用户名: 密码: 验证码:
葡萄根系和叶片对氯化镉处理的生理学与细胞学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以当年生葡萄扦插苗为试材,通过水培和盆栽试验,研究了镉在葡萄根、茎和叶中的分布,比较了20个葡萄品种对镉的富集与迁移,分析了氯化镉(CdCl2)处理下葡萄根系活力、丙二醛含量、根系与叶片质膜ATPase活性和线粒体特性的变化以及活性氧和一氧化氮(NO)生成等的变化规律;同时,利用流式细胞仪、吖啶橙荧光染色和类caspase3/7活性检测与分析等技术,研究了氯化镉处理下葡萄根系细胞程序性死亡(programmed cell death, PCD),探讨了外源水杨酸和氯化钙对葡萄根系镉伤害的缓解作用。结果表明:
     1.镉在葡萄根、茎、叶中的分布与累积存在明显差异,但总体呈现根>叶>茎的规律。20个葡萄品种对镉的富集及镉由根系向叶片的迁移存在明显差异。镉在根系的富集系数在39.18%~135.76%(其中紫珍香最高,维多利亚最低)、在茎的富集系数在2.55%~14.32%(其中红地球最高,玫瑰香最低)、在叶片的富集系数在12.06%~54.61%之间(其中红地球最高,克瑞森无核最低);镉由根系向叶片的迁移系数(叶/根)在0.16~1.12之间(其中早艳最高,紫珍香最低)。
     20个葡萄品种对镉的吸收总量由大到小的顺序是:巨峰>紫珍香>红地球>玫瑰香>矢富罗莎>红宝石无核>泽香>奥迪亚无核>美人指>瑰宝>克瑞森无核>乍娜>森田尼无核>早艳>皇家秋天>早黑宝>黄金指>达米娜>龙眼>维多利亚。
     2.在0~1mmol·L-1浓度范围内,随着氯化镉处理浓度的增加,泽香葡萄根系活力、根系和叶片NO含量、一氧化氮合酶(NOS)活性、Ca2+-ATPase活性先升高后降低,O2-·产生速率、H2O2含量、丙二醛含量逐渐升高,质膜H+-ATPase活性逐渐降低。其中氯化镉浓度在0.1mmol·L-1时,葡萄根系活力、质膜Ca2+-ATPase活性显著提高;在0.5 mmol·L-1和1 mmol·L-1时质膜ATPase活性、NOS活性、根系活力和NO含量显著下降。
     3.用0.5 mmol?L-1氯化镉处理乍娜、玫瑰香、达米娜、瑰宝、泽香、红地球、巨峰、奥迪亚无核、皇家秋天等9个葡萄品种,它们的根系活力和质膜ATPase活性均降低,根系O2-·产生速率和H2O2含量、丙二醛含量均升高,除奥迪亚无核外NO含量和NOS活性均升高。巨峰葡萄根系活力比其他品种更易受到氯化镉影响,奥迪亚无核葡萄根系活力最不敏感,受氯化镉影响最小;9个品种根系活力下降幅度由大到小的顺序是:巨峰>皇家秋天>玫瑰香>瑰宝>红地球>乍娜>达米娜>泽香>奥迪亚无核。
     4.在0~1mmol·L-1浓度范围内,随着氯化镉处理浓度的增加,泽香葡萄根系线粒体膜通透性(MPT)增大、膜电位(Δψm)下降、H2O2含量逐渐升高、细胞色素(ccytochrome c, Cyt c)含量逐渐下降。流式细胞仪检测结果表明,随着氯化镉处理浓度升高根系细胞凋亡率提高。细胞程序性死亡关键酶类caspase3/7的活性也随着CdCl2浓度的增加而提高,研究表明:0.5mmol?L-1和1.0mmol?L-1的氯化镉明显诱导泽香葡萄根系发生细胞程序性死亡,吖啶橙染色检测结果也证实了这一点。
     5.泽香、龙眼、玫瑰香和巨峰4个葡萄品种一年生扦插苗经0.5mmol?L-1氯化镉处理后,根系、叶片线粒体H2O2含量升高,MPTP开放程度增大,Δψm降低,Cyt c含量下降,根系活力明显降低,类caspase3/7的活性显著提高。其中,根系线粒体H2O2含量和Cyt c含量由高到低的顺序为:巨峰>泽香>玫瑰香>龙眼;根系活力、MPTP和Δψm由高到低的顺序为:龙眼>玫瑰香>泽香>巨峰;细胞凋亡率由高到低为:巨峰>泽香>玫瑰香>龙眼。表明巨峰葡萄根系比其他品种更易受到氯化镉的伤害而发生细胞程序性死亡。
     6.较低浓度(10μmol·L-1和50μmol·L-1)水杨酸预处理显著降低了1.0mmol·L-1氯化镉处理下泽香葡萄根系O2-·、H2O2和NO的生成,阻止了根系活力和质膜H+-ATPase和Ca2+-ATPase活性下降;而较高浓度(100μmol·L-1和200μmol·L-1)水杨酸促进了氯化镉处理下自由基的生成,进一步降低了根系活力和质膜H+-ATPase和Ca2+-ATPase活性,表明低浓度水杨酸可通过降低自由基而减轻氯化镉对葡萄根系功能的损伤,而高浓度水杨酸则会加重氯化镉的伤害。
     7.较低浓度(1mmol·L-1和5mmol·L-1)氯化钙显著降低了1.0mmol·L-1氯化镉处理下泽香葡萄根系O2-·、H2O2和NO的生成,阻止了根系活力和质膜H+-ATPase和Ca2+-ATPase活性下降,缓解CdCl2对葡萄根系造成的伤害;而较高浓度(10mmol·L-1)氯化钙则促进了氯化镉处理下根系自由基的生成,进一步降低了根系活力和质膜H+-ATPase和Ca2+-ATPase活性,加重了氯化镉对葡萄根系功能的伤害。
The experiment was carried out with the cutting seedlings of grape under hydroponics or pot culture. In this experiment, efforts have been made to investigate the following aspects; the compartment of cadmium in root, stem and leaf were studied; the cadmium accumulation coefficient and migration coefficient in twenty varieties of grape were compared; root activity, MDA content, the activity of ATPase in PM of root and leaf, the character of mitochondria and the generation of ROS and NO were detected. Meanwhile, with the analytic system of flow cytometry, detective techonogy of acridine orange fluorescent staining and the activity detection and analysis of caspase3/7. The PCD characters of grape roots were studied. Furthermore, the alleviating effect of exogenous SA and CaCl2 on Ze Xiang grape under cadmium were also discussed.
