用户名: 密码: 验证码:
Ta-siRNA途径调控百脉根根瘤发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆科植物能与土壤中的根瘤菌建立共生关系,在其根部形成固氮根瘤。共生固氮提供宿主植物生长所需要的氮,但产生过多的根瘤会影响植物的发育。因此,根瘤形成的数目受到宿主结瘤自我调节及环境因子的调控。
     本文对百脉根结瘤数减少的共生突变体rel3进行了表型鉴定和分子机理研究。在共生和非共生条件下,rel3的主根比野生型短,侧根数减少,结瘤数目约为野生型一半,结瘤区比率显著低于野生型。然而,突变体与野生型的固氮酶活力没有差异。这些表型分析表明rel3根瘤数目减少,可能是突变体结瘤区域变窄所致。用LacZ标记的根瘤菌接种突变体,发现rel3的侵染事件显著减少,这暗示rel3侵染频率的降低,使rel3的结瘤区域变窄,最终导致rel3的结瘤数目降低。
     为了进一步阐明REL3突变导致根瘤数目减少的分子机理,首先分析了rel3对结瘤负调控因子氮和乙烯的敏感性。结果表明,用硝酸盐和乙烯处理后,rel3和野生型产生相似的结瘤反应,这表明rel3中氮和乙烯对结瘤的调节不受影响。另外,通过野生型与突变体间的相互嫁接,结果显示rel3根瘤减少的表型主要受茎基因型控制。
     通过发根转化获得REL3启动子-GUS转化根系,分析表明REL3在根系的维管束组织特异表达,在根瘤器官起始处的维管组织中强烈表达,随着根瘤的发育,REL3继续在发育的维管束组织中表达。这表明REL3对于根瘤的起始起着重要的作用。
     REL3突变使植物体内TAS3 -siRNA的合成受阻,导致TAS3 -siRNA调控的靶基因即生长素应答因子ARF3和ARF4的表达上调。这些提示我们rel3结瘤减少可能与生长素有关。用生长素抑制剂NPA和TIBA处理后,rel3显示出更强的向地性丧失,表明rel3对生长素抑制剂的处理比野生型敏感,这暗示rel3根系中生长素的极性运输发生了改变。这种生长素极性运输的改变是否参与了根瘤起始的研究正在进行中。
     根据现有的研究结果,我们推测REL3的突变改变了根系中的生长素运输,使得根皮层细胞中的生长素浓度改变,导致根系中结瘤敏感区域根瘤起始所需要的生长素浓度范围变窄,因而产生较窄结瘤区域,从而形成较少的根瘤。本研究提供了ta-siRNA途径调控的生长素信号途径,直接参与了共生根瘤起始的证据。
Rhizobia are capable of infecting the roots of leguminous plants, leading to the formation nitrogen-fixing nodules. While nitrogen-fixing nodule can provide nitrogen for host plants, too many nodules become undesirable. The number of nodules is tightly regulated by environmental factors and autoregulation of nodulation.
     In this study, we analyzed phenotypes and molecular mechanisms of Lotus japonicus rel3 symbiotic mutant with reduced nodules. In symbiotic and non-symbiotic conditions, the length of the main root is shorter and the number of lateral roots is less in rel3 than in wild type. Moreover, the rel3 mutant developed approximately half number of nodules found in the wild type. And the ratio of nodulation zone length to the main root length in the rel3 plants was less than that in the wild type. However, there is no difference in nitrogenase activity between rel3 and wild type. The phenotypic analysis indicated that rel3 showed fewer nodules due to narrow nodulation zone. We determined the infection frequency using-NZP2235/HemA::LacZ that constitutively expresses the (3-galactosidase reporter gene. After inoculation, infection thread formation was repressed in rel3 compared to that in the wild type. This suggest that the decreased infection frequency in rel3 produce narrow nodulation zone in rel3, leading to the reduced number of nodules formed in rel3.
     In order to investigate molecular mechanisms of rel3 with reduced nodules, we first analyzed the sensitivity of rel3 to negative regulators of the nodulation including nitrogen and ethylene. The results show that the mutation does not affect the negative regulation of nodule development by nitrate and ethylene. In addition, the grafting experiments of rel3 and wild type indicated that the phenotype of reduced nodule number in rel3 mutant is in control of shoot-derived signals.
