用户名: 密码: 验证码:
面向控制网络的介质访问控制相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术的快速发展导致了自动化领域的深刻变革,逐渐形成了自动化领域的开放式系统互连通信网络。各种通信网络越来越多的进入系统的控制闭环,为控制系统的分析和设计带来了新的发展机遇和前所未有的挑战。由于引入特殊的非线性,控制系统在实现网络化的同时一个重要的课题随之出现,即必须尽量降低通信网络对控制系统的不良影响。这就要求一方面在网络化的背景下针对控制理论研究新的分析和设计方法,与此同时,从通信网络的角度而言,采用与之适应的通信协议也是非常重要的一项措施,有助于从根本上解决新的网络问题,降低理论研究复杂程度。
     以太网是目前最有希望弥补现场总线技术不足的有线控制网络技术,其发展前景为各界一致看好。然而,以太网的实时性一直是限制其进入控制系统应用的一个重要障碍,以太网还不能很好地满足工业控制环境下数据传输的确定性、时序性和优先级等特殊要求,即使是采用交换结构或者改进上层实时通信协议,也面临着诸如不确定性转移、传递时延增加、实现复杂等诸多新问题。无线控制网络无需布线、支持移动、成本低廉,可以作为有线网络的有效补充手段在特定应用中发挥重要作用,比如无线传感器网络。由于通常不能进行能量补充,功率控制成为无线控制网络中的一个突出问题,直接影响无线信号的传输质量、电池或节点寿命、网络拓扑。无线功率控制与以太网的实时性是目前控制网络研究中比较突出的两个问题,而且都与网络的介质访问控制协议密切相关。本文结合其研究的最新进展,针对控制网络中介质访问控制的相关问题进行进一步探讨,并取得了如下几方面研究成果和创新。
     针对上层协议提供实时性时会导致消息传递的协议栈层次过多、处理时延增加等问题,本文分析了在数据链路层定义优先级机制的可行性,提出一种基于可变载波长度的物理信令传播机制:利用标准协议中的可变帧长和CSMA网络固有的载波侦听功能实现信道多状态信息反馈。链路层可共享全局冲突、成功和优先级等多种控制信息,也可将优先级的动态管理交付上层协议,面向应用,对消息传递的中间层次做透明处理,具有一定通用性。该方法充分考虑了CSMA网络自身的功能和特点,便于实现。
     针对以太网传输时延的不确定问题,提出了一与现有的以太网兼容的实时介质访问控制协议。新协议基于可变载波长度信令原理获取多种信道状态信息,在信道发生冲突时采用持续发送竞争帧和阻塞信道的方法决定的信道访问权的归属,以此实现优先级传输,同时保证高优先级信息在满足一定伪周期条件下具有确定性的传输时延。信道不发生竞争时,节点仍然按照基于best-effort原理的CSMA/CD规则访问信道,保证消息以最快速度获得传输。与现有方法相比,新协议充分保留标准以太网的优点和特征,并与以太网标准兼容,实时以太网总线不需经过协议转换装置即可与现有网关实现互连。
     时序排队系统在控制网络中大量存在,鉴于传统虚时钟协议采用随机延迟的退避重传策略导致时序传输的非严格性问题,提出一个即时的虚时轴消息冲突解析算法BOVTA。与Tree和Window等算法不同,BOVTA算法利用与虚时钟信道访问规则完全一致的方式进行解析过程的同步,避免了引入额外的站点相关信息,使冲突解析过程变得简单易行,而带来的信道负荷却保持很小。在此基础之上,提出基于BOVTA算法的多优先级虚时钟以太网协议,保证了传输时序的严格性。
     针对无线控制网络的功率控制问题,基于带干扰范围的无线传输模型,指出导致PCM协议牺牲能效的过度保护问题,并提出一种自适应功率控制解决方案IP-PCM,在不违背数据传输功率最小化的情况下,利用干扰平衡原理自适应地控制忙音的传输功率,使载波侦听范围以独立于干扰范围的方式实现最佳控制。与传统PCM协议相比,IP-PCM改进了信道的空间重复利用效率,实现能量效率的进一步提高。
     以OPNET通信网络建模和仿真环境为例,详细描述了以上介质访问控制协议基于离散事件原理的有限状态机(FSM)建模原理,为协议的理论分析和设计提供参考。
The rapid development of information technology has incurred profound transformation of automations, and gradually leads to the open and interconnected communication networks in control areas. More and more networks of various types are integrated into system’s control loop, bringing great opportunities and unprecedented challenges for control system’s analysis and design. Because of introducing special nonlinearities, an important issue arising simultaneously in the process of networking control system is that the negative influence cast by networks on control systems must be minimized. For traditional control theory, it means new methods must be developed to analysis and design corresponding networked systems. At the other side, from the point of communication networks, applying appropriate communication protocols is also a very important issue that is helpful to solve the new network problems in essential and reduce complexity of the theoretic research.
     Today, Ethernet has become the most prospective wired control network technology that also may compensate shortcomings of Fieldbus. Its development prospects in the future are even more expected conformably by the enterprises and the researchers. However, one of the main obstacles still constricting its applications in control areas is that due to the lack of real-time performances, Ethernet doesn’t meet such industrial requirements as transmission determinism, order and priority. Even applying Ethernet switch or constructing real time protocols in high stack layers does not sufficiently qualify by introducing new sustitute problems of shifted nondeterminism, increased inter-layer delivery delay, and complexity. Wireless control networks have advantages of supporting cable-freedom, mobility and low cost and could be applied in many special areas working as the effective complement of wired networks, such as wireless sensor networks. Due to the lack of constant power supply, transmit power control in wireless control networks has become one significant issue that is crucial to quality of wireless signal, lifetime of battery or wireless node, and network topology. Real-time Ethernet and wireless transmit power control are two distinct problems confronted in control networks, both of which are close related with medium access control protocol. Companying with the most recent advancements, we studied corresponding medium access control problems for control networks in the dissertation and achieve the following major contributions.