     The main results were as follows:
     1. The compartment and accumulation of cadmium in root, stem and leaf were significantly different. The accumulation rule was: root >leaf > stem. In the twenty varieties of grapes chosen for the experiment, the accumulation coefficient in roots ranged from 39.18% to 135.76% (Zi Zhen-xiang grape being the highest and Victoria the lowest), the accumulation coefficient in stem ranged from 2.55% to 14.32% (Red Globe grape being the highest and Muscat Hamburg grape the lowest), the accumulation coefficient in leaf ranged from 12.06% to 54.61% (Ruby Seedless grape being the highest and Crimson Seedless the lowest) and the migration coefficient of cadmium from root to leaf ranged from 0.16 to 1.12(Zao Yan being the highest and Zi Zhen-xiang the lowest).
     The total assimilation amount in each of the twenty varieties of grape was in the order as below: Kyoho>Zi Zhen-xiang>Red Globe>Muscat Hamburg>Yatomi Rosa>Ruby Seedless>Ze Xiang>Qtilia Seedless>Manicure Finger>Gui Bao>Crimson Seedless>Zana>Centennial Seedless>Zao Yan>Autumn Royal>Zao He-Bao>Golgen Finger>Tamina>Long Yan>Victoria.
     2. Within the range of 0~1mmol·L-1, with the increase of CdCl2 concentration, root activity of Ze Xiang, the content of NO in roots and leaves, the activity of NOS and the activity of Ca2+-ATPase rose first and then dropped down; MDA content、O2-·generation rate and H2O2 content had a consistant increase while plasma membrane H+-ATPase had a consistant decrease in roots of Ze Xiang grape. It’s worth noticing that the root activity and plasma membrane Ca2+-ATPase activity increased significantly at 0.1 mmol·L-1 CdCl2 in roots of Ze Xiang and plasma membrane ATPase activity, NOS activity, root activity and NO content decreased significantly at 0.5 mmol·L-1 or 1 mmol·L-1 CdCl2 .
     3. When Zana, Muscat Hambur, Tamina, Gui Bao, Ze Xiang, Red Globe, Kyoho, Qtilia Seedless and Autumn Royal were treated with 0.5 mmol?L-1 CdCl2, the root activity and plasma membrane ATPase activity decreased and the root MDA content、O2-·generation rate and H2O2 content increased. Apart from Otilia Seedless, the content of NO and the activity of NOS in all the rest varieties increased. The root activity of Kyoho was more easily affected by cadmium than the other varieties. The root activity of Qtilia Seedless was the least sensitive and so was least affected by cadmium. The decrease range of root activities for the nine varieties were discribed as below: Kyoho>Autumn Royal>Muscat Hambur>Gui Bao>Red Globe>Zana>Tamina>Ze Xiang>Qtilia Seedless.
     4. With the increase of CdCl2 concentration within the range of 0~1mmol·L-1, root MPT increased,Δψm decreased, H2O2 content increased, Cyt c content decreased in the root of Ze Xiang grape. The results of flow cytometry indicated that with the increase in treatment concentration, the root cell PCD rate also increased, and the activity of caspase3/7, which is the key enzyme of PCD, too, increased with the increasing of CdCl2 concentration. The result showed that the PCD of grape root cells were induced significantly by CdCl2, which was also reconfirmed by the detection of acridine orange fluorescent staining.
     5. After treating the roots with 0.5 mmol?L-1 CdCl2, the mitochondrial hydrogen peroxide (H2O2) content increased, mitochondrial permeability transition pores (MPTP) increased, mitochondrial membrane potential (Δψm) decreased, cytochrome c (Cyt c) in roots and root activity decreased and the activity of caspase3/7 increased in the one-year cutting-seedling of 4 grape cultivars (Kyoho, Muscat Hamburg, Long Yan, and Ze Xiang). The order of H2O2 and Cyt c contents was as below: Kyoho>Ze Xiang>Muscat Hamburg>Loing yan the order of root activity, MPTP andΔψm was: Long Yan>Muscat Hamburg>Ze Xiang>Kyoho, and the order of apoptosis rates was: Kyoho>Ze Xiang>Muscat Hamburg>Long Yan. The results indicated that the roots of Kyoho were more easily damaged by CdCl2 than other varieties and thus induced apoptosis.
     6. Pretreatment of SA at a lower concentration (10μmol·L-1 and 50μmol·L-1) greatly decreased the formation of O2-·, H2O2 and NO, which retarded the declining of root activity and the activity of H+-ATPase and Ca2+-ATPase in PM under 1.0 mmol·L-1 CdCl2 treatment. On the other hand, pretreatment of SA at a higher concentration (100μmol·L-1 and 200μmol·L-1) promoted the formation of free radicals under CdCl2 treatment and further decreased root activity and the activity of H+-ATPase and Ca2+-ATPase in PM. The results indicate that Salicylic acid at a lower concentration can alleviate the damage of CdCl2 to the function of grape roots by inhibiting the formation of free radicals, while at a higher concentration it will aggravate the damage of CdCl2 to grape roots.
     7. CaCl2 treatment at a lower concentration (1mmol·L-1 and 5mmol·L-1) greatly decreased the formation of O2-·, H2O2 and NO, which retarded the declining of root activity and the activity of H+-ATPase and Ca2+-ATPase in PM under 1.0 mmol·L-1 CdCl2 treatment, alleviated the damage of CdCl2 to the function of grape roots. On the other hand, CaCl2 treatment at a higher concentration (10 mmol·L-1) promoted the formation of free radicals under CdCl2 treatment and further decreased root activity and the activity of H+-ATPase and Ca2+-ATPase in PM, thus aggravated the damage of CdCl2 to grape roots.