     By Agrobacterium rhizogenes-mediated root transformation, we analyzed REL3 promoter-GUS activity in inoculated roots and nodules. The GUS activity showed that REL3 gene specifically expressed in root vascular bundle and nodule vascular strands, particularly in cells that were derived from the pericycle. And REL3 also expressed in vascular bundle of developing nodules. This indicated that REL3 plays an important role for nodule initiation.
     REL3 mutations blocked the synthesis of TAS3-siRNA in plants, resulting in the upregulated of its target genes, ARF3 and ARF4, auxin response factors. This prompt us to detect whether the reduced nodulation number of rel3 is correspond with Auxin. Treated with auxin inhibitors NPA and TIBA, rel3 showed nor agravitropic than wild type, suggesting that the rel3 mutant is sensitive to auxin inhibitors. This implies the polar auxin transport is altered in rel3 root. The study on alternation of polar auxin transport in rel3 is ongoing.
     Based on current data, we speculate that the alteration of polar auxin transport in rel3 roots make change of auxin level in root cortical cells, leading to narrow the range of auxin level that required for nodule initiation in root cortical cells, and thus fewer nodules are formed in rel3 roots. This study provides the evidence that ta-siRNA pathway regulated the auxin signaling pathway, directly involved in nodule development.
引文
[1]沈世华,荆玉祥.中国生物固氮研究现状和展望.科学通报.2003,48(6)535-540.
    [2]Albrecht C, Geurts R, Lapeyrie F and Bisseling T. Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A. Plant J.1998,15:605-614.
    [3]Allen E, Xie, Z, Gustafson AM, and Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell.2005,121:207-221.
    [4]Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot.2006,97: 883-893.
    [5]Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J and Gough C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J.2003,34:495-506.
    [6]Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science.2004,303:1364-1367.
    [7]Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome J-C, Denarie J, Truchet G. Rhizobium meliloti lipooligosaccharide nodulation factors:different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell.1994,46: 1357-1374.
    [8]Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS. Phytohormones, Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul.1984,3:23-39.
    [9]Bano A, Harper JE, Auge RM, Neuman DS. Changes in phytohormone levels following inoculation of two soybean lines differing in nodulation. Fund Plant Biol.2002,29:965-974.
    [10]Bano A, Harper JE. Plant growth regulators and phloem exudates modulate root nodulation of soybean. Funct Plant Biol.2002,29:1299-1307.
    [11]Bauer P, Ratet P, Crespi MD, Schultze M, Kondorosi A. Nod-factors and cytokinins induce similar cortical cell divisions, amyloplast deposition and MsENOD12A expression patterns in alfalfa roots. Plant J.1996,10:91-105.
    [12]Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J.2002,29:325-332.
    [13]Blancaflor EB, Masson PH. Plant gravitropism:unraveling the ups and downs of a complex process. Plant Physiol.2003,133:1677-1690.
    [14]Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol.2003,131:1009-1017.
    [15]Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F. Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type. Planta.2000,211:98-104.
    [16]Caba JM, Recalde L, Ligero F. Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Env.1998,21:87-93.
    [17]Caetano-anolles G, Gresshoff PM. Plant genetic control of nodulation. Annu Rev Microbial.1991,45:345-382.
    [18]Capoen W, Goormachtig S, De Rycke R, Schroeyers K and Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci USA.2005,102:10369-10374.
    [19]Carroll BJ, Mathews A. Nitrate inhibition of nodulation in legumes. In PM Gresshoff, ed, Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press, Boca Raton, FL.1990, pp 159-180.
    [20]Carroll BJ, McNeil DL, Gresshoff PM. A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol.1985b,78:34-40.
    [21]Carroll BJ, McNeil DL, Gresshoff PM. Isolation and properties of soybean mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA.1985a,82:4162-4166.
    [22]Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP,Maillet F, Rosenberg C, Cook D, Gough C, Denarie J. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell.2000,12: 1647-1666.
    [23]Catoira R, Timmers AC, Maillet F, Galera C, Penmetsa RV, Cook D, Denarie J and Gough C. The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development.2001,128:1507-1518.
    [24]Charbonneau GA, Newcomb W. Growth regulators in developing effective root nodules of the garden pea (Pisum sativum L.). Biochem Physiol Pflanzen.1985, 180:667-681.
    [25]Cho MJ, Harper JE. Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild type and nodulation-mutant soybean plants. Plant Soil.1993,152:145-149.
    [26]Clarkson DT. Root structure and sites of ion uptake. In Waisel Y, Eshel A Kafkafi Ueds. Plant Roots:the Hidden Half. New York:Marcel Dekker.1996, 417—453.
    [27]Cooper JB, Long SR. Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell.1994,6:215-225.