     Considering providing real time performances by the high layers may lead to increased intermediate transfer layers and processing delay for a message, we analysis the possibility of defining priority mechanism at data link layer, and propose a physical signaling method based on carrier’s variable length character. Variant lengths of standard frame are used to realize multi-channel state feedback with the help of the intrinsic carrier sensing function of CSMA networks. Then global information of transmission’s collision, success and priority is easily obtained at data link layer. Beside, priority management may also be handled to high layer protocols and made application oriented, where intermediate layers are treated as transparent. So the new method is more general in practices. In fact, the proposed mechanism makes great efforts to utilize the intrinsic function and character of CSMA network itself, which also makes it easy to implement.
     Considering the non-determinism problem of Ethernet, we propose a real time medium access control protocol compatible with Ethernet standard. Obtaining multi-channel state information using the variant frame length signaling method, the proposed scheme determines channel access right by introducing persistent frame contending and channel blocking in the event of collisions. By this means, it realizes prioritized transmission and promises that for the highest priority class message, delivery delay is deterministic when it satisfying certain pseudo periodic condition. When there generates no collision, the best-effort CSMA/CD is chosen as the channel access rule to make the message transmit as fast as possible. Comparing with existent methods, new protocol tries to conserve the virtue and character of standard Ethernet meanwhile. It is also completely compatible with Ethernet. The new real time Ethernet bus can be connected directly to current gateway without any protocol transfer equipment.
     Ordered transmit schedule is very common in control networks. Considering the non-strictness problem of such schedule caused by random delayed retransmission strategy in the virtual time protocol, we propose a timely collision resolution algorithm, BOVTA, carrying also on virtual time axis. Not the same as its counterparts, BOVTA utilizes a principle consistent to the virtual time channel access rule to perform resolution synchronization and thus avoids introducing extra station dependent information. It makes the collision resolution more simple and easy to perform, meanwhile keeping the channel overhead relatively low. We then propose a multi-priority virtual time Ethernet protocol based on BOVTA algorithm, which promises strictness of the ordered transmit schedule.
     Considering power control problems for wireless control networks, we first point out an over-protect drawback of PCM which cause extra energy efficiency price, then propose an adaptive power control scheme named IP-PCM. Without violating the minimized power principle for data transmission, transmit power of busy tone is adaptively controlled according to an interference balancing mechanism. As the result, the carrier sensing range is optimized independent of the interference range. Comparing with PCM, IP-PCM apparently improved the spatial reuse and finally increased the energy efficiency.
     Utilizing the famous OPNET modeling and simulation tool for communication networks, we describe the modeling principle in detail for the studied MAC protocols based on discrete-event-driven finite state machine (FSM). It provides a basis for further theoretic analysis and design of these solutions.
引文
[ACG03] Anastasi G., Conti M., and Gregori E., IEEE 802.11 Ad Hoc Networks: Protocols, Performance and Open Issues Mobile Ad Hoc Networking, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, eds., New York: IEEE Press&John Wiley and Sons, Inc., 2003.
    [Aga01] Agarwal S., et al., Distributed power control in Ad-hoc wireless networks, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2001, 2.
    [ASS02] Akyildiz I. F., Su W., Sankarasubramaniam Y., Cayirci E., Wireless sensor networks: A survey,” Comput. Netw., Mar. 2002, 38(4): 393–422.
    [ATV00] Alves M., Tovar E., and Vasques F., Ethernet goes real-time: A survey on research and technological developments Porto, Portugal: Polytech. Univ. Porto, Jan. 2000 [online] Available: http://www.hurray.isep.ipp.pt
    [BaJ01] Banks J., John C., Discrete-event System Simulation (Third Edition), Prentice Hall, 2001.
    [BBE99] Bajaj S., Breslau L., Estrin D., and et al. Improving simulation for network research, Technical Report 99-702b, USC Computer Science Department, 1999.
    [BBV02] Bertoluzzo M., Buja G., Vitturi S., Ethernet networks for factory automation, Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, 2002,1:175-180
    [Ben93] Bender K., PROFIBUS: the Fieldbus for Industrial Automation. Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [BEF00] Breaslu L., Estrin K., Fall D., and et al. Advances in network simulation. IEEE Computer, 2000, 33(5): 59-67.
    [Blu04] Bluetooth Version 2.0 + Enhanced Data Rate (EDR), adopted November, 2004
    [BMS06] The Official Bluetooth Membership Site [Online], 2006, https://www.bluetooth.org/
    [Bos91] Bosch CAN Specification—Version 2.0 Part A, 1991.
    [BTS06] The Bluetooth Technology Site [Online], 2006, http://www.bluetooth.com/
    [CCL02] Carpenzano A., Caponetto R., Lo Bello L., and Mirabella O., Fuzzy traffic smoothing: An approach for real-time communication over Ethernet networks, in Proc. 4th IEEE Int. Workshop Factory Communication Systems, 2002, pp. 241-248.
    [Cha99] Chang X J., Network simulations with OPNET [A]. In: Proceeding of the 1999 Winter Simulation Conference [C]. Phoenix, Dec 1999: 307-314.
    [ChG04] Chiruvolu G., Ge A., and et al. Issues and Approaches on Extending Ethernet Beyond LANs. IEEE Communications Magazine, Mar. 2004: 42(3): 80-86.
