用户名: 密码: 验证码:
高碳钒矿综合回收石墨提钒新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题对陕西省某含钒石煤矿进行了钒和石墨综合回收的研究。该矿储量巨大,矿石中钒含量较高,约为1.02%;另外伴生15%的隐晶质石墨,矿石中总碳含量高达35%,钒元素大部分赋存于绿泥石等铝硅酸盐矿物中,实现钒和石墨的综合回收是一大难点,目前尚未见到国内外对含钒石煤矿中石墨进行可选性研究的报道。针对该难选矿石,进行了包括原矿工艺矿物学研究、选矿工艺试验研究和提钒工艺试验研究等一系列试验研究,并获得以下主要成果:
     (1)查明矿石中矿物组成主要有绿泥石、石墨、碳质、石英、云母、滑石、磷灰石、电气石等。对主要有用矿物组分含量、结晶粒度、嵌布关系和分布规律等有比较清楚地认识。
     (2)矿石所含石墨为微晶、隐晶石墨,要提高其精矿品位,必须细磨,试验确定采用两段磨矿,第一段磨矿细度-200目65%,第二段磨矿细度-300目95%。
     (3)找出了适合该矿石的石墨优先浮选工艺流程。采用三次粗选、七次精选、中矿合并后再进行一次粗选、四次精选的浮选工艺流程,获得比较理想的选别指标:最终精矿中碳含量为65.88%,对石墨碳回收率为50%;钒含量为0.23%,钒损失率为2.43%。
     (4)找出了“一段氧化焙烧脱碳、二段低钠钙化焙烧碱浸出”的有效提钒工艺。获得了比较理想的试验结果:钒浸出率为77.45%。
     本研究对钒和石墨实现了综合回收,为该矿的开发提供了技术上可行、经济上合理的工艺流程和工艺条件。同时,本研究对该类型矿石的开发利用具有一定的指导意义。
In this paper, the comprehensive recovery of vanadium and graphite from the vanadous stone coal in shannxi province was studied. The ore is abundant, which has higher content of vanadium, about 1.02%, and also 15% the associating graphitoid, and 35% total carbon. Most vanadium element distributes in chlorite and some other aluminosilicate minerals. Up to now, any report about the research on the effective separation of graphite from the vanadous stone coal ore have been hardly in home and abroad. So the comprehensive recycle of vanadium and graphite is a difficult problem. Concerning this ore difficultly processed, a series of experimental researches such as the mineralogy of raw ore, the technologies of mineral processing and vanadium pentoxide recovering were carried out, and the obtained achievements are as follows:
    (1) It was ascertained that the ore is mainly composed of chlorite, graphite, carbonaceous matter, quartz, mica, talcum, phosphorite and tourmaline. Besides that, it has a clear understanding about the content of valuable minerals, crystal granularity, dissemination and distribution rule etc.
    (2) The graphite in the ore is graphitoid. If the grade of concentrate is desired to improve, the fine grinding is needed. So two stages grinding is employed by the experiment, the grinding fineness of first stage is 65% less than 200 mesh, and the grinding fineness of second stage is 95% less than 300 mesh.
    (3) The preferential flotation flowsheet suitable for the graphite recovery from the ore was found, which includes three roughing, seven cleaning, middlings being merged then processed separately by one roughing, four cleaning. As a result, the ideal separation quota was gained, i.e. the finished concentrate with the grade of 65.88% carbon, the recovery of 50% graphite, the grade of 0.23% vanadium pentoxide and the loss factor of 2.43% vanadium pentoxide was gotten.
    (4) The effective technology of vanadium extraction was obtained, which includes the first stage oxidation roasting way for getting rid of carbon, the second stage CaO-roasting with small NaCl, the last leaching process with carbonate. The ideal experimental results are acquired, i.e. the vanadium leaching rate is 77.45%.
    Through the above experimental investigation, the comprehensive recovery of vanadium and graphite was achieved. This provides the technological flowsheet and conditions which are feasible on technique and reasonable on economy for the exploitation of the ore. Meanwhile, the achievement obtained is guiding significance for the exploitation and utilization of silimar ore.
引文
[1] 刘世友.钒的应用与展望.稀有金属与硬质合金,2000,(141):58-61.
    [2] 任学佑.稀有金属钒的应用现状及市场前景.稀有金属,2003,27(6):809-812.
    [3] T Tanaka. The use of vanadiumin. Japan. Vanadium International Technical Committee, 1998.
    [4] 文喆.国内外钒资源与钒产品的市场前景分析.世界有色金属,2001,(11):7-8.
    [5] 潭若斌.国内外钒资源的开发利用.钒钛,1994,(5-6):4-11.
    [6] 符迈群.石煤提钒.钒钛,1992(5):12-14.
    [7] 黄道鑫.提钒炼钢,北京.冶金工业出版社,2002.
    [8] 刘早春,于志勇.石煤的综合利用.化学世界,1994,35(4):213—214.
    [9] 蔡晋强.石煤提钒在湖南的发展.稀有金属与硬质合金,2001,(144):42-46.
    [10] 王永双,李国良.我国石煤提钒及综合利用综述.钒钛,1993,(4):21-31.
    [11] 段惠彬.对我国石墨资源开发与利用的探讨.中国矿业,2001,10(6):22—24.
    [12] 李圣华.炭和石墨制品(下册).北京.冶金工业出版社,1987.
    [13] 王广驹.世界石墨生产、消费及国际贸易.中国非金属矿工业导刊,2006(1):61-65.
