthesis Coding of Moving Images. Signal Processing: Image Comunication, 1989, 1(2):117-138
    41 N. Diehl. Object-oriented Motion Estimation and Segmentation in Image Sequences. Signal Processing: Image Comunication, 1991, 3(1): 23-56
    42 Y. Wang, O. Lee. Active Mesh: A Feature Seeking and Tracking Image Sequence Representation Scheme. IEEE Transactions on image Processing, 1994, 3(5): 610-614
    43 J. Flusser. An Adaptive Method for Image Registration. Pattern Recognition, 1992, 25(1): 45-54
    44 D.W. Murray, B.F. Buxton. Scene Segmentation form Visual Motion using Global Optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(2): 220-228
    45 D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall Press, 2002
    46 A. Yilmaz, O. Javed, and M. Shah. Object Tracking: A Survey. ACM Press New York, NY, USA, 2006
    47 D. Koller, K. Daniilidis and H. H. Nagel. Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. International Journal of Computer Vision. 1993,10(3):257–281
    48 C. Bregler, J. Malik. Tracking People with Twists and Exponential Maps. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998:8-15
    49 T.-J. Cham, J. M. Rehg. A Multiple Hypothesis Approach to Figure Tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999,2:239-245
    50 J. K. Aggarwal, Q. Cai. Human Motion Analysis: A Review. Computer Vision and Image Understanding, 1999,73(3):428-440
    51 D. M. Gavrila. The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding, 1999,73(1):82-98
    52 T. B. Moeslund, E. Granum. A Survey of Computer Vision-Based Human Motion Capture, Computer Vision and Image Understanding. 2001,81(3):231-268
    53 L. Wang, W. Hu and T. Tan. Recent Developments in Human Motion Analysis.Pattern Recognition. 2003,36(3):585-601
    54 T. B. Moeslund, A. Hilton and V. Kruger. A Survey of Advances in Vision-Based Human Motion Capture and Analysis. Computer Vision and Image Understanding, 2006,104(2):90-126
    55 L. Lee, R. Romano and G. Stein. Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):758-767
    56 S. L. Dockstader, A. M. Tekalp. Multiple Camera Tracking of Interacting and Occluded Human Motion. Proceedings of the IEEE, 2001,89(10):1441-1455
    57 O. Javed, Z. Rasheed, K. Shafique and M. Shah. Tracking across Multiple Cameras with Disjoint Views. IEEE International Conference on Computer Vision, 2003,2:952-957
    58 K. Jinman, I. Cohen and G. Medioni. Continuous Tracking within and across Camera Streams. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003,1:267-272
    59 S. Khan, M. Shah. Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(10):1355-1360
    60 A. Mittal, L. S. Davis. M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision. 2003,51(3):189-203
    61 O. Javed, K. Shafique and M. Shah Appearance Modeling for Tracking in Multiple Non-Overlapping Cameras. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,2:26-33
    62 A. Yilmaz, K. Shafique and M. Shah. Target Tracking in Airborne Forward Looking Infrared Imagery. Image and Vision Computing, 2003,21(7):623-635
    63 S. Blackman, R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House, 1999
    64 T. Fortmann, Y. Bar-Shalom and M. Scheffe. Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association. IEEE Journal of Oceanic Engineering, 1983,8(3):173-184
    65 K. Fukunaga, L. Hostetler. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transactions on Information Theory, 1975, 21(1):32-40
    66 Y. Cheng. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799
    67 D. Comaniciu, P. Meer. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619
    68 D. Comaniciu, V. Ramesh and P. Meer. Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5):564-577
    69 M. Isard, A. Blake. CONDENSATION: Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision, 1998,29(1):5-28
