用户名: 密码: 验证码:
环保易切削白色铜合金的制备及其相关基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:Cu-Ni-Zn-Pb合金因具有高贵的银白色金属光泽,良好的机械性能、切削性能和抗腐蚀变色等性能而在造币、装饰、装潢、海洋、化工、电力、医疗等领域得到广泛应用。然而Cu-Ni-Zn-Pb合金中含合金中含有的Ni元素和Pb元素会对人体和环境造成危害和污染,欧美等发达国家现已对与人体接触的产品中的Ni和Pb元素的含量及释放量进行了严格限制,并禁止生产与人体直接接触的含镍制品。因此研制具有
     优异综合性能的无镍无铅的白色铜合金显得尤为重要。Pb、Ni本文针对元素的替代和合金腐蚀性能的提高,以Mn和Zn为主要合金化元素,同时添加A1和微量Si、稀土Ce元素,设计Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce(wt.%)开发出一种银白色的合金,并对该合金的加工性能、力学性能、切削性能、耐腐蚀性能及其相关机理展开研究,主要研究内容及相关结论如下:
     1.设计并制备的无镍无铅白色铜合金Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%)拥有与传统含镍含铅的Cu-15Ni-24Zn-1.5Pb (wt.%)合金相近的加工硬化率、力学性能、白色色度和在空气中放置的抗变色能力,并具有优于Cu-15Ni-24Zn-1.5Pb (wt.%)合金的冷轧变形能力、切削性能和在人工汗液中的抗腐蚀性能。
     2.建立了无镍无铅白色铜合金Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce(wt.%)热变形过程的本构方程:ε=e21.823[sinh(0.00825σ)]4.348exp(-201.020/(RT)),和应变量分别为0.5与0.7的加工图,并确定出两个可行的热加工区域620℃-800℃/0.01s-1~0.56s-1、670℃-770℃/0.01s-1~10s-1,合金最佳的热变形条件为7500C/10s-1。
     3.为提高无镍无铅白色铜合金的切削性能,在Cu-Mn-Zn系中加入Si元素,并对其作用机理进行研究,表明Si与Mn结合在合金中生成了尺寸约为1μm的以Mn3Si相为主的第二相粒子,当合金中Si含量约为0.3wt.%时,这些均匀分布的Mn3Si相中大于临界断裂尺寸能有效起到断屑作用的粒子含量已远大于Cu-15Ni-24Zn-1.5Pb (wt.%)合金中有效Pb粒子的含量,因此使设计合金具有更低的切削力和更小的表面粗糙度。
     4.应用电化学分析和X射线光电子能谱技术对所设计的Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce(wt.%)合金在人工汗液中浸泡的腐蚀过程和产物膜结构进行研究。设计合金在人工汗液中浸泡一定时间后表面即生成一层钝化膜,随浸泡时间延长合金表面被进一步氧化生成致密的由Cu2O、A12O3和Si02组成的具有保护性的氧化膜。该保护膜随浸泡时间的增厚增密引起了合金腐蚀速率的降低,同时导致合金的极化电阻Rp、膜电阻Rfilm、膜电容Cfilm和CPE系数Q0等电化学参数也因此随浸泡时间呈规律性变化。
     5.揭示了所设计的Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce(wt.%)合金分别在氯化钠溶液和氯化钠盐雾2种环境下表面腐蚀产物膜的演变规律。腐蚀初期浸泡腐蚀严重,表面被大量氧化物覆盖并有氯化物生成,而盐雾条件下表面仍有60%纯金属未被氧化且无氯化物生成。随腐蚀时间延长,2种条件下均生成具有内外双层结构的腐蚀产物膜。区别在于浸泡条件下外层膜以灰绿色均匀覆盖的颗粒状碱式氯化铜膜为主,而盐雾条件下表面腐蚀产物膜则由液滴沉降情况决定,沉降区域表面与浸泡方式下的腐蚀情况相近,以蓝绿色颗粒状碱式氯化铜膜为主,未沉降的棕黄色区域则与大气腐蚀相近,以金属氧化物膜为主。
Abstract:Traditional white copper alloy Cu-Ni-Zn-Pb has noble silvery brilliance, great mechanical property, wonderful machinability, fantastic corrosion resistance and high tarnish resistance property. It has been widely used as material for coins, ornaments and decorations, as well as in ocean, power, medical and chemical industrial. However, it contains Ni and Pb which are both harmful to environment and humans. The use of Ni and Pb has been strictly forbidden in most European and American countries, especially for Ni-contained product that has direct contact with skin. Therefore, it becomes urgent to develop a white color copper alloy that has excellent comprehensive performance but without Ni and Pb.
