用户名: 密码: 验证码:
稀土—镁储氢合金的四氢呋喃球磨改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先全面评述了国内外关于镁基储氢合金的研究进展,在此基础上,选取了REMg_(11)Ni(RE=La,Ce)和CeMg_(12)两种重要的稀土—镁基储氢合金为研究对象,在四氢呋喃中对合金进行球磨改性处理,研究了改性处理对合金相结构、微观形貌、表面状态和吸放氢动力学性能的影响及相关机制。
     研究表明,在四氢呋喃中机械球磨改性的REMg_(11)Ni(RE=La、Ce)和CeMg_(12)合金XRD衍射峰出现了明显的宽化和减弱,并随着球磨时间的增加而愈发明显。LaMg_(11)Ni的微观形貌显示粒子的体积逐渐变小,合金颗粒的尖锐度随球磨时间的增加而降低。球磨改性也降低了CeMg_(12)合金试样亚粒子颗粒大小。
     改性后的LaMg_(11)Ni和CeMg_(12)合金表面AES深度分析结果表明,球磨试样最表面RE成分浓度没有明显降低,也无其它合金成分元素的富集,表面的氧化膜发生了变化,改性合金表面的氧化镁层深入合金内表面。根据XPS表面分析,合金的最表面由氢氧化物组成,原表面致密的氧化物层发生的变化有利于吸放氢动力学性能的改善,同时,四氢呋喃球磨过程导致合金表面与有机物中的碳原子发生电荷转移,显著提高了表面活性。
     活化性能及吸氢动力学性能测试表明,经过THF球磨改性后,试样的表面活性大为改善,并随着球磨时间的增加合金的活化性能和吸氢动力学性能随之提高,吸氢量和放氢性能也相应改善。球磨20h的LaMg_(11)Ni、CeMg_(11)Ni和CeMg_(12)合金试样在448K、3.2MPa氢压下一次吸放氢即可活化,吸氢量分别达到3.5wt%、4.3wt%和5.3wt%,即使在室温条件下吸氢量也分别达到了2.0wt%、1.5wt%和0.98wt%。THF中球磨20h的CeMg_(12)合金试样在600K,30分钟内放氢量达到5.0wt%,为饱和吸氢量的90%以上。
In this thesis, the research and development on Mg-based hydrogen storage alloys (HSAs) have been reviewed. REMguNi (RE=La, Ce) and CeMg12 alloys were modified by mechanical grinding in tetrahydrofuran (THF). The influences of mechanical grinding (MG) modification on the structure, morphology, surface state and hydriding properties of these two series of Mg-based hydrogen storage alloys have been investigated and the related mechanisms have been discussed.
    XRD analysis results indicated that the diffraction peaks were all weakened and broadened with increased milling time. SEM observation results showed that the particle sizes of the alloys reduced and the sharpness of the alloy particles decreased with increasing milling time.
    From AES depth profiles analysis, no significant change of RE concentration and no enrichment of alloying elements were formed. XPS analysis results indicated that the surface oxides were changed into hydroxides after modification. It was believed that the improvement of the activation and hydriding properties of the modified alloys was mainly caused by the change of the structure of the surface. The surface activity of hydrogen storage alloys was improved by the charge transfer between the surface element of alloys and the carbon atoms of THF during mechanical milling.
    The activation properties and hydriding behaviors are remarkably improved after MG modification in THF. Under the conditions of 448K and 3.2MPa, no activation process is needed for LaMgnNi, CeMgnNi and CeMgi2, which were milled in THF for 20h, and the hydrogen absorption amounts reached 3.5wt%, 4.3wt% and 5.3wt% separately. Even at room temperature the three modified alloys can absorb hydrogen to 2.0wt%, 1.5wt% and 0.98wt%. The desorption rates are also improved significantly by the MG modification in THF. For the CeMgi2 alloys modified in THF for 20h, 5.0wt% of hydrogen was released at look within 30min at 600K, which was more than 90 percent of the absorbed hydrogen.