    70 C. Rasmussen and G. D. Hager. Probabilistic Data Association Methods for Tracking Complex Visual Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):560–576
    71 K. Nummiaro, E. K. Meier, and L. V. Gool. An Adaptive Color based Particle Filter. Image and Vision Computing, 2003. 21(1):99-110
    72 M. Stricker and M. Swan. The Capacity of Color Histogram Indexing. IEEE Proceeding on Computer Vision and Pattern Recognition, 1994: 704-708
    73 S. Birchfield. Elliptical Head Tracking Using Intensity Gradients and Color Histograms. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998:232-237
    74 G. R. Bradski. Computer Video Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal, 1998
    75 R. T. Collins. Mean-Shift Blob Tracking through Scale Space. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003,2:234-240
    76 A. Adam, E. Rivlin and I. Shimshoni. Robust Fragments-Based Tracking Using the Integral Histogram. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006,1:798-805
    77 H. Stern, B. Efros. Adaptive Color Space Switching for Face Tracking in Multi-Colored Lighting Environments. IEEE International Conference on Automatic Face and Gesture Recognition, 2002:236-241
    78 R. T. Collins, Y. Liu. On-Line Selection of Discriminative Tracking Features. IEEE International Conference on Computer Vision, 2003,1:346-352
    79 B. Han and L.Davis. On-line Density-Based Appearance Modeling for Object Tracking. IEEE Conference on Computer Vision, 2005, 2: 1492-1499
    80 H.Z. Wang, Suter, D. Schindler and K. Chunhua Shen. Adaptive Object Tracking Based on an Effective Appearance Filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9):1661~1667
    81 Q, Zhao, S. Brennan, and H. Tao. Differential EMD Tracking. InternationalConference on Computer Vision, 2007:1-8
    82 T. Ojala, M. Pietikainen, and T. Maenpa. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
    83 P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade of Simple Features. IEEE Conference on Computer Vision and Pattern Recognition, 2001:511-518
    84 P. Yang, et al. Face Recognition Using Ada-Boosted Gabor Features. International Conference on Automatic Face and Gesture Recognition, 2004.
    85 D. G. Lowe. Object Recognition from Local Scale-invariant Features. International Conference on Computer Vision, 1999
    86 H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up Robust Features. European Conference on Computer Vision, 2006: 404–417
    87 E. Tola, V. Lepetit, and P. Fua. Daisy: an Efficient Dense Descriptor Applied to Wide Baseline Stereo. IEEE Transactions Pattern Analysis and Machine Intelligence, 2010, 32(5):815-830
    88 S. Avidan. Ensemble Tracking. IEEE Conference on Computer Vision and Pattern Recognition, 2005
    89 M. Grabner, H. Grabner, and H. Bischof. Learning Features for Tracking. IEEE Conference on Computer Vision and Pattern Recognition, 2007
    90 J.Y. Wang, X.L. Chen, and W. Gao. Online Selecting Discriminative Tracking Features using Particle Filter. IEEE International Conference on Computer Vision and Pattern Recognition, 2005, 2: 1036~1041
    91 Y. Li, H.Z. Ai. Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Lifespans. IEEE International Conference on Computer Vision and Pattern Recognition, 2007
    92 L. Lu and G.D. Hager. A Nonparametric Treatment on Location/Segmentation Based Visual Tracking. IEEE International Conference on Computer Vision and Pattern Recognition, 2007
    93 B. Wu and R. Nevatia. Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors. International Journal of Computer Vision, 2007
    94 F. Porikli, O. Tuzel, and P. Meer. Covariance Tracking using Model Update Based on Lie Algebra. IEEE International Conference on Computer Vision and Pattern Recognition, 2006
    95 O. Tuzel, F. Porikli, and P. Meer. Region Covariance: a Fast Descriptor forDetection and Classification. European Conference on Computer Vision, 2006