引文
[1]陈怀满.土壤一植物系统中的重金属污染[M].1996,北京:科学出版社,71-125
    [2]陈亚华,沈振国,刘友良.低温、高pH胁迫对水稻幼苗根系质膜、液泡膜ATP酶活性的影响[J].植物生理学报,2000,26(5):407-412
    [3]程晓建,王白坡,符庆功,等.浙江省杨梅果实重金属含量水平及其评价[J].江西农业大学学报,2006,28(1):50-54
    [4]段昌群.植物对环境污染的适应与植物的微进化[J].生态学杂志,1995,14(5):43~50
    [5]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1) :14~24
    [6]方敏,王晓东.细胞凋亡的线粒体通路[J].北京大学学报(医学版),2002,34:1-10
    [7]冯建国,陶训,于毅,等.苹果园的污染和病虫无公害防治技术研究[J].中国果树,2000(2):9-13
    [8]冯明祥,王佩圣,王继青,等.青岛郊区果园土壤重金属和农药污染研究[J].中国果树,2002,(2):9-11
    [9]高华君,杨洪强,杜方岭,等.平邑甜茶幼苗生长过程中精氨酸和一氧化氮水平的变化[J].植物营养与肥料学报,2008,14(4):774-778
    [10]高志岭,刘建玲,廖文华.磷肥施用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-94
    [11]郭彬.外源水杨酸缓解镉对水稻毒害的生理机制[D].南京农业大学博士学位论文,2006
    [12]韩应堂.无公害农产品规范化管理与生产标准实施手册(第一卷)[M].长春:吉林摄影出版社,2002
    [13]何笃修,罗建沅,等.用HPLC反相柱层析纯化玉米根结合蛋白[J].中国科学,1991,21(5):490-496
    [14]何龙飞,沈振国,刘友良.铝胁迫对小麦根系细胞质膜ATP酶和膜脂组成的效应[J].中国农业科学,2003,36(10):1139-1142
    [15]何龙飞,王爱勤,沈振国,等.高等植物细胞的Ca2+-ATP酶[J].广西农业生物科学,2000,19(1):64-67
    [16]何念祖,孟赐福.植物营养原理[M].上海:上海科技出版社,1987
    [17]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社, 1998:129-130
    [18]黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9:323-330
    [19]黄巧冰,武一曼.线粒体介导细胞凋亡的机制[J].医学综述,2001,7(2):67-69
    [20]黄昀,李道高,李其林,等.三峡库区柑橘园土壤环境质量研究[J].果树学报,2004,21(3):247-251
    [21]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23(5):856-862
    [22]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7:92-99
    [23]蒋廷惠,占新华,徐阳春,等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报,2005,16(5):971-976
    [24]金超芳,沈生荣,赵保路.EGCG对线粒体PT孔开放及Ca2+转运的影响[J].茶叶科学,2002,22(1):14-18
    [25]李振国,余叔文.植物重金属结合蛋白(肽) [J].植物生理学通讯,1990,(l):7-13
    [26]林建军,魏幼璋.植物细胞Ca2+的微调系统-Ca2+-ATPase[J].植物学通报,2001,18(2):190-196
    [27]凌启阆,向左云,刘华,等.质膜H-ATPase磷酸化对其活性的调节[J].中国生物化学与分子生物学报,1998,14(3):346-349
    [28]刘树森.线粒体呼吸链与活性氧[J].生命科学,2008,20(4):519-527
    [29]刘素纯,萧浪涛,王惠群.植物对重金属的吸收机制与植物修复技术[J].湖南农业大学学报(自然科学版),2004,30:493-498
    [30]刘炜,孙德兰,王红,等.2℃低温下冬小麦幼苗质膜Ca2+-ATPase的活性变化[J].应用与环境生物学报,2000,6(4):302-306
    [31]刘新,张蜀秋,娄成后.植物体内一氧化氮的来源及其与其它信号分子之间的关系[J].植物生理学通讯,2003,39 (5):513-518
    [32]鲁如坤,熊礼明,时正元.关于土壤一作物生态系统中Cd的研究[J].土壤,1992,24(3):129-132
    [33]罗立新,孙铁晰,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18:72-75
    [34]马怀宇,肖静,杨洪强.水分胁迫下湖北海棠根系线粒体及细胞死亡特性研究(英文)[J].园艺学报,2007,34(3):549-554
    [35]马怀宇,杨洪强.外源H2O2对湖北海棠根系线粒体膜透性和细胞核DNA的影响[J].植物生理与分子生物学学报,2006,32(5):551-556
    [36]马怀宇.水分和盐胁迫下平邑甜茶根系细胞程序性死亡研究[D].山东农业大学博士学位论文,2006
    [37]缪颖,曹家树,将有条,等.大白菜干烧心病发生过程中Ca2+-ATPase活性的变化[J].园艺学报,1998,25(1):51-55
    [38]潘建伟,董爱华,朱睦元.高等植物的PCD研究进展(一) [J].遗传,2000,2(3):189-192
    [39]彭黎明,江虹.细胞凋亡检测方法的研究进展[J].中华病理学杂志,2001,30(2):135-136
    [40]秦世学.土壤镉污染对作物的影响及作物对土壤镉的影响[J].环境科学丛刊,1984,4:8-15
    [41]任继平,李德发,张丽英.镉毒性研究进展[J].动物营养学报,2003,1:1-6
    [42]苏金为,王湘平.Cd2+诱导下茶树苗茎部核酸代谢及细胞超微结构的变化[J].中国生态农业学报,2005,13(2):87-90
    [43]苏金为,王湘平.镉诱导的茶树幼苗膜脂过氧化和细胞程序性死亡[J].植物生理与分子生物学学报,2002,28(4):292-298
    [44]孙琴,袁信芳,王晓蓉.环境因子对小麦体内镉的生物毒性和植物络合素合成的影响[J].应用生态学报,2005,16(7):1360-1365
    [45]滕晓华,黄其林,张可成.线粒体孔与细胞凋亡[J].国外医学分子生物学分册,2002,24:2772-2791
    [46]汪洪,周卫,林葆.钙对镉胁迫下玉米生长及生理特性的影响[J].植物营养与肥料学报,2001,7(1):78-87
    [47]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,6:55-57
    [48]王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22:523-528
    [49]王焕校.污染生态学基础.云南:云南大学出版社[M],1990
    [50]王庆华,邓文军,李艳红.细胞色素c(Cytc)诱导烟草悬浮细胞(BY-2)凋亡[J].植物生理学通讯,2004,40(6):666-668
    [51]王松华,卫红,周正义,等.水杨酸对小麦镉毒害的缓解效应[J].种子,2005,24:15-17
    [52]王新,吴燕玉,熊先哲.改良性措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,1995,6(4):440-444
    [53]王延枝,李如亮,赵芳,等.水稻液泡膜H+-ATPase的分离纯化及生化性质研究[J].武汉大学学报,1995,41(6):735-739
    [54]王延枝,斯海文.燕麦细胞中液泡膜H+-ATPase的初步研究[J].武汉大学学报,1987(3):101-106
    [55]王有年,关伟,李奕松,等.镉胁迫对丽春桃幼苗镉积累及其根系生长的影响[J].园艺学报,2008,35(6):787-792
    [56]吴启堂,陈卢,王广寿.水稻对镉的吸收和积累的品种间差异及其机理[J].生态学报,1999,19:104-107
    [57]夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988
    [58]夏增禄,穆从如,孟维奇,等.Cd、Zn、Pb及其相互作用对烟草、小麦的影响[J].生态学报,1984,4:231-236
    [59]夏增禄,蔡士悦,许嘉琳.中国土壤环境容量[M].北京:地震出版社,1992
    [60]徐顺清,舒柏华,周宜开,等.化学发光法测定脑组织中一氧化氮合成酶活性[J].中国卫生检验杂志,1997,7 (3):131-133
    [61]杨福愉.生物膜的流动性[J].生物化学与生物物理进展,1981,(5):1-6
    [62]杨红玉,王焕校.绿藻的镉结合蛋白及其耐性初探[J].植物生理学报,1985,11(4):357-365
    [63]杨洪强.绿色无公害果品生产全编[M].北京:中国农业出版社,2003
