用户名: 密码: 验证码:
光电催化及吸附—电化学联合技术处理难降解废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含酚废水和印染废水等难降解有机废水的治理一直是废水处理中的难题,也是当今水处理领域极其活跃的研究课题。电化学技术作为高级氧化技术之一,具有设备简单、易于控制、反应温和、无二次污染等优点,具有良好的前景。虽然电化学技术处理难降解有机废水研究已取得一定进展,但是对于电化学氧化与光催化、吸附等技术耦合处理难降解有机废水的研究较少。
     本文采用直接阴极电沉积和阳极氧化法分别制备Fe203、CuO、NiO复合TiO2纳米管(TiO2-NTs)光电催化阳极,并对其表面形貌及光电特性进行了表征。以复合电极为阳极,重点考察了光电催化技术处理含酚废水和甲基橙废水的影响因素和反应机理,并对苯酚废水资源化进行了初步研究。为进一步降低成本,以活性炭纤维为电极,采用吸附-电催化联合技术处理含酚废水,对活性炭纤维吸附特性进行了研究,建立了吸附-电催化技术下苯酚废水CODCr降解的反应动力学模型。研究取得了以下成果:
     (1)成功制备了Fe2O3改性TiO2-NTs(Fe2O3/TiO2-NTs)复合电极、CuO改性TiO2-NTs (CuO/TiO2-NTs)复合电极和NiO改性TiO2-NTs(NiO/TiO2-NTs)复合电极,将纯TiO2纳米管的光响应区间拓宽到可见光区域。以复合电极为阳极,采用光电催化技术处理苯酚废水,考察了电极材料、氧化电压、溶液初始pH值、光源、氧气等因素对苯酚去除率和苯醌收率的影响。在以Fe203/Ti02-NTs为阳极,铜片为阴极,碘钨灯为光源,pH=5,氧化电压为10V时,苯酚去除率达到99%。光电催化技术和光催化、电催化技术对苯酚废水的降解结果表明,光电催化技术的苯酚去除率远远高于电催化技术和光催化技术。考察苯酚光电催化降解机理发现,光电催化过程中产生的羟基自由基和空穴首先与苯环发生加成反应,产生苯醌和对苯二酚,然后苯环进一步被氧化开环,产生顺丁烯二酸;顺丁烯二酸被进一步氧化,生成更小分子的有机物或被矿化。研究了苯酚光电催化选择性氧化为苯醌的实验条件,结果表明苯醌收率最大的条件是CuO/TiO2-NTs为阳极,铜片为阴极,紫外光为光源,溶液pH=5,氧化电压为15V;苯酚选择性最大的条件是CuO/TiO2-NTs为阳极,铜片为阴极,无光照,溶液pH=5,氧化电压为15V。
     (2)以Fe2O3/TiO2-NTs、CuO/TiO2-NTs和NiO/TiO2-NTs复合电极为阳极,光电催化处理甲基橙废水,考察了电解质浓度、溶液初始pH值、氧化电压、光源、氧气等因素对甲基橙的脱色的影响。增加电解质浓度,可增加甲基橙脱色率。在pH=3时,甲基橙的脱色率最大。15V时,甲基橙脱色率远远高于1OV。可见光条件下光电催化有利于甲基橙的脱色。对比光电催化和电催化技术,光电催化技术下的甲基橙脱色率远远高于电催化技术。对甲基橙溶液进行紫外可见吸收光谱扫描发现,反应时偶氮键与苯环所形成的共轭体系首先受到破坏,使溶液颜色褪去;在紫外区有吸收的一些基团被破坏的速度较慢。分析了甲基橙光电催化脱色机理,酸性条件下,甲基橙以偶氮式和醌式两种形态存在。当以偶氮式结构存在时,苯环首先与羟基自由基发生加成反应,然后与H+发生反应,将甲基橙分子分解成两个小分子,小分子还带有发色基团。小分子再与羟基自由基发生夺氢反应,破坏发色基团;而以醌式结构存在时,与苯环相连的碳氮双键与H+发生加成反应,破坏发色团,使甲基橙脱色。
     (3)研究了吸附-电化学联合技术对苯酚废水的处理效果,结果表明吸附-电催化联合作用可以显著提高苯酚的去除率。电流强度、电解质种类对苯酚废水CODcr去除率有一定影响。电流强度为0.6A时,CODcr去除率和电流效率都最高,能量消耗低。以NaCl为电解质时苯酚废水的CODcr去除率明显高于以Na2SO4为电解质时的去除率。在以活性炭纤维为阴极的吸附电催化中,通入氧气有利于苯酚的降解。pH值为3时苯酚CODc,去除率最高。溶液初始浓度越低,CODc,的去除率越高。对活性炭纤维进行微波改性,有利于苯酚去除。活性炭纤维的等温吸附曲线符合Freundlich等温式。建立了吸附-电催化联合作用下苯酚废水CODcr降解的反应动力学模型,较好地解释、关联了实验数据,揭示出吸附是CODcr去除的主要形式。活性炭纤维连续使用时吸附速率有所下降,但苯酚废水仍然能够在2h内取得90%以上的去除效率,显示出较好的应用前景。
Refractory organic wastewater, such as phenol wastewater and dying wastewater, has always been a challenge as well as a hot research topic in wastewater treatment field. Electrochemical technique is one of advanced oxidation processes. Although some research has used the electrochemical techinique to treat the refractory organic wastewater, the united technologies research of electrochemical techniques with photocatalysis or adsorption is still few.
