用户名: 密码: 验证码:
钒渣体系物化性能及相平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属钒被称为“现代工业的味精”,广泛应用于钢铁、化工、航空航天等领域。我国的攀西地区拥有丰富的钒钛磁铁矿资源。我国目前主要是利用高炉工艺从钒铁磁铁矿中冶炼得到含钒铁水,然后将含钒铁水入转炉氧化获得钒渣和半钢。半钢作为炼钢的原料,钒渣则主要通过湿法冶金工艺提取产品V_2O_5。
     在转炉提钒工艺中,钒渣的高温物理化学性能直接影响到含钒铁水中钒的收得率和提钒工艺能否顺利进行。含钒铁水中各元素氧化过程的物理化学性质如何,影响到钒渣的质量和钒渣的物理化学特性;钒渣的粘度特性主要反映渣的流动性能,其优劣影响到钒渣冶炼过程渣-铁界面各种反应进行的难易程度及渣铁分离是否彻底;钒渣中尖晶石的生成及长大研究关系到后续湿法提钒过程的效率高低;钒渣中存在各相的具体组成及平衡关系,是衡量钒渣质量高低的重要指标;对钒渣基础渣系的相平衡关系的研究,则是提钒工艺理论指导的基本要求。
     本文基于攀钢转炉提钒工艺过程,研究了含钒铁水中各元素氧化的物理化学特性,钒渣的粘度特性,钒渣中尖晶石的生成及长大影响因素和铁钒体系的相平衡,初步构建了钒渣基础渣系的相图,拟为提钒工艺的进一步优化、钒渣质量的更加提高提供理论支撑。
     本文通过对钒渣体系物理化学性能及相平衡的研究,得到的结论如下:
     ①对含钒铁水中各元素氧化过程物理化学特性的研究结果表明,弱氧化剂CO_2作为含钒铁水的氧化气体,能够氧化铁水中各元素,但氧化速度有明显差异,用强氧化剂O_2吹炼含钒铁水,V的氧化明显增强,但整个过程中,始终滞后于Ti的氧化速度和氧化程度,即只要铁水中有钛元素,钒渣中将优先形成TiO_2。
     ②钒在钒渣中以正式钒铁尖晶石FeV_2O_4和反式钒铁尖晶石Fe_2VO_4的形式存在。钒渣中钒铁尖晶石结晶的生成和长大需要一定的过冷度,其最适宜的生长温度为1250℃。钒渣中尖晶石的数量和粒径与V_2O_3含量和w(FeO)/w(SiO_2)比值都有关系。
     ③钒渣粘度与温度的关系符合阿累尼乌斯方程,即温度升高,钒渣的粘度降低。渣中组分SiO_2对钒渣粘度的影响较为明显,低SiO_2含量时,提高其浓度可以降低钒渣的粘度,但是当SiO_2含量较高时,提高其浓度反而会使钒渣粘度升高。钒渣的粘度随V_2O_3含量的增加而升高,随w(FeO)/w(SiO_2)比值的升高而下降。
     ④在铁钒体系中,由于FeO的存在,FeO将与VO_2发生耦合生成V_2O_3,但不能与V_2O_3发生耦合生成VO。温度和FeO含量影响提钒体系中产物的组成。FeVO4的生成条件是V_2O_5含量较高尚余部分未分解时。Fe_2VO_4的生成条件是V_2O_5含量较少全部分解,FeO含量较高而只有少量被氧化时。
     ⑤修正的准化学溶液模型理论可以用来计算钒渣体系的相图。在确定了相图计算及实验可靠性的基础上,对FeO-SiO_2-V_2O_3三元系进行了不同等温截面的计算,得到了钒渣冶炼温度下该体系的等温截面。
Metal vanadium is called "modern industrial monosodium glutamate" and widelyused in iron and steel industry, chemical industry and aerospace industry. Panzhihuaand Xichang region in China has abundant resources of vanadium titanium magnetite.At present in China, the hot metal containing vanadium is formed mainly by the blastfurnace process from vanadium titanium magnetite, and then hot metal containingvanadium is oxidized in converter to form vanadium slag and semi steel. Semi steel isthe raw material of steelmaking and vanadium slag is the raw material of extractingV_2O_5products through the wet metallurgy process mainly.