    96 X.M. Liu and T. Yu. Gradient Feature Selection for Online Boosting. IEEE International Conference on Computer Vision, 2007
    97 D.T. Chen and J.Yang. Robust Object Tracking via Online Dynamic Spatial Bias Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007
    98 H. T. Nguyen and A. W. M. Smeulders. Tracking Aspects of the Foreground against the Background. European Conference on Computer Vision, 2004,2:446-456
    99 B.J. Frey. Filling In Scenes by Propagating Probabilities through Layers and Into Appearance Models. IEEE Conference on Computer Vision and Pattern Recognition, 2000:1185-1192
    100 N. Jojic and B.J. Frey. Learning Flexible Sprites in Video Layers. IEEE Conference on Computer Vision and Pattern Recognition, 2001, 1:199-206
    101 J. Shi and C. Tomasi. Good Features to Track. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994:593-600
    102 S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision, 2004,56(3):221-255
    103 C.F.Olson. Maximum-Likelihood Template Matching. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, 2:52-57
    104 G. D. Hager and P. N. Belhumeur. Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10):1025-1039
    105 F. Jurie and M. Dhome. Hyperplane Approximation for Template Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7): 996-1000
    106 M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active Contour Models. International Journal of Computer Vision, 1988,1(4):321-331
    107 R. Bartels, J. Beatty and B. Barsky. An introduction to Splines for use in Computer Graphics and Geometric Modeling. Morgen Kaufmann, 1987
    108 T. Cootes, C. Taylor, A. Lantiis, D.Cooper and J. Graham. Building and using Flexible Models Incorporating Grey-level Information. In Proceeding Conference Computer Vision, 1993:242-246
    109 N. Paragios and R. Deriche. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Transactions Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280
    110 A.R. Mansouri. Region Tracking via Level Set PDEs without Motion Computation. IEEE Transactions Pattern Analysis and Machine Intelligence, 2002, 24(7): 947-961
    111 A. Yilmaz, X. Li and M. Shah. Contour-Based Object Tracking with Occlusion Handling in Video Acquired Using Mobile Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(11):1531-1536
    112 P. Li, T. Zhang and A. E. C. Pece. Visual Contour Tracking Based on Particle Filters. Image and Vision Computing. 2003,21(1):111-123
    113 Y.G Jin and F. Mokhtarian. Variational Particle Filter for Multi-Object Tracking. IEEE International Conference on Computer Vision, 2007
    114 Y.H. Tsin, Y. Genc, Y. Zhu and V. Ramesh. Learn to Track Edges. IEEE International Conference on Computer Vision, 2007
    115 X.F Ren and J. Malik. Tracking as Repeated Figure/Ground Segmentation. IEEE International Conference on Computer Vision and Pattern Recognition, 2007
    116 M.J. Black and A.D. Jepson. Eigentracking: Robust Matching and Tracking of Articulated Objects using View-based Representation. European Conference on Computer Vision, 1996:329-342
    117 M.J.Black, D.J. Fleet, and Y. Yacoob. A framework for Modeling Appearance Change in Image Sequence. Proceedings of International Conference on Computer Vision, 1998:660-667
    118 D.l.Torre, G.F., M.S. and S.J. View-based Adaptive Affine Tracking. European Conference on Computer Vision, LNCS 1406, Springer Verlag, 1998:828-842
    119 A.D. Jepson, D.J. Fleet, and T.F. El-Maraghi. Robust Online Appearance Models for Visual Tracking. IEEE Conference on Computer Vision and Pattern Recognition, 2001, 1:415-422
    120 D. Ross, J. Lim, and M.H. Yang. Adaptive Probabilistic Visual Tracking with Incremental Subspace Update. European Conference on Computer Vision, 2004, 2:470-482