     In order to replace elements Pb and Ni as well as improve alloy corrosion resistance, this paper developed a silver alloy Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%) mainly composed of Mn and Zn. A little Al, trace Si and rare-element Ce were also included. Related mechanism and performances were studied, including machinability, mechanical property, cutting property and corrosion resistance. The research contents and conclusions in this paper are summarized as follows.
     1. Without Ni and Pb, alloy Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%) was designed and prepared so that it has very similar performance as traditional white copper alloy Cu-15Ni-24Zn-1.5Pb (wt.%) in working hardening rate, mechanical property, white chromaticity and tarnish resistance property. Compared with the tranditional alloy, it has better cold rolling deformation ability, cutting property and corrosion resistance in artificial sweat.
     2. The constitutive equation has been built for describing the hot deforming process of alloy Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%), which is δ=e21.823[sinh(0.00825σ)]4.348exp(-201.020/(RT)). Two processing graphs have also been built with strain of0.5and0.7, respectively. Two feasible hot machining regions620℃-800℃/0.01s-1-0.56s-1and670℃-770℃/0.01s-1-10s-1have been found. The most suitable condition for hot deforming the designed alloy is750℃/10s-1.
     3. In order to improve the cutting property of free Ni&Pb white alloy, element Si was added into Cu-Mn-Zn. By studying the action mechanism, it has been found that the combination of Si and Mn can generate the second phase particles mainly composed of Mn3Si phase, and about1μm in size. As the content of Si in alloy approaches0.3wt.%, the content of well distributed Mn3Si phase that is larger than criteria dimension could be a lot more than the content of Pb in alloy Cu-15Ni-24Zn-1.5Pb (wt.%). As a result, the designed alloy obtains better surface roughness and requires smaller cutting force.
     4. Electrochemical test and X-ray Photoelectron Spectroscopy analysis were made to make research on the corrosion process of the Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%) alloy and its product layer construction in artificial sweat. There was a passive film generated on the alloy surface, after the immersion in artificial sweat for some time. A protective and compact oxide film then came out with time, composed of Cu2O, A12O3and SiO2. The protective film grew thicker and compacter, deducing the alloy corrosion rate. Other electrochemical parameters changed regularly with immersion time, including the polarization resistance Rp, the film resistance Rfilm, the film capacitance Cfilm and CPE coefficient Q0.
     5. It revealed the evolution law of corrosion product of the Cu-12Mn-13Zn-1Sn-1A1-0.3Si-0.1Ce (wt.%) alloy after a immersion in NaCl solution and in NaCl spray. At the very beginning stage, the alloy immersed in solution was corroded badly, covered with lots of oxide and found generating chlorides. About60%alloy hasn't been oxidized in NaCl spray, and with no chlorides found. As the immersion time went on, corrosion product was generated under two conditions, both with inner and outside layers. The outside layer of immersion product is well covered with greyish-green graininess basic copper chloride. However, the composition of corrosion layer in NaCl spray varies with different dripping sedimentations. The layer with dripping settlement has similar content as immersion corrosion product, mainly composed of blue-green graininess basic copper chloride. The layer without dripping settlement is tan and mainly composed of metal oxide, like the product of air corrosion.
引文
[1]梅建军.白铜——中国古代的独创合金[J].金属世界,2000,(2):15-16.
    [2]袁军平,王昶.流行饰品材料及生产工艺[M].武汉:中国地质大学出版社,2009.
    [3]C. Liden, T. Menne, D. Burrows. Nickel-containing alloys and platings and their ability to cause dermatitis[J]. British Journal of Dermatology,1996,134: 193-198.
    [4]袁军平,李卫.饰用BZn10-25镍白铜的镍释放率术[J].华南理工大学学报(自然科学版),2013,41(2):141-146.
    [5]钟卫佳,马可定,吴维治.铜加工技术实用手册[M].北京:冶金工业出版社,2007.
    [6]宁兴龙.警惕!含镍不锈钢制品对人体健康的影响[J].金属世界,2000,(5):8-9.
    [7]A. Krolikowski. Relation between the corrosion resistance of Ni containing alloys and the risk of nickel dermatitis[C]. Korozja'99:6th All Polish Corrosion Conference-Materials and Environment:1999:593-596.
    [8]H. Warlimont. Environmental aspects and materials research[J]. Materialwissenschaft und Werkstofftechnik,1995,26(4):216.
    [9]C. Liden, S. Johnsson. Nickel on the Swedish market before the Nickel Directive[J]. Contact Dermatitis,2001,44(1):7-12.
    [10]王世俊.金属中毒[M].北京:北京人民卫生出版社,1988.