     Direct cathodic electrodeposition and anodization were used to prepare TiO2natotubes (TiO2NTs) electrodes modified by metal oxide. The surface features and photoelectrochemical properities were identified. Influencing factors and degradation mechanisms of photoelectrochemical technology on phenol and methyl orange wastewaters were mainly studied. In order to cut down the cost, electrocatalysis combined with adsorption method was further studied to treat the phenol wastewater. Achievements are as follows:
     (1) Fe203-modified TiO2-NTs, CuO-modified TiO2-NTs and NiO-modified TiO2NTs were successfully prepared with direct cathodic electrodeposition and anodic oxidation, which can broaden the light response range to visible light region. Photoelectrocatalysis technology has been applied to treat phenol wastewater using the composite anodes. And the influence factors on phenol removal rate and benzoquinone yield, such as electrode materials, oxidation voltage, initial pH value, light source and oxygen were studied. The results indicated that the phenol removal rate of phenol achieved by photoelectrochemical technology is significantly higher compared with that achieved by electrocatalytic technology or photocatalytic technology. When Fe2O3/TiO2-NTs was used as anode, copper as cathode and iodine-tungsten lamp as light source, the phenol removal rate reached99%at a voltage of10V and a pH value of5. When CuO/TiO2NTs was used as anode and copper as cathode, the benzoquinone yield and the selectivity of phenol were all maximum at a voltage of15V and a pH value of5.
     (2) Photoelectrocatalycal technology was applied to treat dyeing wastewater using metal oxide modified TiO2-NTs electrodes. And the influence factors, such as electrolyte concentration, initial pH value, oxidation voltage, light source and oxygen have been studied. The results indicated that the decolorization rate of methyl orange achieved was extraordinarily higher by using photoelectricatalytic technology than that using electrocatalysis technology. When Fe2O3/TiO2-NTs was used as anode, the decolorization rate of methyl orange reached91%in10min at a voltage of15V and a pH value of3. Methyl orange had two different morphological structures (azo-type and quinone-type) in acidic solution. For the azo structure, the benzene ring could be oxidized first by reacting with hydroxyl radical. For the quinone-type structure, chromophoric groups were damaged by the reaction between H+and azo double bond.
     (3) The degradation of phenol wastewater was investigated by electrocatalysis combined with adsorption method. The result indicated that electrocatalysis combined with adsorption method can significantly improve the removal rate of phenol. Current intensity, electrolyte type, oxygen, pH values and microwave modification have a certain influence on the chemical oxygen demand (CODcr) removal of phenol wastewater. The adsorption equilibrium of phenol on activated carbon fiber was coincident with Freundlich isotherm. A kinetic model for CODCr removal could better explain the experimental data. And it also revealed that adsorption was the main form of CODcr remove. The CODCr removal used activated carbon fiber still could reach90%within2h. It shows a good application prospects.
引文
[1]周明华,吴祖成,汪大翠.电化学高级氧化工艺降解有毒难生化有机废水[J].化学反应工程与工艺,2005,3(17):263
    [2]李学敏.金刚石薄膜电极的电化学特性及其在污水处理中的应用研究[D].北京:清华大学,2004:1-127
    [3]刘永军.低温放电等离子体在水处理中的应用[D].兰州:西北师范大学,2004:7-71
    [4]郭晓.接触辉光放电电解技术在有机印染废水处理中的应用及其条件优化[D].兰州:西北师范大学,2007:9-55
    [5]徐红.工业废水电化学处理过程中滤压式电解槽工程问题的研究[D].长春:吉林大学,2008:10-61
    [6]景晓辉,尤克非,等.印染废水处理技术的研究与进展[J].南通大学学报:自然科学版,2005,3(4):18-21.