引文
1.申泮文、曾爱冬,氢与氢能,科学出版社,第一版,(1988)
    1.赵永丰,氢能—H_2:21世纪的一种新能源,太阳能,2000(2):20-21
    2.雷永泉,新能源材料,天津大学出版社,第一版,(2000)
    3.张耀,以多元合金化改进球磨Mg基贮氢电极合金循环稳定性的研究,博士学位论文,浙江大学,(2002)
    4. Brian C. H. Steele & Angelika Heinzel, Materials for fuel-cell technologies, Nature, 2001, 414: 345-352
    5. K Atkinson, S. Roth, M. Hirscher, W. Grünwald, Carbon nanostructures: an efficient hydrogen storage medium for fuel cells?, Fuel Cells Bulletin, 2001, 38, 9-12
    6. R.Ewald, Requirements for advanced mobile storage systems, Int. J. Hydrogen Energy, 1998, 23(9): 803-814
    7. Boston Team Claims Development of 5000-Mile Range Onboard Hydrogen Storage Method, Hydrogen & Fuel Cell Letter, Vol.Ⅻ, NO.2. pp.1, 1997
    8.邹勇,韩布兴,低压吸附贮存氢气作汽车燃料的研究与开发,太阳能学报,1998,19(4):449-452
    9. Wayde R. Schmidt, Hydrogen Storage in Polymer-dispersed Metal Hydrides, Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535
    10. Carolyn C.Elam, Catherine E.Gegoire Padre, Gary Sandrock, Realizing the hydrogen future: The International Energy Agency's efforts to advance hydrogen energy technologies, Int. J. Hydrogen Energy, 2003, 28:601-607
    11. Carl-Jochen Winter, On the Hyway—sustainable assets in Germany's energy state's portfolio, Int. J. Hydrogen Energy, 2003, 28:477-481
    12. M.S.Dresselhaus & I. L.Thomas, Alternative energy technologies, Nature, 2001,414: 332-337
    13. Louis Schlapbach & Andeas Zuttel, Hydrogen-storage materials for mobile application, 2001, 414:353-358
    14. Gary Sandrock, A panoramic overview of hydrogen storage alloys from a gas reaction point of view, J. Alloys Comp., 1999, 293-295: 877-888
    15.陈进富,陆绍信,朱亚杰,有机液体氢化物储氢技术,新能源,1998,20(2):13-15
    16.陈进富,吴芳云,朱亚杰,基于汽车氢燃料的有机液体氢化物贮氢技术Ⅱ.MCH的随车脱氢反应及其催化剂研究,太阳能学报,1998,19(4):8-11
    17.安越,陈长聘,谭天恩,王启东,稀土储氢合金浆液的吸氢性能,中国稀土学报,1999,17(2):130-134
    18. Cai Guanming, Chen Changpin, An Yue, Hydrogen Absorption Thermodynamic Properties of Rare Earth Based Hydrogen Storage Alloy in Benzene, Journal of Rare Earths, 2002, 20(1): 26-30
    19. G. W. H. Scherer, E. Newson, Analysis of the seasonal energy storage of hydrogen in liquid organic hydrides, Int. J. Hydrogen Energy, 1998,23(1): 19-25
    20. C. P. Chen, G. M. Cai, Y. An, Hydrogen absorption properties of the slurry system composed
    
    of a magnesium alloy powder and C_6H_6, Journal of rare earths, 2002, 20(1): 28-30
    21.大角泰章,金属氢化物的性质与应用,化学工业出版社,第一版,(1990)
    22.陈长聘,王启东,金属氢化物贮氢技术研究与进展,太阳能学报,1999,(特刊):189-194
    23.孙俊才,季世军,贮氢合金及其在交通运输上的应用,大连海事大学学报,(2001),27(4),78-82
    24.方守狮,董远达,高容量贮氢材料的最新进展,自然杂志,(2002),23(5),259-262
    25. J. J. Reilly, R. H. Wiswall Jr., Inorg. Chem., 1968, 7:2254
    26. J. J. Reilly, R. H. Wiswall Jr., Inorg. Chem., 1967, 6:2220
    27.朱心昆,林秋实,陈铁力,机械合金化的研究及进展,粉末冶金技术,1999,17(4):291-296
    28. H. Imamura, N. Sakasai, Hydriding characteristics of Mg-based composites prepared using a ball milling, J. Alloys Compounds, 1995, 231: 810-814
    29.张红兵,李通火,纳米储氢合金制备方法的研究进展,中国粉体技术,2000,6(6):21-25
    30.王尔德,方守狮,梁国宪,机械合金化Mg-20%Ni的储氢性能,材料科学与工艺,1994,2(3):24-27
    31.于振兴,刘祖岩,王尔德,镁基复合材料(Mg-Ni-Mo)的储氢性能,材料研究学报,2002,16(3):327-330
    32. T. Ohtsuji, T. Akiyam, J. Yagi, Hydriding combustion synthesis of Mg_2FeH_6 and Mg_2CoH_5, J. Japan Inst. Metals, 2000,64(8): 656-661
    33. K. Tanaka, Y. Kanda, M. Furuhashi, Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystallization, J. Alloys Comp., 1999, 293-295:521-525