     In converter V-recovering process, the physical and chemical properties ofvanadium slag at high temperature directly affect the vanadium yield in hot metalcontaining vanadium and vanadium extraction process. The physical and chemicalproperties of the elements in vanadium slag oxidation process would affect thevanadium slag quality and physical and chemical properties of vanadium slag. Theviscosity properties of vanadium slag mainly reflect the flow properties of slag. Thegood and bad flow properties affect how easy the reaction will be to go in the slag-ironinterface and slag iron separation degree in the vanadium slag smelting process. Theresearch on the generation and growth of spinel in vanadium slag is related to the highand low efficiency in subsequent wet vanadium extraction process. The compositionand balance relationship of the phase in vanadium slag is the important index tomeasure vanadium slag quality. The research on phase equilibrium relationship of thebasic slag system of vanadium slag is the basic requirement to theoretical guidance invanadium extraction process.
     Based on Pan-steel converter V-recovering process the physical and chemicalcharacteristics of the elements oxidation in hot metal containing vanadium, the viscosityproperties of vanadium slag, the influence factors of spinel generation, growth invanadium slag and the phase equilibrium of steel slag containing vanadium are studiedin this paper. As results, the phase diagram of basic slag system of vanadium slag isconstructed, to provide theoretical support for further optimization of vanadiumentraction process and the more improvement of vanadium slag quality.
     This paper studies the physical and chemical properties and the phase equilibriumof vanadium slag system and the conclusions are as follows:
     ①The research results of the physical and chemical properties of the elementsoxidation process in hot metal containing vanadium show that the weak oxidant CO_2, asthe low vanadium molten iron oxide gas, can oxide the elements in iron oxide. But theoxidation rates of the elements are distinctly different. The oxidation degree of elementvanadium would enhance obviously when the hot metal containing vanadium are blowninto strong oxidant O_2. But in the whole process, the oxidation rate and degree ofelement vanadium always be behind that of elelment titanium. That is to say, as long asthe hot metal contains element titanium, TiO_2would be formed in the vanadium slagfirstly.
     ②Existing forms of vanadium in vanadium slag are formal vanadium iron spinelFeV_2O_4and trans vanadium iron spinel Fe_2VO_4. The formation and growth of vanadiumiron spinel crystal in Vanadium slag need a certain degree of supercooling and the mostappropriate growth temperature is1250℃. The spinel’s quantity and size in vanadiumslag is related to V_2O_3content and w(FeO)/w(SiO_2) ratio.
     ③The relationship of vanadium slag viscosity and temperature obeys Arrhenius'equation. That is to say, when the temperature is raised vanadium slag viscosity wouldbe reduced. SiO_2, one of the slag compositions, obviously influence the vanadium slagviscosity. When the content of SiO_2is lower, to improve its concentration could reducethe vanadium slag viscosity. If the content of SiO_2is higher, to improve itsconcentration, on the contrary, would make the vanadium slag viscosity rise. Vanadiumslag viscosity would increase with the content of V_2O_3rising and would decrease withw(FeO)/w(SiO_2) ratio rising.
     ④In iron and vanadium system, due to the existence of FeO, FeO will coupleV_2O_5to generate V_2O_3, but can not couple V_2O_3to generate VO. Temperature and thecontent of FeO influence the composition of the products in iron and vanadium system.The generation condition of FeVO4is that the content of V_2O_5is high enough and partof them has not decomposed. The generation condition of Fe_2VO_4is that the content ofV_2O_5is less and all of them has decomposed, but the content of FeO is higher and onlya small amount of them is oxidized.
     ⑤Modified quasi chemical solution model theory can be used to deal withthephase diagram of vanadium slag system. On the basis of determining the phasediagram calculation and experimental reliability, the isothermal sections ofFeO-SiO_2-V_2O_3ternary system at smelting temperature have been obtained bythermodynamic computation.
引文
[1]杨绍利.钒钛材料[M].北京:冶金工业出版社,2007.
    [2] A.IO.波良可夫著,饶渡崎译.钒冶金原理[M].北京:中国工业出版社,1962.
    [3]陈鉴,何晋秋,林京.钒及钒冶金[M].攀枝花:攀枝花资源综合利用领导小组办公室,983:9.
    [4] Ye, G. Z.2006. Recovery of vanadium from LD-slag, a state of the art report, Part1-facts and metallurgy of vanadium. In Internet MEFOS report.
    [5]张玲,李青,夏作理等.钒的医学应用研究进展[J].中国药物和临床,2006,6(11):843-845.