    [64]杨玖英,谭艳平,夏春皎,等.红莲型细胞质雄性不育性与线粒体渗透性转换[J].武汉植物学研究,2004,22 (5):385-390
    [65]杨居荣,鲍子平,张素芹.镉、铅在植物内的分布及其可溶性结合形态[J].中国环境科学,1993,13:263-268
    [66]杨居荣,贺建群,黄翌.作物对Cd的耐性的种间和种内差异I:种间差异[J].应用生态学报,1994,5:192-196
    [67]杨颖丽,张峰,张立新,等.盐胁迫对小麦根质膜ATPase活性的影响[J].西北植物学报,2003,23(3):401-405
    [68]杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693-695
    [69]尤瑞麟.小麦珠心细胞衰退过程的超微结构研究[J].植物学报,1985,27:345-353
    [70]余叔文,汤章诚.植物生理与分子生物学(第2版)[M].北京:科学出版社,2001:721-738
    [71]袁长青,丁振华.Caspase的活化及其在细胞凋亡中的作用[J].生理科学进展,2002,33(3):220-224
    [72]张芬琴,沈振国,刘友良.A1和A1+Ca对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动性的影响[J].植物生理学报,2000,26(2):105-110
    [73]张国平,Motohiro Fukami,Hitoshi Sekimoto.不同镉水平下小麦对镉及矿质养分吸收和积累的品种间差异[J].应用生态学报,2002,13(4):454-458
    [74]张金彪.镉对草莓的毒害及机理和调控研究[D].福建农林大学博士学位论文,2001
    [75]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32 (1):1-8
    [76]张连忠,路克国,王宏伟,等.重金属镉、铜在苹果幼树体内的分布特性及生物有机肥对减少重金属效应的研究[J].水土保持学报,2004,18(3):123-129
    [77]张连忠,路克国,杨洪强.苹果幼树铜、镉分布特征与累积规律研究[J].园艺学报,2006,33(1):111-114
    [78]张林森,梁俊,武春林,等.陕西苹果园土壤重金属含量水平及其评价[J].果树学报,2004,21(2):103-105
    [79]张满效,安黎哲,陈拓,等.NO是植物应激反应的信号分子.西北植物学报,2004,24(6):1145-1153
    [80]赵士诚,孙静文,王秀斌等.镉对玉米苗中钙调蛋白含量和Ca2+-ATPase活性的影响[J].植物营养与肥料学报,2008,14(2):264-271
    [81]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002
    [82]赵云罡,徐建兴.线粒体,活性氧和细胞凋亡[J].生物化学与生物物理进展,2001,28(2):168-171
    [83]甄宏.沈大高速公路旁粮食和水果中重金属污染特征研究[J].气象与环境学报,2008,124(13):1-5
    [84]周宜开,朱勇飞,柏正武,等.鲁米诺–H2O2体系化学发光检测一氧化氮的研究[J].分析科学学报,1999,15 (6):476-479
    [85] Ameisen JC. On the origin evolution and nature of programmed cell death: a time line of four billon years[J]. Cell Death Differentiation, 2002, 9: 367-393
    [86] Andersson A, Nilsson K O. Influence of lime and soil pH on Cd availability to plants[J]. AmBio, 1974, 3: 198-201
    [87] Anna Z, Lorella N, Paola M. Endoplasmic reticulum stress-induced programmed cell death in soybean cells[J]. J Cell Sci, 2004, 117: 2591-2598
    [88] Anthony D, Glass M and Dunlop J. Influence of phenolic acids on ion uptake: IV. Depolarization of membrane potentials[J]. Plant Physiolology, 1974, 54: 855-858
    [89] Archambault D, Marentes E, Buckley W, Clarke J, Taylor G.,A rapid,seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat(Triticum turgidum L.), Euphytica, 2001, 117:175-182
    [90] Armika H L, Gunawardena A N, Deborah M, et al. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize[J]. Planta, 2001, 212: 205-214
    [91] Arthur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J]. Int. J Phytoremed, 2000, 2: 1-21
    [92] Askerlund P, Evans D E. Reconstition and characterization of a calmodulin-stimulated Ca2+-pumping ATPase purified from Brassicaoleracea L [J]. Plant Physiol, 1992, 100: 1670-1681
    [93] Askerlund P. Calmodulin-stimulated Ca2+-ATPase in the vacuolar and plasma membranes in cauliflower[J]. Plant Physiol, 1997, 114: 999-1007
    [94] Axelsen K B, Palmgren M G. Evolution of substrate specificities in the P-type ATPase superfamily[J]. Mol. Evol., 1998, 46: 84-101
    [95] Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi Caerulescens J. and C. Presl(Brassicacceae) [J]. New Physiol., 1994, 127: 61-67
    [96] Balk J, Leaver C J, McCabe P F. Translocation of cytochromec from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants[J]. FEBS Lett, 1999, 463: 151-154
    [97] Balk J, Leaver C. The petlcms mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochromec release[J]. Plant Cell, 2001, 13: 1803-1818
    [98] Belenghi B, Salomon M, Levine A. Caspase-like activity in the seedlings of Pisum sativum eliminates weaker shoots during early vegetative development by induction of cell death[J]. J Exp Bot, 2004, 398 (55): 889-897
    [99] Beligni M V, Lamattina L. Is nitric oxide toxic or protective[J]. Trends Plant Sci., 1999, 4 (8): 299-230
    [100] Bennett A B, Spanswick R M. Optical measurements of delta pH and deltapsi in corn root membrane vesicles Kinetic analysis of cleffects on a proton-translocating ATPase[J]. J Membr Biol, 1983, 71: 95-107
    [101] Bethke P C, Jones R L. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species[J]. The Plant Journal, 2001, 25: 19-29
