用户名: 密码: 验证码:
从含钒钢渣中富集钒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转炉钢渣是钢铁工业“三废”之一,我国转炉钢渣利用率仅50%,与发达国家差距较大。普通钢渣经处理可作冶金原料、水泥、路基材料等建筑用料和磷肥。攀钢转炉渣含V_2O_5为1~3%,比含钒煤矸石中的钒含量(V_2O_5 1%左右)还高,如果直接以处理普通转炉渣的方式处理,将造成很大的资源浪费。由于该渣含较高的CaO,使其中的钒难以回收利用。虽然从钒渣中提钒的工艺比较成熟,但由于钠盐及酸的耗量大,其工艺并不适合于含V_2O_5低,含CaO高的钢渣。因此需要开发新的工艺来提取低钒钢渣中的含钒组分并有效利用提钒后剩余的其它成分。
     本文研究了钒在钢渣中的分布和用碳热还原法提取含钒钢渣中钒的可行性,以及不同渣成分、碱度、CaF_2的添加量、温度、恒温时间等因素对还原过程的影响,另外从理论上分析了分离含钒铁合金中钒磷的可行性。
     钒在钢渣中的分布受钒含量和钢渣成分的影响。本实验用的原始钢渣,钒主要存在于石灰固溶体和Ca_3SiO_5中;含3.4%V_2O_5的合成渣,钒氧化物主要存在于Ca_3SiO_5相中;含6.0%V_2O_5的合成渣,钒氧化物主要存在于CaV_2O_6-Ca_2P_2O_7固溶体相中,其中V_2O_5含量高达30%;当V_2O_5含量大于6.0%时,钒则主要存在于钙钛钒氧化物相中。
     将不同成分的含钒转炉渣配加石墨粉后在1873K恒温60min,得到了金属相和渣相。当R = 0.91,Al_2O_3含量为22.6%时,钒、磷在铁-渣之间的分配比分别为45、26;当R= 0.34,Al2O3含量为11.6%时,钒、磷在铁-渣之间的分配比分别为15、48;当碱度为1左右时,适当提高渣中Al_2O_3含量可以增大钒在铁-渣之间的分配比。碱度对还原的影响较大, R=1.5时钒的回收率最高,达到91.6%,随碱度的增大回收率逐渐降低,R=3时达到最低为73.9%,当R>3时回收率随碱度增加而增加。随着渣中CaF_2添加量的增加,钒、锰、磷在铁-渣之间的分配比逐渐增大,当添加量为3%时分配比达到最大,但到4%时分配比减小。
     随着温度升高,钒、锰、磷在铁-渣之间的分配比逐渐增大。
     还原后的渣进行XRD分析表明其主要物相是Ca_2SiO_4、Ca_3SiO_5、硅铝酸钙和铝酸钙,可以作为硅酸盐工业的原料和冶金工业的添加剂加以利用。
     还原所得金属进行XRD分析表明:钒主要以Fe_2SiV形式存在,磷以FeP_4、FeSi_4P_4形式存在,锰以Fe_2MnSi形式存在,铁除了以上述几种形式存在外,另外还以Fe_3C、C-Fe-Si以及Fe形式存在。可以通过(CaO+MgO)-FeO-SiO_2渣系对含钒铁合金进行氧化精炼或利用钠化焙烧对含钒铁合金中的钒磷进行分离。通过以上的研究可知,利用碳热还原法提取含钒钢渣中的钒是可行的。
Converter slag is the one of three industrial wastes. Utilization ratio of steel slag is only 50% in China, Which is less than that of developed countries. Usually steel slag is used as metallurgical materials, cement, roadbed materials, construction materials and phosphate fertilizer. Converter slags of Pangang contains 1~3% of V_2O_5. It is higher than that of vanadium-stone coal (containing about 1% V_2O_5). Valuable vanadium resource will be wasted if the converter slags is disposed directly as ordinary steel slags. It is difficult to reclaim vanadium from the slag because its higher CaO content. Techniques of extracting vanadium from steel slags is very perfect, but it is not fit for containing high CaO and low V_2O_5 slag due to very large consumption of sodium salts and acid. So it is necessary to explore novel technics to recovery vanadium from the steel slags and make use of the other remained ingredients effectivly.