    [6] Heyliger, C. E., A.G. Tahiliani, J. H. McNeill. Effect of vanadate on elevated bloodglucose and depressed cardiac performance of diabetic rats[J]. Science,1985,227:1474-1477.
    [7] Taylor, P. R., S. A. Shuey, E. E. Vidal, J. C. Gomez. Extractive metallurgy of vanadiumcontaining titaniferous magnetite ores: a review[J]. Minerals and MetallurgicalProcessing,2006,23(2):80-86.
    [8] P.S.米歇尔.世界钒的生产与使用.英国Kent TN161AQ,国际钒技术委员会报告.
    [9]姬云波,童雄,叶国华.提钒技术的现状和进展[J].国外金属矿选矿.2007(5):10~14.
    [10]傅金明,杜建良,孙福振等.顶底复合吹炼提钒试验研究[J].钢铁钒钛,1994,15(4):12-16.
    [11] Lindvall, Mikael. Selective oxidation of vanadium prior to iron and phosphorus[D].Lule, Sweden: Lule University of Technology,2006.
    [12]杜益厚.俄罗斯工业及其发展前景[J].钢铁钒钛,2001, Vol.22, No1,50~56.
    [13]戈文荪,张玉东,黎建.攀钢转炉提钒工艺的技术变革与展望[J].钢铁钒钛,2001,22(3):11.
    [14]锡淦,胡克俊.攀钢钒钛回收新进展[J].钢铁钒钛,1998,19(4):58-64.
    [15]刘茂军,罗浩川,罗在祥.攀钢炼钢厂设备发展回顾与展望[J].钢铁钒钛,2001,22(3):6-10.
    [16]李远洲.底吹氧气转炉吹钒工艺的热力学分析之一[J].马鞍山钢铁学院学报,1984.
    [17]陈东辉,杨树德.钒渣质量的系统评价[J].河北冶金,1993.
    [18]樊永忠.承钢转炉提钒、炼钢工艺发展四十五年历程之回顾[J].承钢技术,2004,3(1):5-7.
    [19]魏明义,傅金明.承钢提钒工艺回顾[J].承钢技术,2005,1:1-4.
    [20]陈勇,张大德.转炉提钒工艺的开发与优化[J].中国冶金,2003,1:36-38.
    [21] INOUE, Ryo, Hideaki SUITO. Distribution of Vanadium between Liquid Iron andMgO Saturated Slags of the System CaO-MgO-FeOx-SiO2[J]. Transactions of the Ironand Steel Institute of Japan,1982,22(9):705-714.
    [22] TSUKIHASHI, Fumitaka, Atsuko TAGAYA, Nobuo SANO. Effect of Na2O Addition onthe Partition of Vanadium, Niobium, Manganese and Titanium between CaO-CaF2-SiO2Melts And Carbon Saturated Iron[J]. Transactions of the Iron and Steel Institute of Japan,1988,28(3):164-171.
    [23] Howard, R., S. Richards, B. Welch, J. Moore. Vanadium distribution in meltsintermediate to ferroalloy production from vanadiferous slag[J]. Metallurgical andMaterials Transactions B,1994,25(1):27-32.
    [24] Kruger, J., in O. Winkler, R. Bakish.1971. Vacuum Metallurgy. London: Elsevier.
    [25] Strom, Werme A. Journal of Met.,1985,15(6):273-282.
    [26] Dodd, K. M., R. A. Mackay. International Textbook Company London,1981:206.
    [27]周剑波,薛向欣,段培宁. CaO-SiO2-A12O3-MgO-V2O5炉渣中非化学计量物VOx的热力学[J].中国有色金属学报,1998,(8(增刊2)):492-494.
    [28]陈东辉,杨树德.钒渣化学形成理论研究[J].河北冶金,1993,(77):32-41.
    [29]陈东辉,杨树德.钒渣质量的系统评价[J].河北冶金,1993,(73):19-23.
    [30]恩·阿·瓦托林著,王长林译.钒渣的氧化[M].北京:冶金工业出版社,1982.
    [31]周家琮.中国钒工业的发展,1999国际钒技术会议上的报告.
    [32]朱燕,贺慧琴,邓方.钒渣中钒的浸出特性[J].环境科学与技术,2006,29(12):16-17.
    [33]张国平.钒渣物相结构和化学成分对焙烧转化率的影响[J].铁合金,1991,5:17.-19.