    [ChK03] Chong C.Y., and Kumar S.P., Sensor Networks: Evolution, Opportunities, and Challenges Proceedings of the IEEE, Aug. 2003, 91(8): 1247-1256.
    [Cou92] Court R., Real-time Ethernet, Computer Communications, Apr. 1992, 15(3): 198–201.
    [CSA99] Chen J. C., Sivalingam K. M., Agrawal P., Performance comparison of battery power consumption in wireless multiple access protocols, Wireless Netw., 1999, 5: 445-460.
    [CWS02] Chen J., Wang Z., Sun Y., Switch Real Time Industrial Ethernet with Mixed Scheduling Policy, The 28th Annual Conference of the IEEE Industrial Electronics Society (IECON 2002), Vol.3: 2317-2321, Nov. 05-08, 2002.
    [Dan90] Danish Standard, DS 21906. P-Net, MultiMaster, MultiNet Fieldbus for Sensor, Actuator and Controller Communications, 1990.
    [DAS02] Dzung D., Apneseth C., Scheible G., and Zimmermann W., Wireless sensor communication and powering system for real-time industrial applications, presented at the 2002 IEEE Workshop Factory Communication Systems (WFCS 2002), V?ster?s, Sweden.
    [Dec01] Decotignie J. D., A perspective on Ethernet-TCP/IP as a fieldbus, IFAC International Conference on Fieldbus Systems and their Applications, Nancy, France, Nov. 2001: 138-143.
    [Dec05] Decotignie J. D., Ethernet-Based Real-Time and Industrial Communications, Proceedings of the IEEE, Jun. 2005, 93(6): 1102-1117.
    [DFP06] Diab W., Frazier H., Pesavento G., Ethernet Provides the Solution for Broadband Subscriber Access, Ethernet alliance, Version 1, Apr. 2006.
    [DMV06] De Pellegrini F., Miorandi D., Vitturi S., Zanella A., On the use of wireless networks at low level of factory automation systems,IEEE Trans. on Industrial Informatics,2006,2(2): 29- 143.
    [Dou03] 窦连旺, 网络控制系统的建模稳定性分析及其调度的研究, 天津大学博士学位论文, 2003,12.
    [ECH01] Eker J., Cervin A., Horje A., Distributed Wireless Control Using Bluetooth, IFAC Conference on New Technologies for Computer Control. Hong Kong, P. R. China, 2001.
    [EnC94] 中国大百科全书-自动控制与系统工程卷:自动化技术史,中国大百科全书出版社,1994.
    [EtA05] Ethernet Alliance, http://www.ethernetalliance.org/
    [Fan04] 樊卫华,网络控制系统的建模与控制,南京理工大学博士学位论文,2004,7。
    [FaX04] 范兴刚,网络控制系统若干通信网络实时特性研究,浙江大学博士学位论文,2004,3。
    [FeN01] Feeney L. M., Nilsson M., Investigating the energy consumption of a wireless network interface in an ad hoc networking environment, Proc. IEEE INFOCOM, 2001: 1548-1557.
    [Fen05] 冯冬芹, 工业以太网: 工业控制网络发展的主流技术, 电气时代, 2005, 6: 46-47.
    [FeS02] Felser M., Sauter T., The Fieldbus War: History or Short Break between Battles? IEEE International Workshop on Factory Communication Systems (WFCS), Vasteris, Aug.2002: 73-80.
    [FeS04] Felser M., Sauter T., Standardization of Industrial Ethernet - the Next Battlefield? 5th International Workshop of Factory Communications Systems, Austria 2004: 413-421
    [FPJ03] Flores-Lucio G., Paredes-Ferrare M., Jammeh E., and et. al, OPNET Modeler and Ns-2: Comparing the Accuracy of Network Simulators for Packet-Level Analysis using a Network Testbed, the 3rd WEAS Int. Conf. on Simulation, Modelling and Optimization (ICOSMO 2003), Crete, 2003, 2: 700-707.
    [FrP01] Frazier H, Pesavento G. Ethernet takes on the first mile.IT Professional, 2001,3(4): 17-22.
    [FuD05] 傅磊,戴冠中,网络化控制系统的研究综述,计算机工程与应用,2005,25:221-225.
    [GaL85] Gault M., Lobert J.P.Contribution to the fieldbus standard IEC/TC65/SC65C/WG6,1985.
    [GCN01] Gomez J., Campbell A.T., Naghshineh M., et al. Conserving Transmission Power in Wireless Ad Hoc Networks[C].In:Proc 9th International Conference on Network Protocols (ICNP 2001), Riverside, California, USA, 2001: 24-34.
    [GoC01] Gomez J., Campbell A.T., et al., PARO: Power-aware routing optimization for wireless ad hoc networks, IEEE 9th International Conference on Network Protocols (ICNP'01), Riverside, California, Nov. 2001: 27 - 32.
    [Gon05] 工业以太网专业委员会,2005. http://www.cameta.org.cn/cameta/subgong.htm
    [GoW02] Goldsmith A. J., and Wicker S. B., Design challenges for energy-constrained ad hoc wireless networks, Wireless Commun., Aug. 2002, 9: 8-27.
    [GZW01] 顾洪军,张佐,吴秋峰,网络控制系统的实时特性分析及数据传输技术,计算机工程与应用,2001.6:38-43.
    [HaB00] Haartsen J.C., Bluetooth toward ubiquitous wireless connectivity, Revue HF, Soc. BelgeIng. Telecommun. Electron, 2000: 8–16.