     This paper mainly investigated distribution of the vanadium-oxide in the as–received V-bearing converter slag and different ingredients, basicity, CaF_2, temperature, time of constant temprature effecting on distribution ratio of vanadium, phosphorus and manganese between ferroalloy and slags. The aim to prove feasibility of extracting vanadium from Panzhihua converter slags by using of carbon thermal reduction process and separating vanadium and phosphous from the obtained V-bearing ferroalloy.
     The vanadium-oxide in the as–received V-bearing converter slag is distributed both in the lime solid solution and the tricalcium silicate; in the synthetic slag the vanadium-oxide was found mainly in the tricalcium silicate for the slag containing 3.4% V_2O_5, but for the slag containing 6.0% V_2O_5 the vanadium-oxide was found in the form of CaV2O6-Ca2P2O7 solid solution in which the V_2O_5 content is as high as 30%.
     The slag is mixed with additive and melt at 1873K in a graphite crucible. After keeping 1 hour vanadium distribution ratios is 45 and 15, phosphorus distribution ratios is 26 and 48 between ferroalloy and slags when the slags containing Al2O3 for 22.6%, R=0.91 and the slags containing Al2O3 for 11.6%, R=0.34 respectively. More Al2O3 can enhance vanadium distribution ratio when the slags basicity is about 1. Basicity has an great effect on reducing process. Vanadium recovery rate was highest (91.6%) at R = 1.5, and it decreased to 73.9% at R = 3.0, then increased with the increasing of basicity. The distribution ratios of vanadium, phosphorus and manganese increase gradually with increasing CaF_2 percentage. The distribution ratios is the highest at 3% CaF_2, but it decreased at 4% CaF_2. The distribution ratios increase with temperature and reaction time. XRD analysis confirmed that the main phases of the remained slag after reduction were Ca2SiO4、Ca3SiO5、aluminous calcium silicate and aluminate calcium respectively. It can be used as high quality cement materials or metallurgical fluxes.
引文
[1] 彭波. 工业废钢渣在公路基层建设中的应用. 中南公路工程,2005 年 6 月,第 30 卷,第 2 期 ,pp.165~167;