    [34]王金超.钙对钒渣提钒的影响[J].四川有色金属,2004,(4):27-29.
    [35] Rainer Mittelstadt, Klaus Schwerdtfeger.The dependence of the oxidation state ofvanadium on the oxygen pressure in melts of VOx, Na2O-VOxand CaO-SiO2-VOx[J].Metallurgical transactions B,1990,21B:111-120.
    [36] J.C. van Dyk,F.B. Waanders,S.A. Benson,M.L. Laumb,K. Hack.Viscosity predictions ofthe slag composition of gasified coal, utilizing FactSage equilibrium modeling[J].Fuel,2009,88:67-74.
    [37]盖雪洁,盖同祥.旋转粘度计检测机理分析与改进建议[J].青岛建筑工程学院学报,2002,23(1):67-69.
    [38] ASSAEL M J, DALAOUTI N K. Prediction of th e V iscos ity of L iqu idM ixtu res. AnImp roved Approach[J]. Rheologica Acta,2000,21(2):357-356.
    [39]王常诊.冶金物理化学实验研究方法[M].北京:冶金工业出版社,1992.
    [40]钒渣YB/T008-2006,中华人民共和国发展与改革委员会,2007.
    [41] Bradbury, D. S.2002. The production of vanadium pentoxide. In Vanadium, Geology,Processing and Applications, Proceedings of the International Symposium on Vanadium.Canada,115-130.
    [42] Erwin Riedel,Jorg kahlert.Distribution and valence of the cations in the spinel system[J].Hyperfine interactions,1986,28:733-736.
    [43]彭毅,谢屯良,周宗权.高钙高磷低品位钒渣制取V2O5的研究[J].铁合金,2007,(4):18-23.
    [44]边悟.高硅低钒钒渣提取五氧化二钒的研究[J].铁合金,2008,(3):5-8
    [45]胡益华.关于钒渣质量对五氧化二钒生产效益的探讨[J].铁合金,1988,(4):15-19.
    [46]余亮,董元箎.含钒钢渣添加SiO2后的钒富积相与钒富集行为[J].材料与冶金学报,2007,6(2):94-98.
    [47] Saunders N., Miodownik A. P., CALPHAD (calculation of phase diagram): acomprehensive Quide,[M], university of Cambridge, UK: Robert W Cahn FRS:Elsevier Science.1998:7-30.
    [48] Dinsdal A. T., Kaufman L, CALPHAD-Computer Coupling of Phase Diagram&Thermo-chemistry [M], USA: Pergoman Press,1977-present
    [49] Hallstedt B., Thermodynamic assessment of the system MgO-A12O3[J], J. Am. Ceram.Soc.,1992,75(6):1497-1507.
    [50] Huang W. M., Hillert M., Thermodynamic assessment of the CaO-MgO-SiO2system [J],Metallurgical Materials Transformations A,1995,26A:2293-2310.
    [51]德国钢铁工程协会.渣图集[M].王俭,彭强,毛裕文,等译.北京:冶金工业出版社,1989.
    [52]刘刚.氧气转炉含钒炉渣相图及一些氧化物对CaO-FeO-SiO2渣系性能的影响[J].北京钢铁学院学报.1983.122-42.
    [53]陈国发,李运刚.相图原理与冶金相图.北京:冶金工业出版社.2002,3.
    [54]陆学善,相图与相变[M].中国科学技术大学出版社,1990:145-200.
    [55] L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, AcademicPress, New York, London,1970.
    [56] Sandman B., Jansson B., Andersson J. O., the thereto-calc database system [J].CALPHAD.1985.9:153-190.
    [57] Bale C. W., Pelton A. D., FACT (Facility for the Analysis of ChemicalThermodynamics). Version2.1-User Manual [C]. Ecole Plytechnique de Montreal/Royal Military College, Canada.1996, July.
    [58] Lukas H. L., Manual of Computer Programs: BINGSS, BINFKT, TERGSS and.TERFKT[M]. Germany,1991:3-55.
    [59] Davies R. H., Dinsdale A. T., Gisby J. A.. Application of thermodynamics in thesynthesis and processing of materials[M]. Nash P, Sundman B.m TMS, Warrendale, PA,1995:371-384.
    [60] T. Nishizawa, Mater. Trans. JIM,1992,33:713.
    [61] Chou K C.1987. A new solution model for predicting ternary thermodynamic properties.CALPHAD,11(3):293-300.