    [HaJ03] Hanssen F. T. Y., Jansen P. G., Real-time communication protocols: an overview, Technical report, nr. TR-CTIT-03-49, Centre for Telematics and Information Technology, Univ. of Twente, The Netherlands, Oct. 2003.
    [HaR88] Halevi Y., Ray A. Integrated communication and control systems: Part Ⅰ- Analysis [J], ASME J Dyn Syst, Meas and Contr, 1988,110(4): 367-373.
    [Har99] Harrold D., Ethernet everywhere, Control Eng., 1999, 46(6): 46–52.
    [HCB00] Heinzelman W. R., Chandrakasan A., Balakrishnan H., Energy-Efficient Communication Protocol for Wireless Microsensor Networks, Proceedings of the 33rd International Conference on System Sciences (HICSS '00), Jan. 2000:3005-3014.
    [HKK99] Hirai J., Kim T.W., and Kawamura A., Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system, IEEE Trans. Ind. Electron., Apr. 1999, 46(2): 349-359.
    [HoJ03] Hoang H., and Jonsson M., Switched real-time Ethernet in industrial applications – asymmetric deadline partitioning scheme. In Proceedings 2nd International Workshop on Real-Time LANs in the Internet Age, Porto, Portugal, July 2003.
    [Hou00] 候志林, 过程控制与自动化仪表, 北京:机械工业出版社, 2000.
    [Hua05] 黄剑, 网络控制系统的建模稳定与控制研究, 华中科技大学博士学位论文, 2005,5.
    [HVS01] Hadzi-Velkov Z., Spasenovski B., Capture effect in IEEE802.11 wireless LANs, In proceedings of IEEE ICWLAN 2001, 2001.
    [IAO02] Industrial Automation Open Networking Alliance, http://www.iaona.com.
    [IAO05] IAONA, IAONA Handbook Industrial Ethernet, http://www.iaona.org/home/press.php, May 2005.
    [IAS98] Information Technology-Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 2: Logical Link Control, ISO/IEC Std. 8802-2, ANSI/IEEE Std. 802.2, 1998.
    [IDA02] Interface for Distributed Automation, http://www.ida-group.org.
    [IEC00] IEC62026 (2000-07), Low-voltage switchgear and controlgear - Controller-deviceinterfaces (CDIs): Part1 to 3, IEC62026, Edition 1.0,2000.
    [IEC03] IEC61158 (2003-05), Digital data communications for measurement and control - Fieldbus for use in industrial control systems (Parts 2 to 6). IEC 61158, Edition 3.0, 2003.
    [IEE82] IEE Colloq. Distributed Process Control: Today and Tomorrow,London, U.K.,Mar. 1982.
    [Ind02] Industrial Ethernet Association, http://www.industrialethernet.com
    [IRT05] IEC 61784-2 Ed. 1.0,Digital data communication for measurement and control - Part 2: Additional profiles for ISO/IEC 8802 3 based communication networks in real-time applications, 2005
    [IS95] IS 11898 Road Vehicle-Interchange of Digital Information-Controller Area Network for High Speed Communication, 1995.
    [ISA86] Field bus standard for use in industrial control systems: Functional guidelines (various versions), Instrum. Soc. Amer., 1986.
    [ISE05] IEEE Standard 802.3, 2005 Edition, Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements--Part 3: Carrier Sense Multiple Access With Collision Detect on (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Std. 802.3, 2005.
    [ISO03] ISO 11898:2003. Road vehicles - Controller area network (CAN): Part 1,2, 2003.
    [ISO94] ISO 11519:1994. Road vehicles - Low-speed serial data communication: Part 1,3, 1994.
    [ISO96] Information Processing Systems—Open Systems Interconnection—Basic Reference Model: The Basic Model, ISO/IEC Std. 7498: 1, 1996.
    [ISP02] IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs), IEEE Std 802.15.1, 2002
    [ISS99] Supplement to IEEE standard for information technology telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band, IEEE Std 802.11a-1999
    [ISW03] IEEE standard for information technology- telecommunications and informationexchange between systems- local and metropolitan area networks- specific requirements Part II: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11g-2003
    [ISW99] Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ISO/IEC Std. 8802-11; ANSI/IEEE Std. 802.11, 1999.
    [Jad00] Janssen A.J.E.M., de Jong M.J., Analysis of contention tree algorithms [J]. IEEE Trans. on Information Theory, 2000, 46(6): 2163-2172.
    [JaN01] Jasperneite J., Neumann P., Switched Ethernet for factory communication, in Proceedings 2001 8th IEEE International Conference on Emerging Technologies and Factory Automation, 2001: 205 –212.
    [JaY93] Jan R.H., Yeh Y.J., CSMA/CD protocol for time-constrained communication on bus networks, IEE Proceedings I –Communication, Speech and Vision, June 1993, 140(3): 197–202.
    [Jef96] Jeffery J.P., Distributed Real-Time System, New York, 1996.
    [JNT02] Jasperneite J., Neumann P., Theis M., Watson K. Deterministic real-time communication with switched Ethernet, in Proc. 4th Int. Workshop Factory Communication Systems,2002: 11-18.
    [Jon04] Jonas B., Fieldbus, Ethernet and the reality of convergence, technical article, The Industrial Ethernet Book, 2004, 23: 10-14.
    [JuP01] Jurgen J., Peter N., Switched ethernet for factory communication[ J ].IEEE Symposium on Emerging Technologies and Factory Automation ,2001,1:205-212.
    [JuV02] Jung E. S., and Vaidya N. H., A Power Control MAC Protocol for Ad Hoc Networks, Proc. ACM 8th Annual International Conference on Mobile Computing and Networking(MOBICOM’ 2002), Sept. 2002: 36-47.