    34. T. Ohtsuji, T. Akiyama, J. Yagi, Hydriding combustion synthesis mechanism of Mg-x (x=Fe, Co) hydrogen storage alloy, J. Japan Inst. Metals, 2000, 64(8): 651-655
    35. B. Vigeholm, J. Kjoller, B. Larsen and AS Pedersen, Formationand Decomposition of Magnesium Hydride, J. Less-Common Metals, 1983, 89:135-144
    36. C. Iwakura, S. Nohara, S. G. Zhang, Hydriding and dehydriding characteristics of an amorphous Mg_2Ni-Ni composite J. Alloys Comp., 1999, 285:246-249
    37. S. C. Han, P. S. Lee, J. Y. Lee, Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling, J. Alloys Comp., 2000, 306:219-226
    38. Y. Tsushio, H. Enoki, E. Akiba, Hydrogenation properties of MgNiO.86M10.03 alloys, J. Alloys Comp., 1998, 281:301-305
    39. K. Yamamoto, S. Orimo, H. Fujii, Y. kitano, Hydriding properties of the heat-treated MgNi alloys with nanostructural designed multiphase, J. Alloys Compouds, 1999, 293-295:546-561
    40. T. Akiyama, H. Isogai, J. Yagi, Hydriding combustion synthesis for the production of hydrogen storage alloy, J. Alloys Comp., 1997, 252:L1-L4
    41. P. Tessier, E. Akiba, Decomposition of nickel-doped magnesium hydride prepared reactive mechanical alloying, J. Alloys Comp., 2000, 302:215-217
    42. Liquan Li, T. Akiyama, J. Yagi, Reaction mechanism of hydfiding combustion synthesis of Mg_2NiH_4, Intermetallics, 1999,7:671-677
    43. Liquan Li, T. Akiyama, J. Yagi, Effect of hydrogen pressure on the combustion synthesis of Mg_2NiH_4, Intermetallics, 1999,7:201-205
    44. Liquan Li, T. Akiyama, T. Kabutomori, Hydriding and dehydriding behavior of the product in hydriding combustion synthesis of Mg_2NiH_4, Intermetallics, 1999,287:98-103
    45. J. Chen, T. Sakai, N. Kitamura, A high pressure observation of the Mg_2NiH_4-H system, J. Alloys Comp., 2000, 307:L1-L5
    
    
    46. Z. Dehouche, R. Djaozandry, J. huot, S. Boily, Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride, 2000, 305:264-271
    47. Z. Dehouche, R. Djaozandry, J. Goyette, Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg_2Ni alloy, 1999, 288:269-276
    48. S. Ono, E. Akiba and K. Imanari, Proc, Miami Int. Sympo. On Metal-Hydrogen System, 1981: 467
    49. F. G. Eisenberg, D. A. Zagnoli, The effect of surface nickel on the hydriding-dehydriding kinetics of MgH_2, J. Less-Common Met., 1980, 74:323-331
    50. Gary Sandrock, A panoramic overview of hydrogen storage alloys from a gas reaction point of view, J. Alloys Comp., 1999, 293-295:877-888
    51. M.Pezat, B.Darriet, P.Hagenmuller, A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage, J.Less-Common Metals, 1980, 74:427-434
    52. B.Darriet, M. Pezat, A. Hbika, Application of magnesium rich rare-earth alloys to hydrogen storage, Int. J. Hydrogen Energy, 1980, 5:173-178
    53. B.Darriet, A. Hbika, Substitution partielle magnesium par le nickel, lecuivre ou le zinc dans CeMg_(12): application au stockage del'hydrogene, J. Less-Common Metals, 1980, 75:43-50
    54. M.Khrussanova, P. Peshev, Effect of the partial replacement of magnesium by nickel on the properties of some lanthanum-magnesium alloys for hydrogen storage, Mat. Res. Bull., 1987, 22:1653-1658
    55. S.H.Lim and J.Y.Lee, Int.J.Hydrogen Energy, 1983, 8:369