    [11]汪大林.牙科合金材料应用研究现状[J].特种铸造与有色合金,1998,3:42-44.
    [12]European Parliament and Council Directive 94/27/E C of 30 June 1994. Official Journal of the European Communities,1994.
    [13]Oko-Tex-Initiative. Oko-Tex Standard 100. Bonnigheim:Forschungsinstitut Hohenstein,2009.
    [14]赵祖德.铜及铜合金材料手册[M].北京:科学出版社,1993.
    [15]中国机械工业学会铸造专业学会编.铸造手册:铸造非铁合金[M].北京:机械工业出版社,2003.
    [16]重有色金属加工手册编写组.重有色金属加工手册(第一分册)[M].北京:冶金工业出版社,1978.
    [17]Y. Yoshimura, K. Kita, A. Inoue. Development of novel nickel free white Cu alloys[J]. Journal of Japan Research Institute for Advanced Copper-Base Materials and Technologies,2004,43:291-295.
    [18]Yoshimura, Yasuharu, K. Kita, et al. White-color Cu-Zn-Mn alloys with low season cracking susceptibility[J]. Journal of the Society of Materials Science, Japan,2004,53(2):188-192.
    [19]Y. Yoshimmura, K. Kita, A. Inoue. Mechanical properties and microstructure of new Ni free white Cu alloy [J]. Materials Science Forum,2003,426-432: 3359-3364.
    [20]C. YKK. Nickel-free white copper alloy. EP1045042B1[P],2002-10-16.
    [21]C. YKK. Nickel-free white copper alloy. US6340446[P],2002-01-22.
    [22]C. YKK. Nickel-free copper alloy. US005997663A[P],1999-12-07.
    [23]C. YKK. Nickel-free copper alloy. EP0911419[P],1999-04-28.
    [24]H.G. Berkenhoff GmbH. Alloy, in particular for use in the manufacture of frames for glass, jewelry and the like. US5908517[P],1999-6-1.
    [25]A. Bogel. Nickel free manganese bronce for clothing accessories[J]. Metall, 1997,51(1):634-637.
    [26]陈维平,吴维冬,朱权利,等.无铅易切削铜合金的研究进展[J].特种铸造及有色合金,2010,30(2):186-190.
    [27]王玉妹.易切削铜合金的显微组织与切削性[J].上海有色金属,1996,17(4):173-175.
    [28]Y.E. Gol'Dshtein, A.Y. Zaslavskii. Free-cutting steels[J]. Metal Science and Heat Treatment,1976,10:839-84518.
    [29]C. Vilarinhoa, J.P. Davimb, D. Soaresa, et al. Influence of the chemical composition on the machinability of brasses[J]. Journal of Materials Processing Technology,2005,170(1-2):441-447.
    [30]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [31]S. Koch, H. Antrekowitsch. Free-cutting aluminium alloys with tin as substitution for lead[J]. BHM Berg-und Huttenmannische Monatshefte,2008, 153(7):278-281.
    [32]W. Jung, H. Sohn. Interpretation of evaporation behavior of lead from molten copper by the mass-transfer model in fluid flow[J]. Metals and Materials International,2005,11(3):233-240.
    [33]R.M. El-Sherif, K.M. Ismail, W.A. Badawy. Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions[J]. Electrochimica Acta,2004,28:5139-5150.
    [34]A. Nakano, K. Higashiiriki, N. Rochman. Removal of lead from brass scrap by compound-separation method[J].2005,69(2):198-201.
    [35]冯福建,王兰,虞江萍,等.我国铅中毒群体特征[J].四川环境,2002,21(1):7-11.
    [36]E.K. Silbergeld, M. Waalkes, J.M. Rice. Lead as a carcinogen:experimental evidence and mechanisms of action[J]. American Journal of Industrial Medicine, 2000,38(3):316-323.
    [37]A.O. Onalaja, L. Claudio. Genetic susceptibility to lead poisoning[J]. Environ Health Perspect,2000,108(Suppl 1):23-28.
    [38]孙毅.职业性铅接触的骨毒效应[D].上海:复旦大学,2008.
    [39]R. Kaiser, A.K. Henderson, W.R. Daley, et al. Blood lead levels of primary school children in Dhaka, Bangladesh[J]. Environ Health Perspect,2001,109(6): 563-566.
    [40]S. J, A. C, P. H. Relationship between childhood blood lead levels and stature[J]. Pediatrics,1986,77(3):281-288.
    [41]R. Shukla, K. Dietrich, R. Bornschein, et al. Lead exposure and growth in the early preschool child:a follow-up report from the Cincinnati Lead Study[J]. Pediatrics,1991,88(5):886-892.