    [62] Chou K C,Chang Y A.1989. A study of geometrical model. Ber. Bunsenges Phys. Chem.1994:735-741.
    [63] Chou K C, Wei S K.1995.A general solution model for predicting ternarythermodynamic properties.CALPHAD,19(3):315-325
    [64] Chou K C, Wei S K.1997.A new generation solution model for predictingthermodynamic properties of a multicomponent system from banaries.Metall.Mater.Trans.B28B(3):439-445.
    [65] A.T. Dinsdale. CALPHAD,1991,15:317-425.
    [66]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M],冶金工业出版社,1999:1-50.
    [67] Kumar K. C. H., Wollants P, Some guidelines for thermodynamic operation of phasediagrams, Journal of Alloys and Compounds,2001,320:50-61.
    [68] J. H. Hilderbrand, R.L.Scott. Regular Solution [J]. New Jersey. Englewuood Cliffs,1962.
    [69] A.D. Pelton, M. Blander. Thermodynamic analysis of orderd liquid solution by amodified quasichemical approach-application to silicate slags[J]. Metall.Trans.B,1986,17B(12):805-815.
    [70] A.D.Pelton, M.Blander. Least squares optimization technique for the analysis ofthermodynamic data in ordered liquids. CALPHAD.1988.12(1):97-108
    [71]黄希祜.关于炉渣的结构模型及其热力学性质的近代发展.中国稀土学报(专辑).2000:51-58
    [72] M.Blander, Molten Salt Chemistry. Wiley-Interscience. USA.1964
    [73]董万春,戈文荪,施哲.低钒铁水提钒试验.钢铁钒钛[J],2010,31(4):22-27.
    [74]廖世明,柏谈论.国外钒冶金.北京冶金工业出社.1985.178.
    [75]陈荣贵,陈歧.攀钢雾化提钒工艺中型水口提钒试验[J].钢铁钒钛,1989,10(2):51-54.
    [76]张家芸.冶金物理化学[M].北京:冶金工业出版社,2007.
    [77]李祖树,徐楚韶.氧气顶吹低钒铁水时钒氧化的动力学[J].钒钛,1992(4):6-14.
    [78]王淑兰,梁英教.物理化学[M].北京:冶金工业出版社,2007.67-68.
    [79]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.449-485.
    [80]黄汉生.引人注目的钒化学[J].国际化工信息,2002,6:10-11.
    [81] M. Lindvall, Selective Oxidation of Vanadium Prior to Iron and Phosphorus, Lule.University of Technology, Lule, Sweden,2006,(Master thesis), pp.5-12.
    [82]青雪梅,谢兵,李丹柯,黄青云.铁水中钒氧化及尖晶石形成的研究[J].过程工程学报,2009,9:122-125.
    [83] M.Nohair, D.Aymes, P.Perriat, B.Gillot. Infrared spectra-structure correlation study ofVanadium iron spines and of their oxidation products[J].Vibrational Spectroscopy,1995,9:181-190.
    [84]黄道鑫.提钒炼钢[M].冶金工业出版社,2000,23.
    [85]戚大光,李道昭,张桂欣等.钒钛磁铁矿高炉冶炼的热力学讨论[J].钢铁钒钛,1984,2:79-86.
    [86]唐鑫,徐楚韶.钒钛铁水中钒钛热力学分析[J].四川冶金,1993,4:31-34.
    [87] Anders Werme, Carin Astrom. Recovery of vanadium from hot metal thermodynamicsand injection application[J]. Scandinavian Journal of Metallurgy,1986,15:273-282.
    [88] Jiang Diao, Bing Xie*, Chengqing Ji, Xu Guo, Yonghong Wang, and Xiaojun Li.Growth of spinel crystals in vanadium slag and their characterization. Cryst. Res.Technol.2009,44,707–712.
    [89]李晓军,谢兵,刁江,赵重阳,王永红.钒渣中尖晶石等温长大的动力学研究.稀有金属,2011,35(2):281-285.
    [90] K. Righter, S. R. Sutton, M. Newville, L. Le, C. S Schwandt, H. Uchida, B. Lavina, andR. T. Downs, Am. Mineral.2006,91,1643.
    [91] V. Nivoix and B. Gillot, Mater. Chem. Phys.63,24(2000).
    [92] D. B. Rogers, R. J. Arnott, A. Wold, and J. B. Goodenough, J. Phys. Chem. Solids1963,24,347.