    [Kap01] Kaplan G., Ethernet's winning ways, IEEE Spectrum, 38(1), Jan. 2001: 113-115.
    [KDK89] Kopetz H., Damm A., Koza Ch., Mulazzani M., Schwabl W., Senft Ch., Zailinger R., Distributed Fault-Tolerant Real-Time Systems: The MARS Approach, IEEE Micro, Feb. 1989, 9(1): 25-40.
    [KiS91] Kim W., Srivastava J., New virtual time CSMA/CD protocols for real-time communication, in Proc. IEEE Conf. Communication Software (TRICOMM "91), 1991: 11-22.
    [KoV04] Kochut A., Vasan A., Sniffing out the correct Physical Layer Capture model in 802.11b. In Proceedings of 12th IEEE International Conference on Network Protocols (ICNP'04), May 2004:252-261.
    [KRD06] Kumar S., Raghavan V. S. and Deng J., Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey, Elsevier Ad-Hoc Networks Journal, May 2006, 4(3): 326-358.
    [KrK97] Krishna M., Kang C., Real Time Systems, Mcgraw-Hill Company, l997.
    [KSY84] Kurose J. F., Schwartz M., Yemini Y., Multiple-access protocols and time-constrained communication, ACM Computing Surveys, Mar. 1984, 16(1): 43–70.
    [KSY88] Kurose J. F., Schwartz M., Yemini Y., Controlling window protocols for time- constrained communication in multiple access networks, IEEE Transactions on Communications, Jan. 1988, 36(1): 41–49
    [KSW00] Kweon S., Shin K.,Workman G., Achieving real-time communication over Ethernet with adaptive traffic smoothing, Proc. 6th Real-Time Technology and Application Symp.,2000: 90-100.
    [Kur84] Kurose J., Time-Constrained Communication in Multiple Access Networks. PhD thesis, Department. of Computer Science, Columbia University,1984.
    [KwS03] Kweon S., Shin K. G., Statistical real-time communication over Ethernet, IEEE Trans. Parallel Distrib. Syst., Mar. 2003, 14(3): 322-335.
    [LeB00] LeBlanc C. The future of industrial networking and connectivity [J/OL]. The Industrial Ethernet Book,Issue 2,2000.
    [LeG88] Lessard A. and Gerla M., Wireless communication in the automated factory environment, IEEE Network, May 1988, 2(3): 64-69.
    [LeR93] Le Lann G., Rivierre N., Real-time communications over broadcast networks: The CSMA-DCR and the DOD-CSMA-CD protocols: INRIA, Res. Rep. 1863, 1993.
    [Li05] 黎善斌,网络控制系统的鲁棒控制算法研究, 浙江大学博士学位论文, 2005,5.
    [Li94] Li M., A priority-based protocol for the 802.3 network, In J.A. de la Puente and M.G. Rodd, editors, Proceedings of the 12th IFAC Workshop on Distributed Computer Control Systems, Toledo, Spain, Sept. 1994: 19–22.
    [Lia01] Lian F.L., Analysis, Design, Modeling, and Control of Networked Control Systems, Ph. D. thesis,The University of Michigan, 2001.
    [LoM01] LoBello, L. Mirabella, O., Design issues for Ethernet in automation. Proc. of the 8thIEEE International Conf. on Emerging Technologies and Factory Automation,2001, 1:213-221.
    [LWZ03] 黎善斌,王智,张卫东,孙优贤,网络控制系统的研究现状与展望, 信息与控制, 2003, 32(3): 239-244.
    [LZG05] 刘刚, 周兴社, 谷建华, 李志刚. 自组织、自适应无线传感器网络理论研究, 计算机应用研究, 2005, 5:30-33.
    [MaZ95] Malcolm N., Zhao W., Hard real-time communication in multiple-access networks, Real-Time Systems, Jan. 1995, 8(1): 35–77.
    [MBH01] Monks J., Bharghavan V., and Hwu W., A power controlled multiple access protocol for wireless packet networks, in Proceedings of IEEE Conference on Computer Communications (INFOCOM), Apr. 2001, 1: 1-11.
    [MeB76] Metcalf R. and Boggs D., Ethernet: Distributed packet switching for local computer networks, Commun. ACM, vol. 19, no. 7, pp. 395-404, Jul. 1976.
    [Mic05] Michael C. D., Networked control system design over a wireless LAN, Ph.D. dissertation, University of California,2005.
    [MiR98] M. Miclot and B. Roncagli, Is there a future for Ethernet in industrial control?, http:// www.manufacturing.net/magazine/planteng/archives/1998/ple1001.98/108520.htm, Oct 1998.
    [Mit00] Mitchell G. A., Ethernet’s in control, Control Eng., May 2000, 47(5): 46–54.
    [Miu05] 缪学勤,实时以太网技术最新进展, 电气时代, 2005,6:64-68.
    [MoK85] Molle M. and Kleinrock L., Virtual time CSMA: Why two clocks are better than one, IEEE Trans. Commun., Sep. 1985, 33(9): 919-933.
    [Mol91] Molle M., Prioritized-virtual-time CSMA: Head-of-the-line priority classes without added overhead, IEEE Trans. Commun., Jun. 1991, 39(6): 915-927.
    [MoP93] Molle M. L. Polyzos, G. C., Conflict Resolution Algorithms and their Performance Analysis Molle, Technical Report CS93-300, Department of Computer Science and Engineering, University of California, San Diego, July 1993.
    [MZF05] 马玉敏, 张浩, 樊留群, 工业以太网的最新发展, 测控技术, 2005, 24(12): 1-4.