    [42]K. J. Puttlitz, G.T. Galyon. Impact of the ROHS directive on high-performance electronic systems[J]. Journal of Materials Science:Materials in Electronics, 2007,18(1-3):347-365.
    [43]许传凯,胡振青,黄劲松,等.无铅易切削黄铜的研究进展(续)[J].有色金属加工,2010,39(1):23-27.
    [44]朱骏,薛济来.易切削环保铜合金技术研究进展[C].有色金属工业科技创新——中国有色金属学会第七届学术年会.北京2008:498-503.
    [45]苏蓓蓓,李雷,谢水生,等.环保型易切削黄铜的研究进展[J].金属世界,2008,15(6):34-37.
    [46]邱光斌.合金元素对无铅易切削黄铜性能的影响[J].上海有色金属,2011,32(4):156-161.
    [47]A. Tetsuya, A. Tetsuro, Y. Yoshihiro. Morphological Influence of Bi substituted for Pb in free cutting brass on machinability[J]. Journal of the Japan Copper and Brass Research Assosiation,140(1):253-256.
    [48]S. Youa, Y. Choi, J. Kim, et al. Stress corrosion cracking properties of environmentally friendly unleaded brasses containing bismuth in Mattsson's solution[J]. Materials Science and engineering A,2003,456:207-214.
    [49]H. Michels. Replaceing lead in brass plumbing castings[J]. Advanced Materials & Processes,2002,(1):75-77.
    [50]A. Tetsuya, A. Tetsuro, Y. Yoshihiro. Improvement of machinabiliy of bismuth substitued free-cutting brass[J]. Sumitomo Light Metal Technical Report,2002, 43(1):105-109.
    [51]李文兵,唐生渝,闫静,等.热挤压铋黄铜的显微组织及性能研究[J].热加工工艺,2006,35(8):40-41.
    [52]陈丙璇,钟建华,宋婧.易切削Bi黄铜机理的研究[J].特种铸造及,2006,26(8):535-536.
    [53]秦毅红,王云燕,彭文杰.铋深加工产品的应用及其发展前景[J].世界有色金属,1998,(4):11-45.
    [54]黄劲松,彭超群,章四琪,等.无铅易切削铜合金[J].中国有色金属学报,2006,16(9).
    [55]黄国杰,谢水生,米绪军,等.一种无铅的易切削镁铋黄铜合金CN101289714[P],2008-10-22.
    [56]肖来荣,舒学鹏,易丹青,等.无铅易切削铋锑黄铜的组织与性能[J].中南大学学报(自然科学版),2009,40(1):117-122.
    [57]杨晓婵.日本开发无铅、低铅黄铜合金[J].现代材料动态,2002,(11):8.
    [58]庞晋山,肖寅听.无铅易切削黄铜的研究[J].广东工业大学学报,2001.
    [59]P.K. Rohatgia, D. Nathb, J.K. Kima, et al. Corrosion and dealloying of cast lead-free copper alloy graphite composites[J]. Corrosion Science,2000,42(9): 1553-1571.
    [60]P. Rohatgi, S. Ray, D. Nath. Cast lead-free copper-graphite composite alloys with improved machinability[J]. AFS Transaction,1992,100:1-8.
    [61]张先满.无铅磷钙黄铜组织与性能研究[D].广州:华南理工大学,2011.
    [62]张建益.绿色无铅易切削黄铜的研制[D].西安:西安工业大学,2011.
    [63]赵莉,金荣涛.铜及铜合金切削性评定方法研究[J].有色金属加工,2009,38(5).
    [64]庄心辅.新型金属切削刀具设计制造与新材料选用及检测标准汇编实用手册[M].北京:中国电子科技出版社,2006.
    [65]张玉平.金属材料的颜色定量研究及其在无镍白色铜合金开发中的应用[D].上海:上海交通大学,2003.
    [66]Ammannati, Niccoio. Copper-zinc-manganese alloy for the articels coming into direct and prolonged contact with the human skin. EP0685564B1[P], 2000-01-12.
    [67]汤顺青.色度学[M].北京:北京理工大学出版社,1990.
    [68]中国国家标准.GB5698-85颜色术语.1985.
    [69]中国国家标准.GB/T 7921-1997均匀色空间和色差公式.1997.
    [70]R. Steimle. Benefits of Color Communication in Metal Finishing[J]. Metal Finishing,1990,9:19-21.
    [71]黄永昌.金属腐蚀与防护原理[M].上海:上海交通大学出版社,1989.