    56. N.Shamir,M.H. Mintz, J.Bloch, U.Atzmony, Electron spectroscopy studies of the oxidation behaviour and the electronic properties of some Mg-In and Mg-Al Alloys, J. Less-Common Met.,1983,92:253-263
    57. M.Stioui, A.Grayevsky, A.Resnik, Maroscopic and microscopic kinetics of hydrogen in magnesium-rich compounds, J. Less-Common Met., 1986,123:9-24
    58.刘宾虹,合金化和表面处理对镁基贮氢材料性能的影响,博士学位论文,浙江大学,1991
    59. Bing Hong Liu, Chang pin Chen, Zhou Peng Li, Jing Wu, Qi Dong Wang, Zeit. Phy. Chem.. Bd.181, 1993, S.251-258
    60. M.Khrussanova, M.Terzieva, P.eshev, K.Petroc, M.Pezat, etc., Int. J. Hydrognen Energy, 1985, 10:951
    61. M.Khrussanova, M.Terzieva, J.Less-Common Met.,1986,125:117
    62. L.Bekbir,E.Joly,N.Gerard, Comparative study of the formation-decompostion mechanism and kinetics in LaNi_5 and magnesium reversible hydrides, Int. J.Hydrogen Energy, 1981, 6: 285-294
    63. K. Durra, O. N. Srivastava, J. Materials Science,1993,28:3457
    64. K. Dutta, O. N. Srivastava, Synthesis and hydrogen storage characteristics of the composite alloy La_2Mg_(17)-xwt% MmNi_(4.5)Al_(0.5), Int. J. Hydrogen, Energy, 1993, 18:397-403
    65. Pal K(nee Dutta), The composite material La_2Mg_(17)-xwt%MmNi_(4.5)Al_(0.5): synthesis, characterization and hydride behavior, Int. J. Hydrogen Energy, 1997, 22:903-913
    66. Kuhu Pal, A note on the synthesis, characterization and dehydriding behavior of La_(2-x)Ca_xMg_(17) Int. J. Hydrogen Energy, 1999, 24:537-541
    67. K.J.Gross, P. Spatz, A. Zuttel, L.Schlapbach, Mechanically milled Mg composites for hydrogen storage. The transition to a steady state composition, J. Alloys Comp., 1996,240:206-213
    
    
    68. P. Mandal, K. Dutta, K. Ramakrishna, Synthesis, characterization and hydrogenation behaviour of Mg-xwt.% FeTi(Mn) and La_2Mg_(17)-xwt%LaNi_5-new hydrogen storage composite alloys, J.Alloys Comp.,1992,184:1-9
    69. M.Pezat, B. Darriet and P. Hagenmuller, A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage, J.Less-Common Met., 1980, 74:427-434
    70. H.Imamura, T. Takahashi, R. Gallegullos, Hydrogen absorption in modified intermetallic compound systems, J. Less-Common Metals, 1983, 89:251-256
    71. H. Imamura, T. Takahashi, S. Tsuchiya, J. Catalysis., 1982, 77:289-292
    72.敖鸣,王启东,经四氢呋喃改性后Mg的储氢性能,金属学报,1990,26(3):194-197
    73. H. Imamura, S. Tsuchiya, Olefin hydrogenation using electron donor-acceptor complexes derived from rare earth intermetallic compound SmMg_3, J. Cata., 1981, 72: 383-384
    74. H. Imamura, M. Kawahigashi, S. Tsuchiya, Exceptionally active magnesium for hydrogen storage: solvated magnesium clusters formed in low temperature matrices, J. Less-Common, 1983, 95:157-160
    75. B. Bogdanovic, Int. J. Hydrogen Energy, 9(11): 937-941
    76. H. Imamura, N. Sakasai, Y. Kajii, Hydrogen absorption of Mg-based composites prepared by mechanical milling: Factors affecting its characteristics, J. Alloys Compounds, 1996, 232: 218-223
    77. H. Imamura, N. Sakasai, Y. Kajii, Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics, J. Alloys Comp., 1996, 232:218-223
    78. H. Imamura, S. Tabata, N. Shigetomi, Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium, J. Alloys Compounds, 2002, 330-332:579-583
    79. H. Imamura, Y. Takesue, T. Akimoto, Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties, J. Alloys Compounds, 1999, 293-295:564-568