    [NaJ05] Nadeem T., Ji L.S., Location enhancement to IEEE802.11 DCF, IEEE INFOCOM 2005, March 2005: 13-17.
    [Nas04] Nasipuri A., Book Chapter: Mobile Ad Hoc Networks, in Handbook of RF and Wireless Technologies, edited by Farid Dowla, Newnes, ISBN 0-7506-76957,2004: 59-100.
    [NBM99] Norden S., Balaji S., Manimaran G., Siva Ram Murthy C., Deterministic protocols for real-time communication in multiple access networks, Computer Commu.,1999,22: 128-136.
    [Neu99] Neumann P., Locally distributed automation—but with which fieldbus system?, Assembly Autom., 1999, 19(4): 308–312.
    [Nil98] Nilsson J., Real-time control systems with delays, Ph.D. dissertation,Dept. Automatic Control, Lund Institute of Technology, Lund, Sweden, January 1998.
    [NiT04] Ni Q., and Turletti T., A Survey of QoS Enhancements for IEEE 802.11 Wireless LAN, Wiley Journal of Wireless Communication and Mobile Computing (JWCMC), John Wiley and Sons Ltd., 2004, 4(5): 547-566.
    [NKS02] Narayanaswamy S., Kawadia V., Sreenivas R. S., and Kumar P. R., Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW protocol, In European Wireless 2002, February 2002.
    [NyH04] Nyandoro A., Hassan M., Exploiting Capture Effect to Provide Service Differentiation in Wireless LANs, 2004 IEEE Vehicular Technology Conference, Eds. T. Nguyen IEEE Inc, New Jersey, USA, 2004: 91-96.
    [OSN03] ODVA Safety Networks: Increase Productivity, Reduce Work-Related Accidents and Save Money, Open DeviceNet Vendor Assoc. White Paper, 2003,hnp://www.odva.org
    [OPN03] OPNET Modeler Product Documentations, Release 10.0, OPNET Technologies Inc., 2003.
    [OuK02] Ouni S., and Kamoun F.. Hard and Soft Real Time Message Scheduling on Ethernet Networks, IEEE International Conference on Systems, Man and Cybernetics, Oct. 2002.
    [PaH04] Patnaik L.M., Hasan Raza Naqvi S., A review of medium access protocols for mobile ad hoc networks with transmission power control, Microprocessors and Microsystems, 2004, 28: 447–455.
    [PBM91] Phinney T. P., Brett D., McGowan D., Kumeda Y., FieldBus-Real time comes to OSI, in Proc. 10th Annual Int. Phoenix Conf. Computers and Communications, 1991: 594–599.
    [Pen04] 彭可, 控制网络系统性能分析、系统设计和网络互连的研究与应用, 中南大学博士学位论文, 2004,4.
    [Pen05] 彭瑜,工业控制通信网络的实时性要求及现场总线的价值取向,电气时代, 2005,6:18-22.
    [Pen06] 彭瑜, 无线通信网络在工控领域的应用现状及前景,现代制造, 2006,3:38-41.
    [PKA04] Ploplys N. J., Kawka P. A., Alleyne A.G., Closed-loop control over wireless networks[J], IEEE Control Systems Magazine, 2004, 24(3):58-71.
    [PKD01] Poojary N., Krishnamurthy S. V., and Dao S., Medium access control in a network of Ad Hoc mobile nodes with heterogeneous power capabilities,in Proc. IEEE 5th International Conference on Communications, June 11-14, 2001,3: 872-877.
    [PRS02] PROFIBUS International: Profile for Failsafe with PROFIBUS, DP-Profile for Safety Applications, Version 1.2, October 2002, Order No. 3.092,http://www.profibus.com
    [Raj94] Raji R. Smart Network for Control [J ], IEEE Spectrum, Jun. 1994 : 49-55.
    [ReN03] Remondo D., Niemegeers I.G., Ad hoc networking in future wireless communications, Computer Communications, Jan. 2003,26(1): 36-40.
    [Rap01] Rappaport T.S., Wireless communications: principles and practice. 2nd Edition, Prentice Hall, 2001.
    [Rob93] D.A. Roberts, “OLCHFA”: a distributed time-critical fieldbus, IEE Colloquium on Safety Critical Distributed Systems, 1993.
    [RSF04] Roundy S., Steingart D., Frechette L., Wright P., and Rabaey J., Power sources for wireless sensor networks, presented at the Wireless Sensor Networks 1st Eur. Workshop (EWSN 2004) Berlin, Germany, 2004.
    [SaG93] Sam K.O., Glenn H.M., The Best-Effort Virtual-Time CSMA/CD Protocols with Run-Time Clairvoyancy Support, External Technical Report, Department of Computing and Information Science, Queen's University, Feb. 1993.
    [SBS01] Specification of Bluetooth System, ver. 1.1, Feb. 22, 2001.
    [She02] 沈钢, 网络控制系统实时介质访问控制的研究, 上海交通大学博士学位论文,2002,9.
    [Sch04] Schwab C., Looking behind the automation protocols, The Industrial Ethernet Book, 2004, http://ethernet.industrial-networking.com/articles/articledisplay.asp?id=38.
    [ScM97] Schickhuber G., McCarthyt O. Distributed Fieldbus and Control Network Systems, Computing and Control Engineering, 1997, 8(1): 21-32.
    [ScS01] Schwaiger C., Sauter T., A secure architecture for fieldbus/ internet gateways, in Proc. 8thIEEE Int. Conf. Emerging Technologies and Factory Automation (ETFA), 2001: 279-285.
    [SCX04] Shen G., Cai Y. Z., Xu X. M., Simulation for a new real-time Ethernet MAC protocol, High Technology Letters, 2004, 10(2): 69-72.