    [72]徐增华.金属耐蚀材料第十讲铜合金[J].腐蚀与防护,2001,22(10):458-460.
    [73]李文生,王智平,路阳,等.高铝青铜Cu-14A1-X合金在3.5%NaCl溶液中的腐蚀行为[J].中国有色金属学报,2006,16(3):511-517.
    [74]罗正贵,闻荻江.铜的腐蚀及防护研究进展[J].武汉化工学院学报,2005,27(2):17-21.
    [75]梁成浩.金属腐蚀学导论[M].北京:机械工业出版社,1999.
    [76]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002.
    [77]V. Brusic, M.A. Frisch, B.N. Eldridge, et al. Copper corrosion with and without inhibitors[J]. Journal of The Electrochemical Society,1991,138(8):2253-2259.
    [78]K.P. FitzGerald, J. Nairn, G. Skennerton, et al. Atmospheric Corrosion of Copper and the Colour, Structure and Composition of Natural Patinas on Copper[J]. Corrosion Science,2006,48(9):2480-2509.
    [79]S. Feliu, L. Mariaca, J. Simancas, et al. X-Ray Photoelectron Spectroscopy Study of the Effect of Nitrogen Dioxide and Sulfur Dioxide on the Atmospheric Corrosion of Copper at Low Relative Humidity Values [J]. Corrosion,2005, 61(7).
    [80]T. Aastrup, M. Wadsak, M. Schreiner, et al. Experimental in situ studies of copper exposed to humidified air[J]. Corrosion Science,2000,42(6):957-967.
    [81]高青,毛磊,吴立成,等.铜在大气中的腐蚀[J].河北科技大学学报,2003,24(4):29-33.
    [82]来长妹.铜带变色的原冈及抑制方法[J].上海有色金属,2002,23(3):116-117.
    [83]蔡兰坤.金属质文物大气腐蚀控制的缓蚀剂保护方法及作用机理研究[D].上海:华东理工大学,2001.
    [84]S. Colin, E. Beche, R. Berjoan, et al. An XPS and AES study of the free corrosion of Cu-, Ni-and Zn-based alloys in synthetic sweat[J]. Corrosion Science,1999,41:1051-1065.
    [85]S. Colin, G. Krierb, H. Joliboisa, et al. Characterization of the corrosion layer of copper-nickel alloys in a synthetic sweat medium by FTMS and LAMMA laser microprobes[[J]. Applied Surface Science,1998,125:29-45.
    [86]O.E. Barcia, O.R. Mattos, N. Pebere, et al. Mass-transport study for the electrodissolution of copper in 1M hydrochloric acid solution by impedance[J]. Journal of The Electrochemical Society,1993,140(10):2825-2833.
    [87]F.K. Crundwell. Anodic disssolution of copper in hydrochloric acid solutions [J]. Corrosion Science,1998,40(11):1845-1850.
    [88]T.E. Graedel, K. Nassau, J.P. Franey. Copper patinas formed in the atmosphere:I. Introduction[J]. Corrosion science,1987,27:639-657.
    [89]I. Milosev, T. Kosec. Study of Cu-18Ni-20Zn Nickel Silver and other Cu-based alloys in artificial sweat and physiological solution[J]. Electrochimica Acta, 2007,52:6799-6810.
    [90]C.D. Wanger, W.M. Riggs, L.E. Davis, et al. Handbook of X-ray Photoelectron Spectroscopy[M]. USA:Perkin-Elmer Corporation,1979.
    [91]曹楚南.中国材料的自然环境腐蚀[M].北京:工业装备与信息工程出版中心,2005.
    [92]D. PADMAVARDHANI, Y.V.R.K. PRASAD. Processing maps for hot working of Cu-Ni-Zn alloys Part I a-nickel silver[J]. Journal of materials science,1993, 28:5269-5274.
    [93]D. PADMAVARDHANI, Y.V.R.K. PRASAD. Processing maps for hot working of Cu-Ni-Zn alloys Part Ⅱ α-β nickel silver[J]. Journal of materials science,1993, 28:5275-5279.
    [94]C.M. Sellars, M.J. Luton. Dynamic recrystallization in nickel and nickel-iron alloy during high temperature deformation [J]. Acta Metallurgica, 1969,17: 1033-1043.
    [95]蔺永诚,陈明松,钟掘42CrMo钢的热压缩流变应力行为[J].中南大学学报:自然科学版,2008,39(3):549-553.
    [96]胡赓祥,蔡殉,戎永华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [97]Y.V.R.K. Prasad, K.P. Rao. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃[J]. Materials Science and Engineering A,2005,391(1-2):141-150.