    [102] Bhupinder S, Usha K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress[J]. Plant Growth Regulation, 2003, 39: 137-141
    [103] Boggess SF, Willavize S, Koeppe DE. Differential response of soybean genotypes to soil cadmium[J]. Agron J, 1978, 70: 756-760
    [104] Bonza C, Carnelli A, De Michelis M I, Rasi-Caldgno F. Purification of the plasma membrane Ca2+-ATPase from radish seedlings by calmodulin-agarose affinity chromato graphy[J]. Plant Physiol, 1998, 116: 845-851
    [105] Bowler C, VanMontage M, Inze Q. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Physiol, 1992, 43: 83-116
    [106] Braidot E, Petrussa E, Macri F, Vianello A. Plant mitochondrial electrical potential monitored by fluorescence quenching of rhodamine123[J]. Biology Plant, 1998, 41(2): 193-201
    [107] Brenner C, Marzo I, Kroemer G. A revolution in apoptosis: from a mucleocentric to amitochondriocentric perspective[J]. Exp Gerontol, 1998, 33(6): 543-553
    [108] Briskin D P. Ca-translocating ATPase of the plant plasma membrane[J]. Plant Physiol, 1990, 94: 397-400
    [109] Bryant J A, Hughes S G, Garland J M. Programmed cell death in animals and plants[J]. BIOS Scientific Publishers, Oxford, 2000: 149-162
    [110] Cai J, Wallace D C, Zhivotovsky B, et al. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA[J]. Free Radical Biology and Medicine, 2000, 29: 334-342
    [111] Casterlin I L, Barnett N M. Isolation and characterization of cadmium-binding components in soybean plant[J]. Plant Physiol., 1977, 59 (suppl): 124
    [112] Cataldo D A , Garland T R, Wildung R E. Cadmium distribution and chemical fate in soybean[J]. Plant Physioh, 1981, 68:835-839
    [113] Chardonnens A N, Ten B W M, KuijPer L D J, et al. Distribution of cadmium leaves of cadmium tolerant and sensitive ecotype of Silene Vulgaris[J]. Physiologia Plantarurn, 1998, 104: 75-80
    [114] Collard J M, Matagne R G. Cd2+ resistance in wild type and mutant strains of Cklamydomonas reindardlii[J]. Environ. Experi. Bot., 1994, 34: 235-244
    [115] Córdoba-Pedregosa MC, Córdoba F, Villalba JM, et al. Differantial distribution of ascorbic acid peroxidase activity, and hydrogen peroxide along the root axis in Allium cepa L. and its possible relationship with cell growth and differentiation[J]. Protoplasma, 2003, 221: 57-65
    [116] Corpas F J, Barroso J B, Carreras A, et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development[J]. Planta, 2006, 224: 246-254
    [117] Costa G, Morel J L. Water relations, gas exchange and amino acid content in Cd treated lettuce[J]. Plant Physiol Biochem, 1994, 32: 561-570
    [118] Cromoton M. On the involvement of mitochondrial intermembrane junctional complexes in apoptosis[J]. Curr Med Chem, 2003, 10(16): 1437-1484
    [119] Cutler J M, Rains D W. Characterization of cadmium uptake by plant tissue[J]. Plant physiol, 1974, 54: 67-71
    [120] Danon L, Gordon V I. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators[J]. Bioessays, 2003, 25(1): 47-57
    [121] Dat J F, Pellinen R, Beeckman T, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco[J]. Plant Journal, 2003, 33(4): 621-632
    [122] David E. Evans, Lorraine E. Williams. P-type calcium ATPases in higherplants biochemical, molecular and functional properties[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1998, 1376(1): 1-25
    [123] Degraeve N. Carcinogenic, teratogenic and mutagenic effects of cadium Mutat[J]. Res, 1981, 86:115-135
    [124] Delledonne M, Xia Y J, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585-588
    [125] Desikan R, Reynolds A, Hancock J T, et al. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures[J]. Biochem J, 1998, 330:115-120
    [126] Di Toppi L S, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999, 41: 105-130
    [127] Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings[J]. Plant Science, 2005, 168: 511-517
    [128] Durner J, Shah J, Klessing D F. Salicylic acid and disease resistance in plants[J]. Trends Plant Sci., 1997, 2: 266-274
    [129] Durzan D J. Stress-induced nitric oxide and adaptive plasticity in conifers[J]. J. Forest Sci., 2002, 48: 281-291.