    [7]赵进英.零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究[D].大连:大连理工大学,2009:13-22
    [8]丛燕青.氯酚的电化学降解行为及治理研究[D].杭州:浙江大学,2005:3-111
    [9]别继艳.电催化氧化技术处理高浓度难降解有机废水[D].杭州:浙江工业大学,2003:3-20
    [10]林海波.电化学氧化法处理难生物降解有机工业废水的研究[D].长春:吉林大学,2005:9-30
    [11]林治顺.负载型二氧化钛光阳极光电催化降解酸性红B[D].广州:广东工业大学,2007:3-10
    [12]巫晓琼.含酚废水的催化净化和制氢[D].杭州:浙江工业大学,2008:1-13
    [13]王湘艳.利用苯酚氧化反应研究氧化钛晶须的催化活性[D],南京:南京工业大学,2005:31-35
    [14]杨丽娟.苯酚电化学降解影响因素的研究[D].哈尔滨:黑龙江大学,2008:3-6
    [15]顾颖颖.高选择性苯羟基化反应的研宄[D].上海:华东师范大学,2007:1-3
    [16]张文军,王旭,李强.含酚废水处理技术的研究进展[J].工业用水与废水,2011,1(42):5-7
    [17]狄军贞.苯酚降解菌处理含酚废水的实验研究[D].阜新:辽宁工程技术大学,2003: 9-19
    [18]李焱.高效苯酚降解菌的选育及其固定化方法处理含酚废水[D].沈阳:沈阳药科大学,2008:15-20
    [19]吕洲.基于微米级核壳结构Fe@Fe304+x的Fenton试剂处理染料废水的研究[D].上海:上海交通大学,2009:11-19
    [20]马岩.高浓度偶氮染料废水处理技术的研究[D].天津:天津大学,2008:1-17
    [21]范迪.印染废水处理机理与技术研究[D].青岛:中国海洋大学,2008:4-25
    [22]于书平.光电催化降解有机染料的研究[D].广州:华南理工大学,2004:1744
    [23]杜琳.电催化及光电催化氧化印染废水的研究[D].成都:四川大学,2007:10-26
    [24]房献宝.光电化学催化对染料废水的降解脱色研究[D].广州:暨南大学,2007:8-27
    [25]马春燕.印染废水深度处理及回用技术研究[D].上海:东华大学,2007:21-34
    [26]单治国.新型Pb02电极处理难降解有机废水的研究[D].合肥:合肥工业大学,2009:13-22
    [27]王辉.含苯酚废水电化学氧化降解研究[D].兰州:西北师范大学,2005:19-33
    [29]张季惠.活性炭负载Ti02光催化降解苯酚的实验研究[D].兰州:兰州理工大学,2009:12-26
    [29]司鹏敏.BHl型混凝脱色剂处理针织印染废水的实验研究[D].青岛:青岛理工大学,2010:10-26
    [30]闫哗.纳米二氧化钛光催化降解含酚废水的研究[D].北京:北京化工大学,2008:15-33
    [31]戴启洲.湿式电催化氧化处理难降解有机污染物的研究[D].杭州:浙江大学,2008:11-30
    [32]张光明,张盼月,张信芳.水处理高级氧化技术[M].哈尔滨:哈尔滨工业大学出版社,2007:3-147
    [33]陈颖.高压放电等离子体对水中偶氮染料活性红195的去除研究[D].南京:南京大学,2011:10-25
    [34]王宁,李新勇,侯阳,等.Ti02纳米管的阳极氧化法制备及对对氯苯酚的光电降解研究[J].科学通报,2008,53(13):1528-1532
    [35]李良红,梅平,李绍文,等.三维电极电助光催化在有机废水处理中的应用研究进展[J].化学工程师,2005,116(5):45-47
    [36]展宗城,任学昌Mn-Fe氧体/Si02/Ti02磁载光催化剂的制备及性能[J].环境科学与技术,2009,32(4):62-65