    [98]吴文祥,孙德勤,曹春艳,等.5083铝合金热压缩变形流变应力行为[J].中国有色金属学报,2007,17(10):1667-1670.
    [99]L. Blaz, A. Nowotnik. High temperature deformation of aluminium [J]. bronzeMaterials Science and Technology,2001,17(8):971-975.
    [100]L.Y. Wang, Y.G. Fan, G.J. Huang, et al. Flow stress and softening behavior of wrought magnesium alloy AZ31B at elevated temperature [J]. Transactions of Nonferrous Metals Society of China,2003,13(4):335-338.
    [101]C. Zener, J.H. Holl. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-28.
    [102]H. Takuda, J.H. Fujimoto, N. Hatta. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperature [J]. Journal of Materials Processing Teachnology, 1998,80-81:513-516.
    [103]F. Humpherys, M. Hatherley. Recrystallizatiaon and related phenomena[M]. Oxford:Pergamon Press,1996.
    [104]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [105]S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi. Dynamic recrystallization in AZ31 magnesium alloy [J]. Materials Science and Engineering A,2007,456:52-57.
    [106]李树梅.热变形对连续铸轧AZ31B镁合金微观组织及力学性能的影响[D].长沙:中南大学,2010.
    [107]刘平,张毅,范莉,等.Cu-Ni-Si-Cr合金动态再结晶及组织演变[J].稀有金属材料与工程,2009,38(4):34-37.
    [108]B. Roebuck, J.D. Lord, M. Brooks, et al. Measurement of flow stress in hot axisymmetric compression test[J]. Materials at High Temperture,2006,23: 59-83.
    [109]J.R. Cho, W.B. Bae, W.J. Hwang, et al. A study on the hot-deformation behavior and dynamic recrystallization of Al-5wt.%Mg alloy[J]. Journal of Materials Processing Technology,2011,118:356-361.
    [110]H.J. Mcqueen, E. Evangelista, J. Bowles, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy[J]. Metal Science,1984,18:395-402.
    [111]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005.
    [112]C.M. Sellars, W.J. Mctegart. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14:1136-1138.
    [113]王延辉,龚冰,李冰.H65黄铜合金热变形流变应力特征研究[J].塑性工程学报,2008,15(6):113-117.
    [114]R. Kaibyshev, O. Sitdikov, A. Goloborodko, et al. Grain refinement in as cast 7475 aluminum alloy under hot deformation[J]. Materials Science and Engineering A,2003,334:348-356.
    [115]罗丰华,尹志明,左铁镛CuZn(Cr,Zr)合金的热变形行为[J].中国有色金属学报,2000,10(1):12-16.
    [116]Z.J. Gronostajski. Model describing the characteristic value of flow stress and strain of brass M63 and aluminum bronze BA93[J]. Journal of Materials Processing Technology,1998,78:84-89.
    [117]C.A.C. Imbert, H.J. Mcqueen. Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation [J]. Materials Science and Engineering A,2001,313:88-103.
    [118]L. Zhang, Z. Li, Q. Lei, et al. Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy[J]. Materials Science and Engineering A,2011, 528:1641-1647.
    [119]H.Z. Li, H.J. Wang, X.P. Liang, et al. Hot deformation and processing map of 2519A aluminum alloy[J]. Materials Science and Engineering A,2011,528: 1548-1552.
    [120]Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al. Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical Transactions A,1984,15:1883-1892.
    [121]Y.V.R.K. Prasad, T. Seshacharyulu. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A,1998,243:82-88.
    [122]Y.V.R.K. Prasad, K.P. Rao. Electrolytic tough pitch copper in the temperature range 300-950℃[J]. Materials Science and Engineering A,2005, 391:141-150.
    [123]O. Sivakesavam, Y.V.R.K. Prasad. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression:a study with processing map[J]. Materials Science and Engineering A,2003,362:118-124.
    [124]B. Bozzini, E. Cerri. Mumerial reliability of hot working processing maps[J]. Materials Science and Engineering A,2002,328:344-347.
    [125]Z. Gronostajski. The deformation processing map for control of microstructure in CuA19.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology,2002,125-126:119-123.
    [126]林启权,张辉,彭大暑,等.2519铝合金热压缩变形流变应力行为[J].热加工工艺,2002,3:3-5.
    [127]杨立斌,张辉,彭大暑,等.7075合金高温流变应力行为的研究[J].热加工工艺,2002,1:1-5.
    [128]P. Cavaliere. Hot and warm forming of 2618 aluminium alloy[J]. Journal of Light Metals,2002,2:247-252.