    [130] Elis P, Valentino C, Enrico B. Cyclosporin A induces the opening of a potassium selective channel in higher plant mitochondria[J]. J Bioenergetics and Biomembranes, 2001, 33(2): 106-117
    [131] Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology, 1982, 33: 73-96
    [132] Ferrer I, Planas A. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra[J]. J Neuropathol Exp Neurol, 2003, 62:329-339
    [133] Florence A, Rene M, Ghislaine V S, et al. Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence[J]. New Phytol., 2003, 158(1): 131-138
    [134] Florijn P J, Nelemans, van Bcusiehc M L. The influence of form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties[J]. Journal of Plant Nutrition, 1992, 15(11): 2405-2416
    [135] Foyer C H, Noctor G. Oxygen processing in photosynthesis: regulation and signaling[J]. New Phytol, 2000, 146: 359-388
    [136] Grant J T, Loake G J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiol. 2000, 124: 21-29
    [137] Green D R, Reed J C. Mitochondria and apoptosis[J]. Science, 1999, 281: 1309-1313
    [138] Greger M, Lindberg S. Effects of Cd2+ and EDTA on young sugar beets I. Cd2+ uptake and sugar accumulation[J]. Physiol. Plant., 1986, 66: 69-74
    [139] Grill E, Einnacker E L, Zenk M H. Phytochelatins, a class of heavy metal binding peptides from plants,are funotionally analogous to metallothioneins[J]. Proc Natl Acad Sci USA, 1987, 84: 439-443
    [140] Grill E. Phytochelatins: the principal heavy metal complexing peptides of higher plant[J]. Science, 1985, 230: 674-676
    [141] Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science, 2003, 302: 100-103
    [142] Guo F Q. Response to plant nitric oxide synthase: AtNOS1 is just the beginning[J]. Trends Plant Sci., 2006, 11 (11): 527-528
    [143] Guttormsen G, Singh B R, Jeng B R. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH[J]. Fertilizer Res., 1995, 41(1): 27-32
    [144] Hagemeyer J, Kahle H, Breckle S W. Cadmium in Fayus sylvatica L. trees and seedlings: leaching, uptake and interconnection with transpiration[J]. Water, Air and Soil Pollution, 1986, 29: 347-359
    [145] Hagemeyer J. Uptake of Cd2+ and Fe2+ by excised roots of Tamarixaphylla[J]. Physiol.Plant, 1989, 77: 247-255
    [146] Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects[J]. J Plant Res, 2003, 116(6): 483-505
    [147] Halestrap A P, Gillespie J P, O’Toole A, Doran E. Mitochondria and cell death: a pore way to die In: Bryant JA, Hughes SG, Garland JM(eds)Programmed cell death in animals and plants[M]. BIOS Scientific Publishers, Oxford, 2000: 149-162
    [148] Hardiman R T, Jacoby B. Absorprion and translocation of Cd in bush bean (Phaseolus vulgaris) [J]. Physiol. Plant, 1984, 61: 670-674
    [149] Hart J J, Welch R M, Norvell W A, Sullivan L A, Kochian L V. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars[J]. Plant Physiol., 1998, 116: 1413-1420
    [150] Health M C. Hypersensitive response-relative death[J]. Plant Mol Biol, 2000, 44(3): 321-334
    [151] Hendry G A F, Baker A J M, Ewart C F. Cd tolerance and toxicity oxygen radical processes and molecular damage in Cd-tolerant and Cd-sensitive clones of Holcus lanatus[J]. Acta Bot. Neerl., 1992, 41: 271-281
    [152] Heuillet E, Moreau A, HalPern S, Jeanne N, Puiseux-Dao S. Cadmium binding to a thiol-molecule of dunaliella bioculata contaminated with CdC12: electron probe microanalysis[J]. Bio. Cell, 1986, 58: 79-86
    [153] Heven Sze, Feng Liang, Ildoo Hwang. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast[J]. Animal Review of plant physiology and plant molecular biology, 2000, 51: 433-462
    [154] Hinkle P M, Kinsella P A, Osterhoudt K C. Cadmiun uptake and toxicity via voltage-sensitive calcium channels[J]. J. Biolo. Chemis, 1987, 262: 16333-16337
    [155] Hinkle P M, Shanshala E D, Nelson E J. Measurement of intracellular cadmium with fluorescent dyes: Further evidence for the role of calcium channels in cadmium uptake[J]. J Bio Chem, 1992, 267: 25553-25559
    [156] Hockenbery D M, Oltvai Z N, Yin X M, et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis[J]. Cell, 1993, 75: 241-251
    [157] Hoeberichts J A, Hulsebos T J H. The site of action of 2-4 dinitrophenol and salicylicacid upon the uncoupler-induced K+ effiux from non-metabolizing years[J]. Biochimica et Biophysica Acta, 1980, 595: 126-132
    [158] Hong B A, Ichida S, Wang Y, et al. Identification of a calmodulin-regulated calcium ATPase in the ER[J]. Plant Physiol, 1999, 119: 1165-1176
    [159] Hsieh W L, Pierce W S, Sze H. Calcium-pumping ATPases in vesicles from carrot cells Stimulation by calmodulin or phosphatidylserine and formation of a 120 kilodalton phosphoenzyme[J]. Plant Physiol, 1991, 97: 1535-1544
    [160] Huang L, Berkelman T, Franklin A E, Hoffman N E. Characterization of a gene encoding a Ca2+-ATPase-like protein in the plastid envelope[J]. Proc Natl Acad Sci UAS, 1993, 90: 10066-10070
    [161] Hui L I, Kiiuuri S K, Jian G U, et al. Cytochrome C release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3[J]. Science, 2000, 289: 1159-1164
    [162] Hye R W, Jin H K, Hong G N, et al. The delayed leaf senescence mutants of Arabidopsis, ore1, ore3 and ore9 are tolerant to oxidative stress[J]. Plant Cell Physiology, 2004, 27: 182-194
    [163] Ichas F, Mazat J P. From calcium signaling to cell death: two conformation for the mitochondrial permeability transition pore: Switching from low-to-high-conductance state[J]. Biochimica et Biophysica Acta, 1998, 1366(1-2): 33-50
    [164] Jabs T, Dietrich R A, Dangl J L. Initiation of runway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science, 1999, 273: 1853-1856