    [28]D'Haeze W and Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiol.2002,12:79R-105R.
    [29]Dangar TK, Basu PS. Abscisic acid production in culture by some rhizobium spp. of leguminous trees and pulses. Folia Microbiol.1991,36:527-532.
    [30]Davies J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol.1991,42: 55-76.
    [31]de Billy F, Grosjean C, May S, Bennett M, Cullimore JV. Expression studies on AUX1-like gens in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant-Microbe Interact.2001,14: 267-277.
    [32]Dehio C, de Bruijn FJ. The early nodulin gene SrEnod2 from Sesbania rostrata is 10inducibleby cytokinin. Plant J.1992,2:117-128.
    [33]Doerner P, Jorgensen JE, You R, Steppuhn J, Lamb C. Root growth and cyclin control. Trends Plant Sci.1996,1:211-212.
    [34]Dolan L, Duckett C, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development.1994,120:2465-2474.
    [35]Downie JA and Walker SA. Plant responses to nodulation factors. Curr. Opin. Plant Biol.1999,2:483-489.
    [36]Drennan DSH, Norton C. The effect of ethrel on nodulation in Pisum sativum L. Plant Soil.1971,36:53-57.
    [37]Ehrardt DW, Wais R, Long SR. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell.1996,85 (5):673-681.
    [38]Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB. A receptor kinase gene regulating symbiotic nodule development. Nature.2002,417:962-966.
    [39]Esseling JJ and Emons AMC. Dissection of Nod factor signaling in legumes: cell biology, mutants and pharmacological approaches. J Microsc.2004,214: 104-113.
    [40]Fahlgren, N, Montgomery, TA, Howell, MD, Allen, E, Dvorak, SK, Alexander, AL, and Carrington, JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. CurrBiol.2006,16:939-944.
    [41]Fang Y, Hirsch AM. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in alfalfa. Plant Physiol.1998,116: 53-68.
    [42]Fearn JC, LaRue TA. Ethylene inhibitors restore nodulation to sym5 mutants of Pisum sativum L. cv Sparkle. Plant Physiol.1991,96:239-244.
    [43]Fedorova EE, Zhiznevskaya GY, Kalibemaya ZV, Artemenko EN, Izmailov SF, Gus'kov AV. IAA metabolism during development of symbiosis between Phaseolus vulgaris and Rhizobium phaseoli. Russ J Plant Physiol.2000,47: 203-206.
    [44]Ferguson BF and Mathesius U. Signaling interactions during nodule development. J Plant Growth Regul.2003,22:47-72.
    [45]Ferguson BJ, Ross JJ and Reid JB. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol.2005,138:2396-2405.
    [46]Foucher F, Kondorosi E. Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol.2000,43:773-786.
    [47]Friml J, Yang X, Michniewicz M. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science.2004,306: 862-865.
    [48]Fusseder A. The longevity and activity of the primary root of maize. Plant Soil. 1987,101:257-265.
    [49]Geurts R, Fedorova E and Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol.2005, 8:346-352.
    [50]Goicoechea N, Antoh n MC, Sa nchez-Di'az M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant.1997,100:989-997.
    [51]Goormachtig S, Alves-Ferreira M, van Montague M, Engler G, Holsters M. Expression of cell cycle genes during Sesbania rostrata stem nodule development. Mol Plant-Microbe Interact.1997,10:316-325.
    [52]Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J. Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol Plant-Microbe Interact.2000,13:1121-1129.
    [53]Gresshoff P M. Genetics and genomics of nodulation and symbiotic nitrogen fixation. In:Christou P, Klee H, eds. Handbook of Plant Biotechnology. Hoboken:John Wiley & Sons (Asia) Pte Ltd.2004,629-643.
    [54]Gresshoff PM. Molecular-genetic analysis of nodulation genes in soybean. Plant Breed Rev.1993,11:275-318.
    [55]Grobbelaar N, Clarke B, Hough MC. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. Ⅲ. The effect of carbon dioxide and ethylene. Plant Soil.1971, (SpecVol):215-223.
    [56]Guinel FC, Geil RD. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment in these two symbioses. Can J Bot.2002,80: 695-720.
    [57]Guinel FC, LaRue TA. Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz). Plant Physiol.1992,99:515-518.
    [58]Guinel FC, Sloetjes LL. Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot.2000,51:885-894.
    [59]Hangarter RP. Gravity, light and plant form. Plant Cell Environ.1997,20: 796-800.