    [129]A. Momeni, K. Dehghani. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps[J]. Matericals Science and Engineering A,2011,528:1448-1454.
    [130]李淼泉,李晓丽,龙丽,等.TA15合金的热变形行为及加工图[J].稀有金属材料与工程,2006,39(9):1354-1457.
    [131]T. Seshacharyulu, S.C. Medeiros, W.G. Frazier. Hot working of commercial Ti-6A1-4V with an equiaxed α-β microstructure:materials modeling considerations [J]. Materials Science and Engineering A,2000,284:184-194.
    [132]Y.V.R.K. Prasad, S. Sasidhara. Hot Working Guide:A Compendium of Processing Maps[M]. Ohio:ASM International,1997.
    [133]Y.V.R.K. Prasad. Processing maps:a status report[J]. Journal of Engineering and Performance,2003,12(6):638-645.
    [134]Y.V.R.K. Prasad. Dynamic Materials Model:Basis and Principles [J]. Metallurgical and material transactions A,1996,27:235-236.
    [135]Y.V.R.K. Prasad. Recent Advances in the Science of Mechanical Processing[J]. Indian Journal of Technology,1990,28:435-451.
    [136]H.Z. Li, H.J. Wang, Z. Li, et al. Flow behavior and processing map of as-cast Mg-10Gd-4.8Y-2Zn-0.6Zr alloy[J]. Materials Science and Engineering A, 2010,528:154-160.
    [137]R.A.J. RISHI. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical Transactions A,1981,12: 1089-1097.
    [138]M.A. Taha, N.A. El-Mahallawy, R.M. Hammouda, et al. Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties [J]. Ain Shams Engineering Journal,2012,3:383-392.
    [139]陈维平,吴维冬,朱权利,等.无铅易切削铜合金的研究进展[J].特种铸造及有色合金,2010,30(2):186-190.
    [140]J. Miettinen. Thermodynamic description of the Cu-Mn-Si system in the copper-rich corner [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2003,27:395-401.
    [141]S.H. Liu, Y. Du, C. Zhang, et al. Isothermal section of the Cu-Mn-Si ternary system at 700℃[J]. Journal of Alloys and Compounds,2010,492:190-195.
    [142]E.N. Babanova, F.A. Sidorenko, P.V. Geld, et al. Ordering of (Fe1-xMnx)3Si solid solutions[J]. The Physics of Metals and Metallography,1974,38(3): 122-126.
    [143]B. Aronsson. A note on the compositions and crystal structures of MnB2, Mn3Si, Mn5Si3 and FeSi2[J]. Acta Chemica Scandinavica,1960,14:1414-1418.
    [144]A.A. Griffith. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,1921,221:163-198.
    [145]M. Metikos-Hukovi, I. Skugor, Z. Grubac, et al. Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water[J]. Electrochimica Acta,2010,55:3123-3129.
    [146]G. Kear, B.D. Barker, K. Stokes, et al. Electrochemical corrosion behaviour of 90-10 Cu-Ni alloy in chloride-based electrolytes [J]. Journal of Applied Electrochemistry,2004,34:659-669.
    [147]M. Urquidi-Macdonald, D.D. Macdonald. Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown[J]. Journal of The Electrochemical Society,1989,136(4):961-967.
    [148]C. Kato, H.W. Pickering, J.E. Castle. Effect of Sulfide on the Corrosion of Cu-9.4Ni-1.7Fe Alloy in Aqueous NaCl Solution[J]. Journal of The Electrochemical Society,1984,131(6):1225-1229.
    [149]C. Kato, J.E. Castle, B.G. Ateya, et al. On the mechanism of corrosion of Cu-9.4Ni-1.7Fe alloy in air saturated aqueous NaCl solution Ⅱ. composition of the protective surface layer[J]. Journal of the Electrochemical Society,1980,127: 1897-1903.
    [150]万传琨.高强度耐海水腐蚀白铜(铜镍)合金综述[J].材料导报,1992,(1):27-32.
    [151]J. Zhang, Q. Wang, Y. Wang, et al. Highly corrosion-resistant Cu7o(Ni,Fe,Mn,Cr)3o cupronickel designed using a cluster model for stable solid solutions[J]. Journal of Alloys And Compounds,2010,505:179-182.
    [152]W.A. Badawy, K.M. Ismail, A.M. Fathi. Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids [J]. Electrochimica Acta,2006,51: 4182-4189.
    [153]M. Stern. A method for determing corrosion rates from linear polarization data[J]. Corrosion,1958,14:60-64.
    [154]M. Stern, A.L. Geary. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. Journal of the Electrochemical Society, 1957,104(1):56-63.