    [37]冯玉杰,李晓岩,尤洪.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002:1-390
    [38]沙净.不同电极电化学氧化模拟有机废水实验研究[D].兰州:西北师范大学,2009:8-24
    [39]李慧婷.电化学氧化法在工业废水处理中的应用研究[D].长春:吉林大学,2011:11-24
    [40]王禹.吸附与电化学氧化联合处理染料废水的实验研究[D].长春:吉林大学,2011:12-28
    [41]王程远.电化学氧化法降解水中含氮污染物的实验研究[D].北京:北京化工大学,2008:16-52
    [42]常欣.电化学催化氧化技术处理焦化废水的研究[D].西安:陕西师范大学,2009:10-28
    [43]李庭刚,李秀芬,陈坚.渗滤液中有机化合物在电化学氧化和厌氧生物组合系统中的降解[J].环境科学,2004,25(5):172-176
    [44]李明玉,尚薇,王心乐,等.光电化学协同催化降解甲基橙的研究[J].中国环境科学,2009,29(5):512-517
    [45]邵天宝.电极生物膜法脱氮的研究[D].南京:南京理工大学,2009:16-22
    [46]陈裕武.电化学氧化法与生物流化床技术组合工艺处理酚醛树脂废水的研究[D].南京:南京理工大学,2008:12-48
    [47]刘鸿,冷文华,吴合进,等.光电催化降解磺基水杨酸的研究[J].催化学报,2000,21(3):209-212
    [48]王海燕,蒋展鹏,余刚,等.光电协同催化氧化苯甲酸的试验研究[J].环境科学,2004,25(1):25-29
    [49]蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展[J].化学进展,2005,17(4):622-628
    [50]张胜寒,梁可心,檀玉.Ti02电助光催化水处理影响因素的研究进展[J].中国电力教育,2007(1):329-331
    [51]徐惠,王毅,翟钧,等.Ti02纳米管的水热合成表征及其光催化性能研究[J].环境 污染与防治,2006,28(2):81-83
    [52]庄惠芳,林昌健,李静,等.高度有序的二氧化钛纳米管阵列的制备及其光催化活性的研究[J].化学学报,2007,65(21):2363-2368
    [53]陈晓娟,彭芳光.Ti02纳米管的制备、改性及应用研究[J].铁道建筑技术,2008,B12:296-299
    [54]万斌,沈嘉年,陈鸣波,等.阳极氧化法制备Ti02纳米管及光催化性能[J].应用化学,2008,25(6):665-668
    [55]万永彪,吴莲苹,林微,等.电化学阳极氧化法制备Ti02纳米管[J].延边大学学报,2008,34(1):47-48
    [56]孙岚,李静,庄惠芳,等.Ti02纳米管阵列的制备、改性及其应用研究进展[J].无机化学学报,2007,23(11):1841-1848
    [57]阴育新.Ti02纳米管阵列的阳极氧化制备与光电催化性能[D].天津:天津大学,2007:8-108
    [58]刘守新,陈广胜,陈孝云,等.Ag/Ti02对含酚废水的光电催化降解[J].应用化学,2005,22(8):840-843
    [59]谢超飞.纳米晶二氧化钛及其复合物的制备和光电性质研究[D].郑州:河南大学,2009:8-57
    [60]罗运俊.太阳能利用技术[M].北京:化学工业出版社,2011:18-36
    [61]VEGA V, CERDEIRA M A, PRIDA V M, et al. Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays [J]. Non-Crystalline Solids,2008,354:5233-5235.