    [165] Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals[J]. Biochem Pharmacol, 1999, 57: 231-245
    [166] Jacobson A R, Dousset S, Guichard N, et al. Diuron mobility through vineyard soils contaminated with copper[J]. Environ Pollut. 2005, 138(2): 250-259
    [167] John M K, Laerhoven N. Differenrial effeets of cadiumon lettuce varieties[J]. Environ Pollut, 1976, 10: 163-173
    [168] Jones A M. Programmed cell death during tracheary element differentiation[J]. Phytopathology, 2002: 92
    [169] JoséC V, Ellis S, Roelie T, et al. Expression pattern of apoptosis-related markers inHuntington’s disease[J]. Acta Neuropathol, 2005, 109: 321-328
    [170] Kang G Z, Wang C H, Sun G C, et al. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings[J]. Environmental and Experimental Botany, 2003, 50: 9-15
    [171] Kasamo K. Response of tonoplast and plasma membrane ATPase in chilling-sensitive and-insensitive rice(Oryza sativa L.)culture cells tolow temperature[J]. Plant Cell Physiol, 1988, 29:1085-1094
    [172] Knight H, Knight M R. Abiotic stress signaling pathway: specificity and cross-talk[J]. Trends in Plant Science, 2001, 6: 262-267
    [173] Korcak RF. Cadmium distribution in field-grown fruit trees.Journal of Environmental Quality,1989,18(4):519~522
    [174] Kroemer G, Zamzami N, Susin S A. Mitochondrial control of apoptosis[J]. Immunology Today, 1997, 18(1): 44-51
    [175] Lamattina L, Garcìa-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule[J]. Ann. Rev. PlantBiol., 2003, 54: 109-136
    [176] Leita L, Nobili M D, Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean[J]. Journal of Plant Nutrition, 1996, 19(3, 4): 527-533
    [177] Li W, Zhang M, Shu H. Distribution and fractionation of copper in soils of apple orchards[J]. Environ Sci Pollut Res Int. 2005, 12(3): 168-72
    [178] LiΒH, Weiler E W. Ion-translocating ATPases in tendrils of Bryonia dioica Jacq[J]. Planta, 1994, 194: 169-180
    [179] Lin A J, Zhang X H, Chen M M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation[J]. Journal of Environmental Sciences, 2007, 19(5): 596-602
    [180] Lin C C, Kao C H. Effect of NaCl stress on H2O2 metabolism in rice leaves[J]. Plant Growth Regu., 2000, 30: 151-155
    [181] Liu S S. Cooperation of a“reactive oxygen species cycle”with the Q cycle and the cycling mechanism in mitochondria[J]. Journal of Bioenegetics and Biomemberanes, 1999, 31(4): 367-376
    [182] Liu Y B, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain[J]. Journal of Neurochemistry, 2002, 80: 780-787
    [183] Loganathan P, Hedley M J, Grace N D. Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects[J]. Environmental Contamination & Toxicology, 2008, 192: 29-66
    [184] Lynch D V, Steponkus P L. Plasma membrane lipid alteration associatedwith cold acclimation of winter rye seedlings(Secale cerealecv.Puma) [J]. Plant Physiol, 1987, 83: 761-767
    [185] Ma H Y, Yang H Q. The effect of exogenous H2O2 on mitochondrial membrane permeability and cell nuclear DNA in roots of Malus hupehensis[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (5): 551-556
    [186] Mclaughlin M J, Wi11iams G M J, Mckay A. Effect of cultivar on uptake of cadmium by potatoes[J]. Aust J Agrie Res, 1994, 45: 1483-1495
    [187] Metwally A, Finkemeier I, Georgi M, Dietz K J. Salicylic acid alleviates the cadmium toxicity in barley seedlings[J]. Plant Physiology, 2003, 132: 272-281
    [188] Michelet B, Boutry M. The plasma membrane H+-ATPase[J]. Plan Physiol, 1995, 108(1): 1-6
    [189] Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation[J]. Bio chim Biophy Acta, 2000, 1465(1): 1-16
    [190] Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation[J]. Biochim Biophy Acta, 2000, 1465(1): 1-16
    [191] Muchhal U S, Liu C, Raghothama K G. Ca2+-ATPase is expressed differentially in phosphatestraved roots of tomato[J]. Physiol Plant, 1997, 101: 540-544
    [192] Murray B,McBride M B. Cadmium up take by crops estimated from soil total Cd and pH[J]. Soil Sci, 2002, 167: 62-67
    [193] Nakamura Y, Kasamo K, Sakata M, Ohta E. Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions[J]. Plant Cell Physiol, 1992, 33: 139-149
    [194] Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. J. Exp. Bota, 2002, 53 (372): 1237-1247
    [195] Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in plants.[J] New Phytol.,2003.159: 11-35
    [196] Neill S. No way to die-nitric oxide, programmed cell death and xylogenesis[J]. New Phytol., 2005, 165: 5-7
    [197] Nishizono H, Ichikawa H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense.[J] Plant and Soil, 1987, 101: 15-20
    [198] Ohnishi T, Qall R S, Mayer M L. An improved assay of inorganic phosphate in the presence of extra labile phosphate compounds: Application to the ATPase assay in the presence of phosphocratine[J]. Analytical Biochemistry, 1975, 69: 261-267
    [199] Oliver D P, Hannam R, Tiller K G. The effects of zinc fertilization on cadmium concentration in wheat grain[J]. J Environ Qual, 1994, 23: 705-711
    [200] Orozco-Cárdenas M L, Narváez-Vásquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin and methyl jasmonate[J]. Plant Cell, 2001, 13(1): 179-192
    [201] Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link[J]. Nat Rev Mol Cell Biol, 2003, 4: 552-565
    [202] Pan J W, Chen H, Gu Q, et al. Environmental stress-induced programmed cell death in higher plants[J]. Genetics, 2002, 24(3):385-388
    [203] Pandey S, Tiwari S B, Upadhyaya K C, et al. Calcium signaling: linking environmental signals to cellular function[J]. Critical Reviews in Plant Science. 2000, 19(4): 291-318