    [60]Himanen K, Boucheron E, Vanneste S, Engler JD, Inze'D, Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell.2002,14:2339-2351.
    [61]Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA.1989,86:1244-1248.
    [62]Hirsch AM, Fang Y, Asad S, Kapulnik Y. The role of phytohormones in plant-microbe symbioses. Plant Soil.1997,194:171-184.
    [63]Hirsch AM, Fang Y. Plant hormones and nodulation:What's the connection? Plant Mol Biol.1994,26:5-9.
    [64]Hunter C. Willmann MR. Wu G. Yoshikawa M. de la Luz Gutierrez-Nava M. and Poethig SR. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development.2006,133:2973-2981.
    [65]Hutangura P, Mathesius U, Rolfe BG, Jones MEK. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust J Plant Physiol. 1999,26:221-231.
    [66]Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, Kawaguchi M. Analysis of ENOD40 expression in albl, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Mol Gen Genet.2000,264:402-410.
    [67]Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature.2005,433: 527-531.
    [68]Jelenska J, Deckert J, Kondorosi E, Legocki AB. Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Sci.2000,150:29-39.
    [69]Jimenez-Zurdo JI, Frugier F, Crespi MD, Kondorosi A. Expression profiles of 22 novel molecular markers for organogenetic pathways acting in alfalfa nodule development. Mol Plant-Microbe Interact.2000,13:96-106.
    [70]John PCL, Zhang K, Cong C, Diederich L, Wightman F. p34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin. Aust J Plant Physiol.1993,20:503-526.
    [71]Jungk A. Root hairs and the acquisition of plant nutrients from soil. J Plant NutrSiil Sc.2001,164:121-129.
    [72]Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science.2005, 308:1786-1789.
    [73]Karas B, Murray J, Gorzelak M, Smith A, Sato S, Tabata S and Szczyglowski K. Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti Involves the Nodulation Factor-Dependent Induction of Root Hairs. Plant Physiol.2005,137: 1331-1344.
    [74]Krusell L,Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Due G, Kaneko T, Tabata S, de Bruijn F. Shoot control of root development and nodulation ismediated by a receptor-like kinase. Nature.2002,420:422-426.
    [75]Kuppusamy KT, Endre G, Prabhu R, Penmetsa RV, Veereshlingam H, Cook DR, Dickstein R, Vandenbosch KA. LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections. Plant Physiol. 2004,136:3682-3691.
    [76]Lee KH, LaRue TA. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv 7 Sparkle. Plant Physiol.1992c,100:1759-1763.
    [77]Lee KH, LaRue TA. Pleiotropic effects of sym-17:a mutation in Pisum sativum L. cv Sparkle causes decreased nodulation, altered root and shoot growth, and increased ethylene production. Plant Physiol.1992a,100:1326-1333.
    [78]Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Due G, Journet EP, Ane JM, Lauber E, Bisseling T. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science.2004,303:1361-1364.
    [79]Libbenga KR, van Iren F, Bogers RJ, Schraag-Lamers MF. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta.1973,14:29-39.
    [80]Limpens E, Franken C, Smit P, Willemse J, Bisseling T and Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science.2003,302:630-633.
    [81]Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T and Geurts R. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci USA.2005,102:10375-10.
    [82]Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann.2009,104:277-285.
    [83]Lombardo F, Heckmann AB, Miwa H, Perry JA, Yano K, Hayashi M, Parniske M, Wang TL, and Downie JA. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth. Mol Plant Microbe Interact.2006,19:1444-1450.
    [84]Lorteau M-A, Ferguson BJ, Guinel FC. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant. 2001,112:421-428.
    [85]Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N and Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 2003,425:637-640.
    [86]Markwei CM, LaRue TA. Phenotypic characterization of sym 21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv Sparkle. Physiol Plant.1997,100:927-932.
    [87]Mathesius U, Charon C, Rolfe BG, Kondorosi A, Crespi M. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol Plant-Microbe Interact.2000,13:617-628.
    [88]Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA. Auxin transport inhibition precedes nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J, 1998a,14:23-34.
    [89]McKhann HI, Frugier F, Petrovics G, Coba de la Pen~a T, Jurkevitch E, Brown S, Kondorosi E, Kondorosi A, Crespi M. Cloning of a WD-repeat-containing gene from alfalfa (Medicago saliva):a role in hormone-mediated cell division? Plant Mol Biol.1997,34:771-780.
    [90]Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE and Long SR. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development:gene identification by transcript-based cloning. Proc Natl Acad Sci USA.2004.101:4701-4705.