    [14] 漆明鉴.从石煤中提钒现状及前景.湿法冶金,1999,(72):1-10.
    [15] 蔡晋强,张顶裂.石煤提钒现状与市场浅析.稀有金属与硬质合金,1990(3):32-37.
    [16] 蔡晋强,巴陵.石煤提钒的几种新工艺.矿产保护与利用,1993(5):30-33.
    [17] 蔡晋强.石煤提钒生产新工艺.无机盐工业,2001,33(5):37-42.
    [18] 蔡晋强,巴陵.石煤提钒新工艺及市场动向.钒钛,1993,(5):30-39.
    [19] 许国镇,张秀荣.江西玉山石煤烧结包裹与钒转化的研究.现代地质,1993,7(1):109-117.
    [20] 贺洛夫.从石煤中提取五氧化二钒.无机盐工业,1994,26(6):39—40.
    [21] 董凤芝.隐晶质石墨浮选研究.矿产保护与利用,1997(1):15-17.
    [22] 王文利.石墨深加工技术发展现状及市场分析.中国建材,2002(1):81-82.
    [23] 陈国义.高碳石墨提纯工艺.实用技术市场,1989(4):8-10.
    [24] 肖奇,张清岑,刘建平.某地隐晶质石墨高纯化试验研究.矿产综合利用,2005(1):3-6.
    [25] Y.Ando,X.Zhao and M.Ohkohchi.Prodection of petal-like graphite sheets by hydrogen arc discharge. Carbon, 1997, 35(1): 153-158.
    [26] Thomas J. Manning, Mike Mitchell, Joseph Stach,Thomas Vickers. etc. Synthesis of exfolicated graphite from fluorinate using an atmospheric-pressure argon plasma. Carbon, 1999, 37: 1159-1164.
    [27] Vinay Gupta, Tsuyoshi Nakajima,Yoshimi Ohzawa etc.Electrochemical characteristics and structure of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries. Journal of Flurine chemistry, 2001, 112:223-240.
    [28] Xiangcheng luo,D.D.L.Chung.Vibration damping using flexible graphite. Carbon,2000,38:1499-1524.
    [29] M.Bonnissel.L,Luo,D.Tondeur.Compacted exfoliated natural graphite as heat conduction medium.Carbon,2001,39:2151-2161.
    [30] 刘槐清,谢有赞,李晔等.隐晶质石墨的高温碱煅烧法提纯工艺研究.炭素技术,2000(1):12-14.
    [31] 罗佑初.酸法生产高碳石墨的试验研究.非金属矿,1994(2):17-22.
    [32] 马永明.用稀酸和氟化物两步处理脱除石墨中的矿物质.燃料化学学报,1996,(5):464-468.
    [33] 李继业,姚绍德.用氯化焙烧法生产高碳石墨的研究.中国矿业,1996,25(3):45-48.
    [34] 郑详明,田学达.湿法提取石煤中钒的新工艺研究.湘潭大学自然科学学报,2003,25(1):43-45.
    [35] 宾智勇.钒矿石无盐焙烧提取五氧化二钒试验.钢铁钒钛,2006,27(1):21-26.
    [36] 姚允斌.物理化学手册.上海科技出版社,1985.
    [37] 林海玲,范必威,张云.石煤中影响钒转浸率的主要因素研究.成都理工学院学报,1999,26(3):317-320.
    [38] 鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践.湿法冶金,2002,21(4):175-183.
    [39] 陆芝华,周邦娜.石煤氧化焙烧一稀碱溶液浸出提钒工艺研究.稀有金属,1994,
    [40] 邹晓勇,欧阳玉祝,彭清静等.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究.化学世界,2001,(3):117-119.
    [41] 彭声谦,侯兰杰,刘福生等.四川广旺石煤提钒焙烧过程中钒价态的变化.中国矿业,1999,8(1):69-72.
    [42] 林海玲,范必威.方山口石煤提钒焙烧相变机理的研究.稀有金属,2001,25(4):273-276.
    [43] 张德芳.无污染提钒工艺试验研究.湖南有色金属,2005,21(6):16-17.
    [44] 廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985.
    [45] 张中豪.钙化焙烧冶炼V_2O_5新工艺研究.新技术新工艺,1999.(3):23-24.
    [46] M. Jennings. Lime Roasting of refractory Precious Metal Ores.Ed.TMS, 1991.
    [47] Godard JB. Salt Roasting of Vanadium Ores. Extr Metall Met Proc Symp. 1981.27-45.
    [48] 许国镇.氯化钠在石煤提钒中的作用.矿冶工程,1988,8(4):44—47.
    [49] 许国镇,王锐兵.巴都、浙川石煤烧结、包裹与钒转化的研究.稀有金属,1994,18(6):422-427.
    [50] 邓庆云,刘松英.石煤钠化焙烧、酸浸、离子交换提钒新工艺研究.稀有金属与硬质合金,1993,(4):27-33.
    [51] Corlo Giavarini. Recovery of Vanadium from Ash-leach Solution by solvent Extraction. Fuel, 1982, 61(6): 549-552.
    [52] 张云,范必威,林海玲等.290树脂从石煤酸浸液中吸附钒的工艺.矿物岩石,2000,20(4):95-98.
    [53] 张萍,蒋馥华.苛化泥为焙烧添加剂从石煤提取五氧化二钒.稀有金属,2000,24(2):115-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700