    [93]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.449-485.
    [94] A.wold, D.rogers, R.J.Arnott, N.Menyuk.Vanadium iron oxides[J].Journal of appliedphysics,1962,33(3):1208-1213.
    [95]胡德林.金属学原理[M].西安:西北工业大学出版社,1987:295.
    [96]高剑辉.转炉提钒工艺对钒渣质量的影响[J].金属世界,2008,4:8-11.
    [97]戈文荪,张玉东,黎建.攀钢转炉提钒工艺的技术变革与展望[J].钢铁钒钛,2001,22(3):11-14.
    [98]张叔均.钒渣与耐火材料的相互作用[J].四川有色金属,1989.(1):1-6.
    [99]谢兵,黄希枯.在攀钢雾化提钒渣物化性能的研究[J].钢铁钒钛[J]1985.2:3~5.
    [100] Shaw H R.Viscosities of magmatic silicate liquids:an empirical method of prediction[J].American Journal of Science,1972,272(9):870-893.
    [101] Alex K, Evgueni J. Modeling of viscosities of the partly crystallized slags in theAl2O3-CaO-“FeO”-SiO2System[J]. Metallurgical and Materials Transactions B,2001,32(6):1027-1032.
    [102] Watt J D, Fereday F. The flow properties of slags formed from the ashes of Britishcoals[J]. Journal of the Institute of Fuel,1969,42(131):99-103.
    [103] Weymann H. D..Koll. Z.Z. Temperature dependence of viscosity[J]. Polymers,1962,181:131-137.
    [104] Bottinga Y, Weill D F. The viscosity of magmafie silicate liquids: A model forcalculation[J]. American Journal of Science,1972,272(5):438-475.
    [105]黄希祜.钢铁冶金原理[M].冶金工业出版社.2002(1):43-47.
    [106] Zhangzhen He, Jun-Ichi Yamaura, Yutaka Ueda. Flux growth and magnetic propertiesof FeVO4single crystals. Journal of Solid State Chemistry181(2008)2346–2349.
    [107] Zhangzhen He, Jun-Ichi Yamaura, Yutaka Ueda. Flux growth and magnetic propertiesof FeVO4single crystals[J].. Journal of Solid State Chemistry181(2008)2346–2349.
    [108] Toru Yamashita, Peter Hayes. Analysis of XPS spectra of Fe2+and Fe3+ions in oxidematerials[J]. Applied Surface Science254(2008)2441–2449.
    [109]张圣弼,李道子.相图-原理、计算及在冶金中的应用.北京.冶金工业出版社.1986,1
    [110]柳平英,郭景康.用热力学函数计算相图主要方法的综述.中国陶瓷.2003,39(5):8.
    [111] Thermfact/CRCT>T-Technologies. The Integrated Thermodynamic DatabankSystem [EB/OL]. http://www.factsage.cn/fs general c.php.
    [112] Guggenheim E A.Mixture,Oxford University.1992,14(6):612.
    [113] A. D. PELTON. Thermodynamic database development modeling and phase diagramcalculations in oxide systems[J]. Rare Metals,2006,25(5):473-480.
    [114] S.A.Decterov, I. H.Jung,E.Jak,Y.-B.Kang,P.Hayes, A.D.Pelton. Thermodynamicmodellingof the Al2O3-CaO-CoO-CrO-Cr2O3-FeO-Fe2O3-MgO-MnO-NiO-SiO2-Ssystem and applications in ferrous process metallurgy[J]. The south african institute ofmining and metallurgy,2004:839-850.
    [115] In-Ho Jung, Sergeri A.Decterov, A.D Pelton..Critical thermodynamic evaluation andoptimization of the FeO-Fe2O3-MgO-SiO2System[J] Metall. Trans.B,2004,35B(12):来877-889.
    [116] P.Wu, G.Eriksson, A.D.Pelton, and M.Blander:Iron Steel Inst.Jpn[J].1993,33(1):26-35.
    [117] J. C. Bernier, P. Poix. Contribution a l’etude des etates d’oxydation dans l’oxyde mixtespinelle Fe2VO4[J]. Am. Mineral.,1962,(47):1284.
    [118] C.P J. Van Vuuren, P.P. Stander. The Oxidation Kinetics of FeV2O4in the Range200-580℃[J]. Thermochimica Acta,1995,254:227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700