    [91]Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell.2008,133:128-141.
    [92]Muday GK, DeLong A. Polar auxin transport:controlling where and how much. Trends Plant Sci.2001,6:535-542.
    [93]Muday GK. Auxins and tropisms. J Plant Growth Regul.2001,20:226-243.
    [94]Mulder L, Hogg B, Bersoult A, Cullimore JV. Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiol Plant.2005,123: 207-218.
    [95]Muller A, Guan C, Galweiler L. AtPIN2 defnes a locus of Arabidopsis for root gravitropism control. EMBO J.1998,17:6903-6911.
    [96]Mulligan JT and Long SR. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA.1985,82:6609-6613.
    [97]Murakami-Mizukami Y, Yamamoto Y, Yamaki S. Analysis of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA Mycorrhizas. Soil Sci Plant Nutr.1991,37:291-298.
    [98]Nakagawa T and Kawaguchi M. Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol.2006,47:176-180.
    [99]Newcomb W, Syono K, Torrey JG. Development of an ineffective pea root nodule:morphogenesis, fine structure, and cytokinin biosynthesis. Can J Bot. 1976,55:1891-1907.
    [100]Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M. HAR1 mediates systemic regulation of symbiotic organ development. Nature.2002,420:426-429.
    [101]Nishimura R, Ohmori M, Fujita H, Kawaguchi M. A lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA.2002b,99:15206-15210.
    [102]Nishimura R, Ohmori M, Kawaguchi M. The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus:astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol.2002c, 43:853-859.
    [103]Nogueira FT, Madi S, Chitwood DH, Juarez MT, and Timmermans MC. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev.2007,21:750-755.
    [104]Nukui N, Ezura H, Yuhashi K-I, Yasuta T, Minamisawa K. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol.2000, 41:893-897.
    [105]Oka-Kira E and Kawaguchi M. Long-distance signaling to control root nodule number. Curr Opin Plant Biol.2006,9:496-502.
    [106]Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A. klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J.2005,44:505-515.
    [107]Oldroyd GE, Downie JA. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol.2008,59:519-546.
    [108]Oldroyd GE, Engstrom EM, Long SR. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell.2001,13:1835-1849.
    [109]Oldroyd GE, Long SR. Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod factor signaling. Plant Physiol.2003,131:1027-1032.
    [110]Oldroyd GED and Downie JA. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol.2004,5:566-576.
    [111]Oldroyd GED, Engstrom EM, Long SR. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell.2001,13:1835-1849.
    [112]Oldroyd GED, Harrison MJ and Udvardi M. Peace talks and trade deals, Keys to long-term harmony in legume-microbe symbiosis. Plant Physiol.2005,137: 1205-1210.
    [113]Oldroyd GED. Nodules and Hormones. Science.2007,315:52-53.
    [114]Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S. Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. Plant Physiol.2005,137:1261-1271.
    [115]Ortega-Martinez O, Pernas M, Carol RJ, Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science.2007,317:507-510.
    [116]Penmetsa RV, Cook DR. A legume ethylene-insensitive mutant hyperinfected by its Rhizobium symbiont. Science.1997,275:527-530.
    [117]Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR. Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol. 2003,131:998-1008.
    [118]Phillips DA, Torrey JG. Cytokinin production by Rhizobium japonicum. Physiol Plant.1970,23:1057-1063.
    [119]Phillips DA, Torrey JG Studies on cytokinin production by Rhizobium. Plant Physiol.1972,49:11-15.
    [120]Phillips DA. Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta.1971,100:181-190.
    [121]Postma JG, Jacobsen E, Feenstra WJ. Three pea mutants with an altered nodulation studied by genetic-analysis and grafting. J Plant Physiol.1988,132: 424-430.
    [122]Prayitno J, Rolfe BQ Mathesius U. The Ethylene-insensitive sickle Mutant of Medicago truncatula Shows Altered Auxin Transport Regulation during Nodulation. Plant Physiol.2006,142:168-180.
    [123]Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N and Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature.2003,425: 585-592.
    [124]Ramanujam MP, Abdul Jaleel V and Kumaravelu G. Effect of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biol Plant.1998,41:307-311.
    [125]Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 2000,122:481-490.
    [126]Riely BK, Ane JM, Penmetsa RV, Cook DR. Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Curr Opin Plant Biol. 2004,7:408-413.