    121 X.Q. Zhang, W.M. Hu, S. Maybank, and X.Li. Graph Based Discriminative Learning for Robust and Efficient Tracking. IEEE International Conference on Computer Vision, 2007
    122 S. Yan, D. Xu, B. Zhang, and H. Zhang. Graph Embedding: A General Framework for Dimensionality Reduction. IEEE International Conference on Computer Vision and Pattern Recognition, 2005
    123 X. Li, W.M. Hu, Z.F. Zhang, X.Q Zhang, and G. Luo. Robust Visual TrackingBased on Incremental Tensor Subspace Learning. IEEE International Conference on Computer Vision, 2007
    124 D.M. Gavrila and L.S. Davis. 3D Model-based Tracking of Humans in Action: A Multi-view Approach. IEEE Conference on Computer Vision and Pattern Recognition, 1996:73-80
    125 D. Koller, K. Daniilidis and H.H. Nagel. Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. International Journal of Computer Vision, 1993. 10:257-281
    126 R. E. Kalman. A New Approach to Linear Filtering and Prediction Problem. Journal of Basic Engineering, 1960, 82: 35-45
    127 A. Blake, M. Isanc and D. Reynard. Learning to Track the Visual Motion of Contours. Artificial Intelligence, 1995, 78:101-133
    128 R. Rosales and S. Sclaroff. Improved Tracking of Multiple Humans with Trajectory Prediction and Occlusion Modeling. CVPR Workshop on the Interpretation of Visual Motion, 1998
    129 C. Bregler. Learning and Recognition Human Dynamics in Video Sequences. International Conference on Computer Vision and Pattern Recognition, 1997: 568-574
    130 T. C. Robert, J. L. Alan, and K. Takeo. A System for Video Surveillance and Monitoring. In Proceeding of the American Nuclear Society Eighth International Topical Meeting on Robotics and Remote Systems, 1999
    131 J. S. Liu and R. Chen. Sequential Monte Carlo Methods for Dynamical Systems. Journal of American Statist Association, 1998, 93:1032-1044
    132 N. J. Gordon. A Hybrid Bootstrap Filter for Target Tracking in Clutter. IEEE Transaction on Aerospace and Electronic Systems, 1997, 33(1): 353-358
    133 C.J. Yang, R. Duraiswami, and L. Davis. Fast Multiple Object Tracking via a Hierarchical Particle Filter. IEEE International Conference on Computer Vision, 2005
    134 K. Branson and S. Belongie. Tracking Multiple Mouse Contours (without Too Many Samples). IEEE International Conference on Computer Vision and Pattern Recognition, 2005
    135 J. Deutscher, A. Blake and I. Reid. Articulated Body Motion Capture by Annealed Particle Filtering. IEEE International Conference on Computer Vision and Pattern Recognition, 2000
    136 http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/#testvideo
    137 L. Li, W. Huang, I.Y.H. Gu, and Q. Tian. Statistical Modeling of ComplexBackgrounds for Foreground Object Detection. IEEE Transactions on Image Processing, 13(11): 1459-1472
    138 A.R. Smith and J.F. Blinn. Blue Screen Matting. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM Press, 1996: 259–268
    139 X. Bai, J. Wang, D. Simons, G. Sapiro. Video SnapCut: Robust Video Object Cutout Using Localized Classifiers. ACM SIGGRAPH, 2009
    140 J. Wang, P. Bhat, A. Colburn, M. Agrawala and M. Cohen. Interactive Video Cutout. ACM Transactions on Graphics, 2005, 24(3):585-594
    141 Y. Li, J. Sun and H.Y. Shum. Video Object Cut and Paste. ACM SIGGRAPH, 2005
    142 M.A. Ruzon and C. Tomasi. Alpha Estimation in Natural Images. IEEE International Conference on Computer Vision and Pattern Recognition, 2000: 18-25
    143 Y.Y. Chuang, B. Curless, D. Salesin, and R. Szeliski. A Bayesian Approach to Digital Matting. IEEE International Conference on Computer Vision and Pattern Recognition, 2001: 264-271
    144 J. Wang and M. Cohen. An Iterative Optimization Approach for Unified Image Segmentation and Matting. IEEE International Conference on Computer Vision, 2005:936–943
    145 X. Bai and G. Sapiro. A Geodesic Framework for Fast Interactive Image and Video Segmentation and Matting,”IEEE International Conference on Computer Vision, 2007