    [2] 文永才等. 钒钛转炉钢渣熔化特性研究. 钢铁钒钛, 2001,Vol. 22, No. 3, pp.32-36;
    [3] 陈林焌. 含钒钢渣的全分解和综合利用. 马钢科研,1990,No.2, pp. 36-38;
    [4] R.R.Moskalyk, A.M.Alfantazi. Processing of vanadium:a review. Minerals Engineering , 2003,16,pp793~805;
    [5] 漆明鉴. 从石煤中提钒现状及前景. 湿法冶金, 1999 年 12 月,第 4 期(总第 72期) ,pp.1~10;
    [6] 潘树范. 国内外氧气顶吹转炉提钒现状及对攀钢转炉提钒有关问题的探讨. 钢铁钒钛, 1995 年 3 月, 第 16 卷, 第 1 期
    [7] 张萍,蒋馥华. 苛化泥为焙烧添加剂从石煤提取五氧化二钒. 稀有金属, 2000 年 3 月,第24 卷,第 2 期, pp.115~118;
    [8] 黄道鑫. 提钒炼钢. 2002, 北京:冶金工业出版社,pp. 130;
    [9] 文永才,周家琮等. 钒钛转炉渣熔化特性的研究. 钢铁钒钛,2001 年 9 月,第 22 卷,第 3期, pp.32~36;
    [10] R.R. Moskalyk. Processing of vanadium: a review. Minerals Engineering ,16 (2003) 793–805;
    [11] 王金超 陈厚生. 攀钢转炉渣生产V2O5工艺研究. 钢铁钒钛, 1998年12月,第19卷第4期, pp.41~46;
    [12] 胡克俊. 国外钒的应用现状及攀钢产品的开发建议. 钢铁钒钛,2000.1,pp.40~48;
    [13] 谢兰香, 欧阳昌伦. 石煤无盐焙烧萃取提钒过程杂质行为的考察. 稀有金属与硬质合金,1993 年 3 月,总第 112 期,pp.24~28;
    [14] 李中军, 庞锡涛. 淅川纳矿纳化焙烧过程中热学性能、物相变化及钒氧化态变化的研究. 化工冶金, 1993 年 5 月,第 14 卷第 2 期,pp.123~129;
    [15] 肖松文, 梁经冬. 钠化焙烧提钒机理研究的新进展. 矿业工程, 1994 年 5 月,第 14 卷,第 2 期,pp. 53~54;
    [16] 汪会生. 石煤提钒钠化焙烧技术分析. 矿业工程, 1994 年 6 月, 第 14 卷,第 2 期,pp. 49~52;
    [17] L.Luo T.Miyazaki ,A.Shibayama ,W.Yen T.Fujita. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Minerals Engineering ,16(2003) ,pp.665~670;
    [18] B.Voglauer, A.Grausam. reaction-kinetics of the vanadium roast process using steel slag as secondary raw material. Proceedings of the Conference on Processing & Disposal ofMineral Industry Wastes '03", (2003), 5 S;
    [19]Kuniaki Murase,Ken-ichi Nishikawa,Tetsuya Ozaki,Ken-ichi Machida. Recovery of vanadium,nickel and magnesium from a fly ash of bitumenin-water emulsion by chlorination and chemical transport. Journal of Alloys and Compounds 264(1998) ,pp.151~156.
    [20] 彭明福, 朱胜友等.多膛炉焙烧转炉钒渣炉料结构的优化.钢铁钒钛,1998 年 11 月, Vol.19, No.4, pp.36~40;
    [21] 许国镇,夏华等.有色金属.1988.12(1):1~5.
    [22] 廖世明, 柏谈论. 国外钒冶金.1985, 北京:冶金工业出版社,225;
    [23] 李敏. 废铝基钼触媒剂钙化焙烧、纯碱液浸取提钒工艺试验. 铁合金, 2003 年第 2 期, 总第 169 期,pp. 31~34;
    [24] 张萍, 蒋馥华, 何其荣. 低品位钒矿钙化焙烧提钒的可行性. 钢铁钒钛, 1993 年, 第 14卷,第 2 期,pp. 18~20;
    [25] 李辽沙. 国家自然科学基金资助项目进展报告;
    [26] K.Borowiec Recovery of vanadium from slag by suiphiding.