    [155]X. Zhang, S.O. Pehkonen, N. Kocherginsky, et al. Copper corrosion in mildly alkaline water with the disinfectant monochloramine[J]. Corrosion Science,2002,44:2507-2528.
    [156]U. Rammelt, G. Reinhard. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes [J]. Electrochimica Acta,1990,35(6):1045-1049.
    [157]M. Lebrini, G. Fontaine, L. Gengembre, et al. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution AC impedance study and XPS[J]. Applied Surface Science,2008,254:6943-6947.
    [158]R. Procaccini, M. Vazquez, S. Cere. Copper and brass aged at open circuit potential in slightly alkaline solutions[J]. Electrochimica Acta,2009,54: 7324-7329.
    [159]B.A. BOUKAMP. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems[J]. Solid State ionics,1986,20: 31-44.
    [160]X.H. Zhang, S.O. Pehkonen, N. Kocherginsky, et al. Copper corrosion in mildly alkaline water with the disinfectant monochloramine[J]. Corrosion Science,2002,44:2507-2528.
    [161]M.A. Amin, K.F. Khaled. Copper corrosion inhibition in 02-saturated H2SO4 solutions[J]. Corrosion Science,2010,52:1194-1204.
    [162]C.S. Hemminger, T.A. Land, A. Christie, et al. An Empirics Electron Spectrometer Transmission Function for Applications in Quantitative XPS[J]. Surface and interface analysis,1990,15:323-327.
    [163]S.R.D. SANCHEZ, D.J. SCHIFFRIN. The flow corrosion mechanism of copper base alloys in sea water in the presence of sulphide contamination [J]. Corrosion Science,1982,22(6):585-607.
    [164]J.L. Chen, Z. Li, A.Y. Zhu, et al. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution[J]. Materials and Design, 2012,34:618-623.
    [165]A. Schussler, H.E. Exner. The corrosion of nickel-aluminium bronzes in seawater I. Protective layer formation and the passivation mechanism[J]. Corrosion Science,1993,34:1793-1802.
    [166]A. Schussler, H.E. Exner. The corrosion of nickel-aluminium bronzes in seawater-II. The corrosion mechanism in the presence of sulphide pollution[J]. Corrosion Science,1993,34:1803-1815.
    [167]G.J.W. Radford, F.C. Walsh, J.R. Smith, et al. Developments in Marine Corrosion[M]. Cambridge:Royal Society of Chemistry,1998.
    [168]S.R.D. Sanchez. Difference reflectance spectroscopy of anodic films on copper and copper base alloys [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1991,307:73-86.
    [169]S. Hymes, S.P. Murarka, C. Shepard, et al. Passivation of copper by silicide formation in dilute silane[J]. Journal of Applied Physics,1992,71(9): 4623-4625.
    [170]I. Milosev, T. Kose. Metal ion release and surface composition of the Cu-18Ni-20Zn nickel-silver during 30 days immersion in artificial sweat[J]. Applied Surface Science,2007,254:644-652.
    [171]M.J. Popplewell, R.J. Hart, J.A. Ford. The effect of iron on the corrosion characteristics of 90-10 cupro nickel in quiescent 3.4%NaCl solution[J]. Corrosion Science,1973,13:295-309.
    [172]L.E. Elselstein, B.C. Sytett, S.S. Wing, et al. The accelerated corrosion of Cu-Ni alloys in sulphide-polluted seawater:Mechanism no.2[J]. Corrosion Science,1983,23:223-239.
    [173]S.J. Yuan, S.O. Pehkonen. Surface characterization and corrosion behavior of 7030 Cu-Ni alloy in pristine and sulfide-containing simulated seawater[J]. Corrosion Science,2007,49:1276-1304.
    [174]T.M.H. Saber, A.A.E. Warraky. Electrochemical and spectroscopic studies on dezincification of a-brass part Ⅱ. Effect of polarization on the dezincification process[J]. Desalination,1993,93:473-486.
    [175]S.R. De Sanchez, L.E.A. Berlouis, D.J. Schiffrin. Difference reflectance spectroscopy of anodic films on copper and copper base alloys [J]. Journal of Electroanalytical Chemistry,1991,307:73-86.
    [176]罗宗强,张卫文,辛保亮,等.Cu-17Ni-3Al-X合金在中性盐雾中的腐蚀行为[J].中国有色金属学报,2012,22(1):106-113.
    [177]G. Bianchi, G. Fiori, P. Longhi, et al. "Horse shoe" corrosion of copper alloys in flowing sea water mechanism, and possibility of cathodic protection of condenser tubes in power stations[J]. Corrosion,1978,34(11):396-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700