    [62]HOU Y, LI X Y, ZOU X J, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-Chlorophenol degradation environ[J]. Science Technology,2009,43:858-863
    [63]ENRIQUE S M, ESTELA G B. Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers [J]. Solar Energy Materials & Solar Cells,2007, 91:1412-1415
    [64]PENG L L, XIE T F, WANG D J, et al. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts[J]. Physical Chemistry Chemical Physics,2010,12:8033-8041
    [65]LIU H Y, GAO L. Preparation and properties of nanocrystalline a-Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst [J]. Communications of the American Ceramic Society,2006,89:370-373
    [66]MOHAMMED A G, MOHAMMAD N S. Efficient removal of phenol from water using Fe2O3 semiconductor catalyst under UV laser irradiation[J].Environmental Science and Health Part A,2009,44(5):515-521
    [67]TAL B M, ISHAI D. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts [J]. Applied Catalysis B:Environmental,2009, 85:207-211
    [68]WONG K H, KRISHNAMOORTHY A. Solid state dye-sensitized solar cell with TiO2/NiO heterojunction:Effect of particle size and layer thickness on photovoltaic performance [J]. Materials Chemistry and Physics,2011,125:553-557
    [69]路彦景,李向清,穆劲CuO-NiO助催化剂对Ti02(P25)光催化活性的影响[J].无机化学学报,2009,25 (7):1149-1152
    [70]KUANG S Y, YANG L X, LUO S L, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays [J]. Applied Surface Science,2009,255:7385-7388
    [71]LI G H, DIMITRIJEVIC N M, CHEN L, et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites [J]. Physical Chemistry Chemical Physics,2008,112:19040-19044
    [72]郝苓汀.电化学氧化降解酚类有机污染物实验研究[D].沈阳:沈阳建筑大学,2008:3-52
    [73]张音波.Ti02光催化降解甲基橙的试验及机理研究[D].广州:广东工业大学,2002:5-45
    [74]CZAPLICKA M. Sources and transformations of chlorophenols in the natural environment [J]. Science of the Total Environment,2004,322:21-39
    [75]马前,梅滨,等.超声辅助电催化氧化降解苯酚的研究[J].环境污染治理技术与设备,2006,7(11):51-54
    [76]丁正新.微波辐射对TiO2制备及光催化过程的影响[D].福州:福州大学,2005:3-28
    [77]赵德明,金宁人,等.,微波/过氧化氢系统催化降解苯酚水溶液[J].化工学报,2007, 58(7):1736-1740
    [78]UCUN H D, YILDIZ E, NUHOGLU A. Phenol biodegradation in a batch jet loop bioreactor (JLB): Kinetics study and pH variation [J]. Bioresource Technology,2010, 101(9):2965-2971
    [79]FARZANEH F, MEHRABAN Z, NOROUZI F. Synthesis and utilization of a mesoporous nickel oxide as a novel catalyst for degradation of phenol [J]. Environmental Chemistry Letters,2010,8(1):69-72
    [80]SINGH S, SINGH B B, CHANDRA R. Biodegradation of phenol in batch culture by pure and mixed strains of paenibacillus sp and bacillus cereus [J]. Polish Journal Microbiology,2009,58(4):319-325
    [81]AD AN C, MARTINEZ A A, MALATO S, et al. New insights on solar photocatalytic degradation of phenol over Fe-TiO2 catalysts:Photo-complex mechanism of iron lixiviates[J]. Applied Catalysis B-Environmental,2009,93(1-2):96-105
    [82]SURYAMAN D, HASEGAWA K, KAGAYA S, et al. Continuous flow photocatalytic treatment integrated with separation of titanium dioxide on the removal of phenol in tap water[J]. Journal of Hazardous Materials,2009,171(1-3):318-322
    [83]TURHAN K, UZMAN S. Removal of phenol from water using ozone [J]. Desalination,2008,229(1-3):257-263
    [84]SONG S, ZHAN L Y, HE Z Q, et al. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2-Sb/PbO2 electrodes[J], Journal of Hazardous Materials,2010,175(1-3):614-621
    [85]OLIVEIRA H G, NERY D C, LONGO C. Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes[J]. Applied Catalysis B-Environmental,2010,93(3-4):205-211
    [86]DAI Q Z, LEI L C, ZHANG X W. Enhanced degradation of organic wastewater containing p-nitrophenol by a novel wet electrocatalytic oxidation process:Parameter optimization and degradation mechanism [J]. Separation and Purification Technology, 2008,61(2):123-129
    [87]CONG Y Q, WU Z C. Electrocatalytic generation of radical intermediates over lead dioxide electrode doped with fluoride [J]. Physical Chemistry Chemical Physics,2007, 111(8):3442-3446
    [88]YANG J, JIA J P, LIAO J, WANG Y L. Removal fo fulvic acid from water electrochemically using active carbon fiber electrode[J]. Water Research,2004, 38(20):4353-4360
    [89]SHEN Z M, WANG W H, JIA J P, et al. Degradation of dye solution by an activated carbon fiber electrode electrolysis system[J]. Journal of Hazardous Materials,2001, 84(1):107-116
    [90]ZHOU M H, HE J J. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode[J]. Journal of Hazardous Materials,2008,153:357-363
    [91]STUCKI S, KOTZ R, CARCER B, et al. Electrochemical waste-water treatment using high overvoltage anodes. Part I:Anode performance and applications[J]. Applied Electrochemistry,1991,21:99-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700