    80. P. Mandal, K, Dutta, K. Ramakrishna, Synthesis, characterization and hydrogenation behaviour of Mg-xwt.%(Mn) and La_2Mg_(17)-xwt.%LaNi_5-new hydrogen storage composite, J.Alloys Comp., 1992, 184:1-9
    81.朱文辉,朱敏,罗堪昌,Mgr/MmNi_(5-x)(CoAlMn)_x复合储氢合金的机械合金化制备,金属学报,1999,35(5):167-170
    82.朱文辉,高岩,罗堪昌,镁含量对MmNi_(5-x)(CoAlMn)_x/Mg复合储氢合金吸氢性能的影响,材料工程,2000,5:9-11
    83. Dalin Sun, H. Enoki, M. Boudina, Phase components and hydriding properties of the sintered Mg-xwt.% LaNi_5 (x=20-50) composites, J.Alloys Comp. 1999, 282:252-257
    84. G. Liang, J. Huot, S. Boily, Hydrogen storage in mechanically milled Mg-LaNi_5 and MgH_2-LaNi_5 composites, J. Alloys Comp., 2000, 297:261-265
    85. G. Liang, J. Huot, S. Boily, Hydrogen desorption kinetics of a mechanically milled MgH_2+5%at.%V nanocomposite, J. Alloys Comp., 2000, 305:239-245
    86. G. Liang, J. Huot, S. Boily, Hydrogen storage properties of the mechanically milled MgH_2-V nanocomposite, J. Alloys Comp., 1999, 291: 295-299
    87. J. L, Bobet, C. Even, Y. Nakamura, Synthesis of magnesium and titanium hydride via reactive mechanical alloying, J. Alloys Comp., 2000, 298:279-284
    88.王平,张海峰,丁炳哲,反应球磨中Mg的直接氢化,金属学报,36(10):1118-1120
    89.王平,张海峰,丁炳哲,MS-50%(ZrFe_(1.4)Cr_(0.6))复合材料的氢化性能,金属学报,2000,
    
    36 (8):893-896
    90. N. Cui, P. He, J. L. Luo, Magnesium-based hydrogen storage materials modified by mechanical alloying, Acta Mater., 1999, 47(14): 3737-3743
    91.吴煜明,雷永泉,吴京,王启东,机械合金化Mg-Ni基非晶态贮氢合金的电化学特性,稀有金属材料与工程,1997,26(3):26-29
    92.陈进富,陆绍信,朱亚杰,氢动力车研究与发展现状,新能源,1996,18(5):1-7
    93.廖翠萍,储氢合金材料及其应用研究与发展,新能源,1999,21(2):6-11
    94.王澈,Mg基储氢合金的机械球磨及四氢呋喃球磨改性研究,硕士学位论文,浙江大学,2002
    95.徐海鸥,添加镁、钙的钛铁合金和多相钒基合金的储氢性能与组织结构研究,硕士学位论文,浙江大学,2001
    96. H. Imamura, N. Sakasai, T. Fujinaga, Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials, J. Alloys Comp.,1997,253-254:34-37
    97. A.Percheron-Guégan, M. Latroche, D. Sun, Activation behaviour of mechanically Ni-coated Zr-based Laves phase hydride electrode, J. Alloys Comp., 1997, 257:302-305
    98. L.Schlapbach, XPS/UPS study of the oxidation of La and LaNi_5 and of the electronic tructure of LaNi_5, Solid State Communications, 1981, 38:117-123
    99. X.L.Wang, S.Suda, Surface study of chemically treated LaNi_(4.7)Al_(0.3) alloy, J. Alloys Comp., 1993, 194:73-76
    100. Yu Xin-nan, L. Schlapbach, Surface properties of chemically prepared LaNi5 and its oxidation and poisoning by O_2 and CO, Int. J. Hydrogen Energy, 1988, 13(7): 429-432
    101. S. Zafeiratos, S. Kennou, The interaction of oxygen with ultrathin Ni deposits on yttria-stabilized ZrO_2(100), Surf. Sci, 2001,266:482-485
    102. H. B. Yao, Y. Li, A. T. S. Wee, an XPS investigation of the oxidation/corrosion of melt-spun Mg, Applied Surface Science, 2000, 158:112-119
    103. H. C. Siegmann, L. Schlapbach, Self-Restoring of the Active Surface in the Hydrogen Sponge LaNi_5, Physical Review Letters, 40(14): 972-975
    104. Kenzi Tamaru, Heterogeneous Catalysis by Electron Donor-Acceptor Complexes of Alkali Metals, Catalysis Reviews, 1970, 4(2): 161-178
    105. S. H. Lira and J. Y. Lee, A kinetic model of hydrogen absorption in CeMg_(12), Int. J. Hydrogen Energy, 1983, 8(5): 369-371
    106. J. M. Boulet, N. Gerard, The mechanism and kinetics of hydride formation in Mg-10%Ni and CeMg_(12), J. Less-Common Metals, 1983, 89:151-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700