    [SeS98] Seung H. H., and Seong J. K., Analysis of real-time data transmission in the DLL of IEC/ISA fieldbus, IEEE International Symposium on Industrial Electronics, 1998, 2: 694 –699.
    [SGM92] Sam K., Glenn Oh., MacEwen H., The Best-Effort Virtual-Time CSMA/CD Protocols for Real-Time Systems, External Technical Report, Department of Computing and Information Science, Queen’s University, Nov. 2, 1992.
    [ShC05] Shih K.P., Chen Y.D., CAPC: A collision avoidance power control MAC protocol for wireless Ad Hoc networks. IEEE Communications Letters, 2005, 9(9): 859-861.
    [ShS01] Sharon O., Spratt M., A CSMA/CD compatible MAC for real-time transmissions based on varying collision intervals, Comput. Netw., Feb. 2001, 35(2–3): 117-142.
    [SHS04] Sundaresan K., Hsieh H.Y., Sivakumar R., IEEE802.11 over Multi-hop Wireless Networks: Problems and New Perspectives, Ad Hoc Networks 2, 2004: 109-132.
    [ShX02] 沈钢, 新型实时以太网介质访问控制协议的仿真实现,系统仿真学报, 2002, 14(7): 890-893
    [SiR98] Singh S., Raghavendra C. S., PAMAS - Power Aware Multi-Access protocol with Signaling for Ad Hoc Networks, ACM Computer Commun. Rev., 1998, 28 (3): 5-26..
    [SIW06] Status of Project IEEE 802.11n, http://grouper.ieee.org/groups/802/11/Reports/ tgn_update.htm
    [Sou82] Soutif M., Rapport sur l’Industrie des Instruments de Mesure, Ministère de la recherche, Paris, France, 1982.
    [SPH03] IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs), IEEE Std 802.15.4, 2003.
    [SPL03] IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-ratewireless personal area networks (LR-WPANs), IEEE Std 802.15.4, 2003.
    [SSA02] Salian S.F., Shaka A.Y.M., and Ahmad R.B., Improvement of virtual-time CSMA protocol for distributed hard and soft real-time systems on the Ethernet. In Proceedings 2002 Student Conference on Research and Development (SCOReD 2002), Shah Alam, Malaysia, July 2002: 128–131.
    [Tho05] Thomesse J. P., Fieldbus Technology in Industrial Automation, Proceedings of the IEEE, Jun. 2005,93(6): 1073-1101.
    [Tho93] ThomesseJ. P., Le réseau de terrain FIP, Revue Réseaux et Informatique Répartie, 1993, 3(3): 287–321.
    [TMG96] Turiel J., Marinero J., González J., CSMA/PDCR: A Random Access Protocol Without Priority Inversion, Annual Conference of the IEEE Industrial Electronics Society 1996 (IECON’96), Taipei, Taiwan, Aug. 1996, 2: 910-915.
    [TiB95] Tindell K., Burns A., Analysis of Hard Real-Time Communication, Real-Time System, 1995, 9(2): 147-173.
    [Tob82] Tobagi F., Carrier Sense Multiple Access with Message-Based Priority Functions, IEEE Transactions on Communications, Vol. Com-30, no.1, Jan. 1982.
    [TSS04] Treytl A., Sauter T., and Schwaiger C., Security measures for industrial fieldbus systems-State of the art and solutions for IP-based approaches, in Proc. 2004 IEEE Int. Workshop Factory Communication Systems (WFCS), 2004: 201-209.
    [VaC98] Varadarajan S. and Chiueh T., EtheReal: A host-transparent real-time Fast Ethernet switch, in Proc. 6th Int. Conf. Network Protocols, 1998, pp. 12-21.
    [Var01] Varadarajan S., Experiences with EtheReal: A fault-tolerant real-time Ethernet switch, in Proc. 8th IEEE Int. Conf. Emerging Technologies and Factory Automation, 2001, 1: 183-194.
    [VeC94] Venkatramani C. and Chiueh T., Supporting real-time traffic on Ethernet, In Proceedings 15th IEEE Real-Time Systems Symposium, San Juan, PuertoRico, Dec. 1994: 282–286.
    [Ven97] Venkatramani C., The Design, Implementation and Evaluation of RETHER: a Real-Time Ethernet Protocol, PhD thesis, State University of New York at Stony Brook, Jan. 1997.
    [Wan02]王智, 基于现场总线的实时工业通信系统的建模和分析, 浙江大学博士后出站报告, 2002,9.
    [WaR02] Wang J., and Ravindran B., “BPA: A fast packet scheduling algorithm for real-time switched Ethernet networks,” in Proc. Int. Conf. Parallel Processing, 2002, pp. 159-166.
    [WaY01] Walsh G.C., Ye H. Scheduling of networked control systems, IEEE Control Systems Magazine, 2001, 21:57-65.
    [WaY02] Walsh, G.C., Ye, H., and Bushnell, L.G.: Stability analysis of networked control systems, IEEE Trans. Control Syst. Technol., 2002, 10: 438–446.
    [WBB01] Walsh G. C., Beldiman O., Bushnell L.G. Asymptotic behavior of nonlinear networked control systems [J ], IEEE Transactions on Automatic Control , 2001 ,46 (7) :1093-1097.
    [WBB99] Walsh G. C., Beldiman O., Bushnell L.G. Error encoding algorithms for networked control systems [A], Proc. IEEE Conf . Decision and Control [C] Phonix, 1999: 4493-4938.