    146 Y. Mishima. A Software Chromakeyer using Polyhydric Slice. In Proceedings of NICOGRAPH, 1992: 44–52
    147 J. Wang and M. Cohen. Optimized Color Sampling for Robust Matting. IEEE International Conference on Computer Vision and Pattern Recognition, 2007
    148 J. Sun, J.Y. Jia, C.K. Tang, and H.Y Shum. Poisson Matting. In Proceeding of ACM SIGGRAPH, 2004
    149 L. Grady, T. Schiwietz, S. Aharon, and R. Westermann. Random Walks for Interactive Alpha-matting. in Proceedings of VIIP, 2005:423–429
    150 Y. Zheng, C. Kambhamettu, J. Yu, T. Bauer, and K. Steiner. Fuzzymatte: A Computationally Efficient Scheme for Interactive Matting. IEEE International Conference on Computer Vision and Pattern Recognition, 2008
    151 A. Levin, D. Lischinski, and Y. Weiss. A Closed Form Solution to Natural Image Matting. IEEE International Conference on Computer Vision and PatternRecognition, 2006
    152 A. Levin, A. Rav-Acha, and D. Lischinski. Spectral Matting. IEEE International Conference on Computer Vision and Pattern Recognition, 2007
    153 J. Wang and M. Cohen. Image and Video Matting: A Survey. Foundations and Trends in Computer Graphics and Vision, 2007, 3(2)
    154 B. Babenko, M. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. IEEE International Conference on Computer Vision and Pattern Recognition, 2009
    155 N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. IEEE International Conference on Computer Vision and Pattern Recognition, CVPR 2005
    156 J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. In Proceeding of British Machine Vision Conference, 2002
    157 http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm
    158 http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
    159 http://www.vision.ee.ethz.ch/boostingTrackers/index.htm
    160 http://vision.stanford.edu/birch/headtracker/
    161 S. Jamie, W. John, R. Carsten, and C. Antonio. TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. European Conference on Computer Vision, 2006
    162 D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active Learning with Statistical Models. Journal of Artificial Intellignece Research, 1996, 4:129-145
    163 S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 2009
    164 X. Zhu. Semi-Supervised Learning Literature Survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison, 2005
    165 Amazon. Mechanical Turk. http://www.mturk.com
    166 L. Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science, 2008
    167 V. Raykar, S. Yu, L. Zhao, A. Jerebko, C. Florin, G. Valadez, L. Bogoni, and L. Moy. Supervised Learning from Multiple Experts: Whom to trust when everyone lies a bit. International Conference on Machine Learning, 2009
    168 O. Dekel and O. Shamir. Good Learners for Evil Teachers. International Conference on Machine Learning, 2009
    169 H. Grabner, C. Leistner, and H. Bischof. Semi-Supervised On-line Boosting for Robust Tracking. European Conference on Computer Vision, 2008
    170 S. Stalder, H. Grabner, and L. Van Gool. Beyond Semi-Supervised Tracking: Tracking Should Be as Simple as Detection, but not Simpler than Recognition. 3rd IEEE ICCV Workshop on Online Computer Vision, 2009
    171 W. He, T. Yamashita, H. Lu, and S. Lao. SURF Tracking. International Conference on Computer Vision, 2009
    172 J. Whitehill, P. Ruvolo, J. Bergsma, T. Wu, and J. Movellan. Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise? Twenty-Fourth Annual Conference on Neural Information Processing Systems, 2009
    173王亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报, 2002, Vol.25, No.3, pp. 1~16
    174陈睿,刘国翌,邓宇,李华.结合粒子滤波和局部优化方法的人体运动跟踪.计算机辅助设计与图形学学报, 2006, Vol.18, No.2, pp276~282
    175涂虬,许毅平,周曼丽.基于全局最小化活动轮廓的多目标检测跟踪.计算机应用研究, 2010, Vol.27, No.2, pp. 794~797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700