    [127]Schaller GE, Kieber JJ. Ethylene. In:Somerville CR, regulated by a receptor gene family in Arabidopsis thaliana. Meyerowitz EM (eds). The Arabidopsis Book. Rockville, Cell.2002,94:261-271.
    [128]Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature.1999,402:191-195.
    [129]Scheres B, McKhann HI, Zalensky A, Lobler M, Bisseling T, Hirsch AM. The PsENOD12 gene is expressed at two different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol.1992,100: 1649-1655.
    [130]Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol.2005,58: 809-822.
    [131]Schneider A, Walker SA, Sagan M, Duc G, Ellis THN and Downie JA. Mapping of the nodulation loci sym9 and sym10 of pea (Pisum sativum L.). Theor Appl Genet.2002,104:1312-1316.
    [132]Schultze M and Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet.1998,32:33-57.
    [133]Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science.2003,299:109-112.
    [134]Sinvany G, Kapulnik Y, Wininger S, Badani H, Jurkevitch E. The early nodulin enod40 is induced by, and also promotes arbuscular mycorrhizal root colonization. Physiol Mol Plant Pathol.2002,60:103-109.
    [135]Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T and Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science.2005,308:1789-1791.
    [136]Stacey G, Libault M, Brechenmacher L, Wan J and May GD. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol.2006,9: 110-121.
    [137]Stougaard J. Regulators and regulation of legume root nodule development. Plant Physiol.2000,124:531-540.
    [138]Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K and Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature.2002,417:959—962.
    [139]Streeter J. Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci.1988,7:1-23.
    [140]Suttle JC. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol.1988,88:795-799.
    [141]Syono K, Newcomb W, Torrey JG. Cytokinin production in relation to the development of pea root nodules. Can J Bot.1976,54:2155-2162.
    [142]Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, Murooka Y. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiol.2003,131:1054-1063.
    [143]Tasaka M, Kato T, Fukaki H. The endodermis and shoot gravitropism. Trends Plant Sci.1999,4:103-107.
    [144]Terakado J, Fujihara S, Goto S, Kuratani R, Suzuki Y, Yoshida S and Yoneyama T. Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Sci Plant Nutr. 2005,51:389-395.
    [145]Terakado J, Yoneyama T and Fujihara S. Shoot-applied polyamines suppress nodule formation in soybean (Glycine max). J Plant Physiol.2006,163: 497-505.
    [146]Timmermans MC, Hudson A, Becraft PW, and Nelson T. ROUGH SHEATH2:a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science.1999,284:151-153.
    [147]Truchet GP, Roche P, Lerouge J, Vasse S, Camut F, de Billy J-C, Prome and. Denarie J. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature.1991,351:670-673.
    [148]Van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne KJM and Boot KJM. Salicylic acid inhibits indeterminanttype nodulation but not determinant-type nodulation. Mol Plant Microbe Interact.2003,16:83-91.
    [149]Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarie J, Long SR. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA.2000,97: 13407-13412.
    [150]Walker SA, Viprey V. and Downie JA. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc Natl Acad Sci USA.2000,97:13413-13418.
    [151]Wang Y, Lin WH, Chen X, Xue HW. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Research.2009,19: 1191-1204.
    [152]Watts SH,Wheeler CT, Hillman JR, Berrie AMM, Crozier A, Math VB. Abscisic acid in the nodulated root system of Alnus glutinosa. New Phytol.1983,95: 203-208.
    [153]Wheeler CT, Henson IE, McLaughlin ME. Hormones in plants bearing actinomycete root nodules. Bot Gaz.1979,140S:52-57.
    [154]Williams L, Carles CC, Osmont KS, and Fletcher JC. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA.2005, 102:9703-9708.
    [155]Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, de Bruijn FJ, Stougaard J, Szczyglowski K. Short rootmutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J.2000,23:97-114.
    [156]Wu C, Dickstein R, Cary AJ, Norris JH. The auxin transport inhibitor N-(1-naphthyl) phthalamic acid elicits pseudonodules on non-nodulating mutants of white sweetclover. Plant Physiol.1996,110:501-510.
    [157]Yan J, Cai XF, Luo JH, Sato S, Jiang QY, Yang J, Cao XL, Hu XH, Tabata S, Gresshoff PM, and Luo D. The REDUCED LEAFLET genes encode key components of the trans-Acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol.2010, 152:797-807.
    [158]Yang WC, de Blank C, Maskiene I, Hirt H, Bakker J, van Kammen H, Franssen H, Bisseling T. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cell cycle is only completed in primordium formation. Plant Cell.1994,6:1415-1426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700