    [WCW01] Ware C., Chicaro J., and Wysocki T., Modeling of capture behavior in IEEE 802.11 radio modems, Proc. of the IEEE International Conf. on Telecommunications (ICT'01), 2001.
    [WiH00] Wiener N., 郝季仁译, 控制论[专著]: 或关于在动物和机器中控制和通讯的科学, 北京: 京华出版社, 2000.10.
    [WIN02] Wireless Industrial Networking Alliance, 2002. http://www.wina.org/
    [WJC00] Ware C., Judge J., Chicharo J., Unfairness and Capture Behaviour in 802.11 Adhoc Networks, ICC 2000. 2000 IEEE International Conference on Communications, 2000 1:159-163.
    [WJD02] Wei Y., John H., Deborah E., An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the IEEE Infocom, 2002: 1567-1576.
    [WJD04] Wei Y., John H., Deborah E., Medium access control with coordinated, adaptive sleeping for wireless sensor networks[J], ACM/IEEE Tran on Networking, 2004,12(3):493-506.
    [WMW05] Willig A., Matheus K., and Wolisz A., Wireless technologies in industrial networks, Proc. IEEE, Jun. 2005, 93(6): 1130–1150.
    [WSC02] Wang Z., Song Y., Chen J., and Sun Y.X., Real time characteristics of Ethernet and its improvement, Proc. 4th World Congr. Intelligent Control and Automation, 2002, 2: 1311-1318.
    [WSF94] Whetten B., Steinberg S., Ferrari D., The packet starvation effect in CSMA/CD LANs and a solution, in Proceedings of the 19th Conf. on Local Computer Networks, 1994: 206-217.
    [Wu05] 吴秋峰,对网络时代信息与控制交融的一些思考, 工业控制计算机,2005,18(11):6-7.
    [Wu99] 吴誉, 现场总线系统互联模型研究, 上海交通大学博士学位论文,1999,12,.
    [WXL00] Wang Z.P., Xiong G.Z., Luo J., Lai M.Z., Zhou W., A hard real-time communication control protocol based on the Ethernet, In Proceedings 7th Australasian Conference on Parallel and Real-Time Systems (PART 2000), Sydney Australia, Nov. 2000: 161–170.
    [WYB99] Walsh G.C., Ye H., Bushnell L.G. Stability analysis of networked control systems, Proceedings of the American Control Conference, San Diego. California, 1999: 2876-2880.
    [Xie04] 谢林柏, 网络化控制系统中若干问题的研究, 华中科技大学博士学位论文, 2004.6.
    [XuC93] Xu W., Campbell G., A Distribute Queuing Random Access Protocol for a Broadcast Channel, DQRAP Research Group Report 90-1, Computer Science Dept., Illinois Institute of Technology, 1993.
    [XuG02] Xu K.X., Gerla M., How effective is the IEEE802.11 RTS/CTS handshake in Ad Hoc networks? IEEE GLOBECOM, 2002, l(1): 72-76.
    [XZC00] 肖田元, 张燕云, 陈加栋, 系统仿真导论, 北京:清华大学出版社, 2000.
    [Yan03] 阳宪惠, 工业数据通信与控制网络, 北京:清华大学出版社, 2003.
    [Yan06] Yang T.C., Networked control system: a brief survey, IEE Proc.-Control Theory Appl., Vol. 153, No. 4, July 2006:403-412.
    [Yan99] 阳宪惠, 现场总线技术及其应用, 北京:清华大学出版社, 1999.
    [Ye00] Ye H. Research on networked control systems, Ph.D. dissertation, Dept. Mechanical Engineer, University of Maryland, 2000.
    [YPF94] Yavatkar R., Pai P., Finkel R., A Reservation-based CSMA Protocol for Integrated Manufacturing Networks, IEEE Transactions on Systems, Man, and Cybernetics, Aug. 1994, 24(8): 1247–1258.
    [YWB00] Ye H., Walsh G., and Bushnell L.G., Wireless local area networks in the manufacturing industry, Proc. Amer. Control Conf., Chicago, IL, 2000, (4): 2363-23671.
    [ZBP01] Zhang W., Branicky M. S. Phillips S. M. Stability of networked control systems [J], IEEE Contr Syst Mag, 2001,21(1): 84-99.
    [Zha05] Zhang L., Access scheduling and controller design in networked control systems, Ph. D. thesis,University of Maryland,2005
    [ZhH99] Zhou L., Haas Z. J. Securing ad hoc networks, IEEE Network, 1999, 13(6): 24-30.
    [ZhN05] Zhou Y.H., Nettles S.M., Balancing the hidden and exposed node problems with power control in CSMA/CA-Based wireless networks, IEEE Communication Society /WCNC2005, 2005: 683-688.
    [ZhR86] Zhao W., Ramamritham K., A virtual time CSMA/CD protocol for hard real-time communication, Proceedingsof the IEEE Real-Time Systems Symposium, 1986:120-127.
    [ZhR87] Zhao W., Ramamritham K. Virtual time CSMA protocols for hard real-time communication, IEEE Trans. Softw. Eng., Aug. 1987,13(8): 938-952.
    [ZhS90] Zhao W., Stankovic J., A window protocol for transmission of time-constrained messages, Proc. of IEEE Transactions on Computers, Sept. 1990, 39(9): 1186–1203
    [Zig06] Zigbee Alliance [Online], 2006. http://www.zigbee.org.
    [ZLH03] Zhang Y., Lee W., Huang Y., Intrusion detection techniques for mobile wireless networks, ACM Wireless Netw. J., Sep. 2003, 9(5): 545–556.
    [Zhu03]朱其新, 网络控制系统的建模、分析与控制,南京航空航天大学博士学位论文, 2003,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700