    [204] Patricia R S B, Marcelo M, Renato A J. Aluminum-induced oxidative stress in maize[J]. Phytochem, 2003, 62: 181-189
    [205] Patterson B D, Macrae E A, Ferguson I B. Estimation of hydrogen peroxide in plants extracts using titanium (IV)[J]. Annual Review of Biochemistry, 1984, 139: 487-492
    [206] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J]. Nature, 2000, 406: 731-734
    [207] Petit PX, Susin SA, Zamzami N, et al. Mitochondria and programmed cell death: back to the future[J]. FEBS Letters, 1996, 396: 7-13
    [208] Pfeiffer W, Hager A. A Ca2+-ATPase and a Mg/H-antiporter are present on tonoplast membranes from roots of Zea mays L[J]. Planta, 1993, 191: 377-385
    [209] Pietrzak U, McPhail D C. Copper accumulation, distribution and fractionation invineyard soils of Victoria[J]. Australia Geoderma, 2004, 122(2-4): 151-166
    [210] Portillo F. Regulation of plasma membrane H+-ATPase in fungian plants[J]. Biochim Biophys Acta, 2000, 1469(1): 31-424
    [211] Prasad M N. Cadmium toxicity and tolerance in vascular plants[J]. Environmental and Experimental Botany, 1995, 35 (4): 525-545
    [212] Rao M V, Lee H I, Creelman R A, et al. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death[J]. Plant Cell, 2000, 12(9): 1633-1646
    [213] Rasi-Caldogno F, Carnelli A, De Michelis M I. Identification of the plasma membrane Ca2+-pump of higher plants: A comparison with the effect of calmodulin in plasma membrane Ca2+-ATPase and of its autoinhibitory domain[J]. Plant Physiol, 1995, 108: 105-113
    [214] Rasi-Caldogno F, Carnelli A, Michelis M. Plasma membrane Ca2+-ATPase of radish seedlings. II. regulation by calmodulin[J]. Plant Physiol., 1992, 98: 1202-1206
    [215] Rauser W E, Acker C A. Localization of cadmium in granules within differentiating and mature root cells[J]. Can J Bot. 1987, 65: 643-646
    [216] Reed J C, Green D R. Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis[J]. Molecular Cell, 2002, 9: 1-9
    [217] Robison N J, Tommey A M, et al. Plant metallothioneins[J]. Biochem J, 1993, 295: 1-10
    [218] Romero-Puertas M C, Rodríguez-Serrano M, Corpas F J. Cadmium-induced subcellular accumulation of O2ˉ·and H2O2 in pea leaves[J]. Plant, Cell and Environment, 2004, 27: 1122-1134
    [219] Senaratna T, Touched D, Bunn E. Asetyl salicylic acid (aspirin) and salicylic acid induce multiple strees tolerance in bean and tomato plants[J]. Plant Growth Regulation, 2000, 30: 157-161
    [220] Shu M Y, Fan M Q. Effect of osmotic stress and calcium on membrane lipid peroxidation and the activity of defense enzymes in fir seedling[J]. Forest Research, 2000,13(4): 391-396
    [221] Sun Y L, Zhao Y, Liu C X. Cytochromec can induce programmed cell death in plant cells[J]. Acta Bot Sin, 1999, 41(4): 379-383
    [222] Sze H, Churchill K A. Mg/KCl-ATPase of plant plasma membrane is an electrogenicpump[J]. Proc Natl Acad Sci, USA, 1981, 78: 5578-5582
    [223] Sze H. H+-translocating ATPases of the plasma membrane and tonoplast of plant cells[J]. Physiol Plant, 1984, 61:683-691
    [224] Takeyama N, Mike S, Hirakawa A, et al. Role of the mitochondrial permeability transition and cytochrome c release in hydrogen peroxide-induced apoptosis[J]. Experimental Cell Research, 2002, 274: 16-24
    [225] Tiwari B S, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition and programmed cell death[J]. Plant Physiol, 2002, 128: 1271-1281
    [226] Tonshin A A, Saprunova V B, Solodovnikova I M. Functional activity and ultrastructure of mitochondrial isolated from myocardial apoptotic tissue[J]. Biochemistry (Moscow), 2003, 68(8): 875-881
    [227] Turrens J F. Superoxide production by the mitochondrial respiratory chain[J]. Biosci Rep, 1997, 17(3): 3-8
    [228] Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health[J]. Adv Agron, 1993, 51: 173-212
    [229] Wagner G J, Trotter MM. Inducible cadmium binding complexes of cabbage and tobacco[J]. Plant Physiol, 1982, 69: 804-809
    [230] Wang J. Computer-simulated evaluation of possible mechanisms for quenching heavy metal iron activity in plant vacuoles[J]. Plant Physiol. 1991, 97: 1154-1160
    [231] Wang X D. The expanding role of mitochondria in apoptosis[J].Gene Dev., 2001, 15(22): 2922-2933
    [232] Wang Y Z, Sze H. Similarities and differences between the tonoplast-type mitochondrial H+-ATPase of oat roots[J]. Journal of Biology, 1985, 260: 10434-10443
    [233] Weigel H J, Jager H. Subcellular distribution and chemical form of cadmium in bean plant[J]. Plant Physiol, 1980, 65: 480-482
    [234] Wendehenne D, Pugin A, Klessig D F, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells[J]. Trends Plant Sci., 2001, 6: 177-183
    [235] Woolhouse H W. Toxicity and tolerance in the responses of plants to metals[J].SpringerVerlag, Berlin, 1983: 246-300
    [236] Wu F B, Zhang G P. Genotypic diffrence in effect of cadmium on growth and mineral concentrations in barley seedlings[J]. Bull Environ Contam Toxicol, 2002, 69: 219-227
    [237] Yoshida H, Kagimoto G. Changes in glycolipid and phospholipid composition in cotyledon of germinating soybean[J]. Agric Biol Chem, 1977, 41: 1857-1863
    [238] Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C. 2004. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions[J]. Plant Physiol, 136: 2875-2886
    [239] Zhang G P, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and components in wheat genotypes differing in Cd tolerance at seedling stage[J].Field Crops Res, 2002, 77:93-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700