    [27] M.C. Amiri. Recovery of vanadium as sodium nanadate from converter slag generated at Isfahan steel plant,Iran. Trans. insten Min. Metall.(Sect. C:Mineral process. Extr.Metall.),1999.113~114;
    [28] 吉隆建. 我国火法提钒技术的进展及现状. 钒钛,1992(3),pp.29~37;
    [29] 王明奎.含钒钢渣入高炉试验与生产
    [30] 马钢股份公司安环部综合利用科.高配比钢渣返回富集钒. 冶金环境保护, 1999 年第 1期,pp.64~66;
    [31] 程殿祥. 利用提钒尾渣生产高钒生铁. 铁合金,1990年第2期,pp. 40~42;
    [32] Masud A.Abdel-latif. Recovery of vnandium and nickel from petroleum fly ash . Minerals Engineering ,15(2002),pp.953~961;
    [33] R.Ressel,M.Hchenhofer etc. processing of vanadiferous residues to ferrovanadium. EDP Congress, 2005,pp. 763~778;
    [34] P.K. Tripathy, R.H. Rakhasia, R.C. Hubli, A.K. Suri .Electrorefining of carbothermic and carbonitrothermic vanadium: a comparative study. Materials Research Bulletin ,38 (2003),pp. 1175–1182;
    [35] L.J.Lozano D.Juan. Technical note leaching of vanadium from spent sulphuric catalysts. Minerals Engineering, 2001,Vol.14,No.5 ,pp.543~546;
    [36] Sandra Vitolo,Maurizia Seggiani ,Francesco Falaschi. Recovery of vanadium from a previously burned heavy oil fly ash. Hydrometallurgy, 62(2001) pp.145~150;
    [37] 沈喜恩. 上饶八都石煤直接酸浸提钒工艺研究. 江西煤炭科技, 1997 年第 3 期,pp. 57~59;
    [38] 刘安华, 李辽沙. 含钒固废提钒技术及展望. 金属矿山,总第 328 期,2003 年第 10期,pp.61~64;
    [39] L. Luo etc. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Minerals Engineering ,16 (2003),pp. 665–670;
    [40] A.M. Amer. Processing of Egyptian boiler-ash for extraction of vanadium and nickel .Waste Management, 22 (2002) ,pp.515–520;
    [41] Sandra Vitolo etc. Recovery of vanadium from heavy oil and Orimulsion flyashes. Hydrometallurgy, 2000,57 ,pp.141–149.
    [42] L.J. Lozano and D. Juan.Technical note leaching of vanadium from spent sulphuric acid catalysts. Minerals Engineering, 2001,Vol. 14, No. 5, pp. 543-546;
    [43] 陈重新, 柳卓等.不同的钒渣提钒浸出方式的工艺条件及发展方向. 铁合金, 1998 年第2 期,pp.8~10;
    [44] 王金超等. 多钒酸铵沉钒条件研究 钢铁钒钛.1993.14(2):28
    [45] 王金超等. 杂质对沉淀多钒酸铵的影响. 钒钛,1996(5~6),pp.1~7;
    [46] 林文俊. 用溶剂萃取法从一遍钒渣中提钒. pp.39~42.(从维普中查知)
    [47] 郑彭年. 离子交换用于石煤提钒的探讨. 工程设计与研究, 1992 年 6 月, 总第 76 期,pp. 35~38;
    [48] 黄希祜. 钢铁冶金原理. 1999,北京:冶金工业出版社;
    [49] 刘承军,姜茂发. CaO-SiO2-Na2O-CaF2-Al2O3-MgO 渣系的粘度和结晶温度.东北大学学报,2002 年 7 月,第 23 卷第 7 期,pp656~659;
    [50] 李金锡,张鉴. CaO-MgO-CaF2-Al2O3-SiO2 五元渣系粘度的计算模型. 北京科技大学学报,2000 年 8 月,第 22 卷第 4 期, pp.316~319;
    [51] 乐可襄等.CaO-SiO2-MgO-Al2O3精炼渣的脱硫性能. 特殊钢,第19卷,第3期, pp.15~17;
    [52] By Ryo Inoue , Hideaki Suito. Distribution of vanadium between liquid iron and MgO Sturated slags of the system CaO-MgO-FeOx-SiO2. Transactions ISIJ, 1982,Vol.22,pp.705~714;
    [53] Anders Werme. Distribution of vanadium between SiO2 rich slags and carbon saturated liquid iron. steel research, 59(1988), No.1,pp.6~15;
    [54] Shoji Kuboera. 充分利用 LD 转炉渣的方法. 钢铁钒钛, 1981 年第 4 期,pp.83~86,68;
    [55] 吴恩熙. 氧化钒制取碳化钒的热力学分析. 硬质合金, 2004 年 3 月, 第 21 卷第 1期,pp.1~4.
    [56] R. Mittelstaedt and K Schwertfeger, Metallurgical Transactions, 1990, vol 21B, pp.111-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700