用户名: 密码: 验证码:
APOBEC3G在胰腺癌中分子机制及其关键靶蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     胰腺癌是常见的消化道恶性肿瘤,死亡率居第4位,发病隐匿、进展快、早期出现转移,但治疗手段有限。阐明胰腺癌分子机制是治疗胰腺癌的基础和前提。近年研究提示病毒感染与消化道肿瘤发生发展关系密切,然病毒感染对肿瘤恶性生物学行为影响尚不明了。APOBEC酶作为一种常见的病毒感染反应性蛋白,能使病毒DNA发生超突变,具有广谱抗病毒能力。近来研究提示APOBEC蛋白不仅有抗病毒作用,而且在肿瘤中也有重要功能。本研究目的是通过筛选和鉴定参与肿瘤细胞恶性生物学行为的APOBEC家族成员;检测APOBEC3G(A3G)在胰腺癌中的表达改变;改变A3G表达水平对胰腺癌细胞生物学行为影响的分子机制,以及鉴定其关键作用靶蛋白,从而明确A3G对胰腺癌恶性生物学行为的影响。
     方法:
     采用全基因cDNA表达谱芯片筛选参与肿瘤细胞恶性生物学行为的病毒相关蛋白。为探讨A3G在胰腺癌表达情况,采用Real-time PCR检测3株胰腺癌细胞系,11例配对胰腺癌及癌旁组织中A3G mRNA水平;采用免疫组化和免疫荧光进一步验证54例配对胰腺癌病理组织切片中A3G蛋白的表达情况。为评价A3G在胰腺癌中的作用,建立了稳定表达A3G的胰腺癌细胞系,并观察过表达A3G对裸鼠皮下移植瘤形成情况的影响。为研究A3G早期促进成瘤的分子机制,采用克隆球形成试验、失巢凋亡(anoikis)实验和流式检测早期凋亡水平,并用western blot检测凋亡相关蛋白表达情况。为进一步研究A3G抑制anoikis的分子机制,我们检测了Akt通路活性,western blot检测了Akt通路中关键抑制蛋白PTEN的表达,并用免疫共沉淀方法检测A3G与PTEN的相互作用。同时采用荧光素酶双报告基因方法检测了Wnt通路活性,用免疫共沉淀筛选作用于Wnt通路的关键蛋白。我们进一步构建各种结构域突变体分析A3G与PTEN、FZD蛋白的结合位点。
     结果:
     基因芯片筛选发现病毒感染反应性蛋白A3G可能参与肿瘤恶性生物学行为;A3G在胰腺癌细胞和组织中表达升高;高表达A3G早期可促进动物移植瘤的成瘤,晚期又能抑制肿瘤生长;体外研究发现A3G增加了抗凋亡蛋白Bcl-2, Mcl-1和phospho-Bcl-2的表达,显著抑制胰腺癌细胞的anoikis;进一步发现过表达A3G是通过激活Akt激酶活性从而参与anoikis抵抗,A3G激活Akt通路是通过灭活PTEN蛋白活性实现的,A3G与PTEN结合需要A3G的CD2结构域存在,PTEN与A3G结合需要PTEN的C2结构域和PDZ结构域的存在。我们还发现A3G通过与FZD1蛋白结合参与调控Wnt通路,A3G与FZD1结合与A3G磷酸化水平相关,与结构域无明显相关性;FZD1与A3G结合需要两个结构域均存在。
     结论:
     病毒感染反应性蛋白A3G在胰腺癌中表达升高,可能通过灭活PTEN介导的Akt通路激活导致anoikis抵抗,通过FZD参与调控Wnt通路活性,提示A3G除抗病毒作用外还参与了肿瘤恶性生物学行为的调控。
Purpose:
     Pancreatic cancer is a common gastrointestinal malignancy cancers, which is the fourth cause of cancer-related deaths, with occult onset, rapid progression, early metastasis, and limited treatment. To clarify the molecular mechanisms of pancreatic cancer is the basis and premise for the treatment. Recent research suggests that many gastrointestinal cancers are related with virus infection, but the role of virus infection in the biological behaviors of cancer cells remains unclear. As a virus-reactive protein, APOBEC enzyme can cause hypermutation in the viral DNA, presenting extensive anti-virus capability. Recent studies have found that APOBEC protein not only has antiviral activity, but also has an important function in cancers. The purpose of this study is to screen and identify APOBEC family members involved in the malignant behavior of tumor cells; to detect the A3G expression in pancreatic cancer; to observe the molecular mechanisms of APOBEC3G(A3G) in pancreatic cancer, and to identify the target proteins, thereby clarifying the effect of A3G on malignant behavior of pancreatic cancer.
     Methods:
     The whole genome cDNA expression microarray was used to screen virus-reactive proteins involved in the malignant behavior of cancer cells. The mRNA level of A3G was examined using TaqMan real-time PCR in3kinds of pancreatic cancer cells,11matched human pancreatic cancer and para-cancerous tissues. Immunohistochemistry and immunofluorescence were used to validate the A3G expression in54matched human pancreatic cancer pathological slides. To evaluate the role of A3G in pancreatic cancer in vivo, pancreatic cancer cell line stably expressing A3G was established and injected subcutaneously into nude mice. To investigate the molecular mechanisms of A3G early promoting the tumor formation, the cloning formation assay, anoikis assay and flow cytometry analysis were used. The expression of apoptosis-related proteins were detected by western blot. To clarify the molecular mechanism of A3G-induced anoikis resistance, the Akt kinase activity and PTEN expression were detected. Furthermore, the interaction between A3G and PTEN was examined by immunoprecipitation. The Wnt pathway activity was detected by luciferase dual reporter gene assay, and the target protein in Wnt pathway was revealed by immunoprecipitation. The domain mutants were established to analyze the binding sites of A3G and target proteins.
     Results:
     Microarray screening found that virus-reactive protein A3G might be involved in the malignant biological behavior of cancer; A3G was significantly up-regulated in pancreatic cancer cells and tissues. Up-regulation of A3G promoted xenograft tumor formation at early stage, and inhibited the tumor sizes at late stage. We further found that A3G could inhibit anoikis in pancreatic cancer cells, with the elevated expression of anti-apoptotic proteins Bcl-2, Mcl-1, and phospho-Bcl-2. Overexpression of A3G participated in anoikis resistance through the activation of Akt kinase activity, Akt pathway was activated by A3G-induced inactivation of PTEN. Furthermore, The combination of A3G and PTEN required the the CD2domain of A3G, the C2tensin-type and PDZ domain of PTEN. We also found that A3G was involved in the regulation of Wnt pathway by binding to FZD1. The combination of A3G and FZD1depended on the phosphorylation level, with no significant correlation with the domain of A3G, but was associated with the conserved and PDZ domain of FZD1.
     Conclusions:
     The virus-reactive protein A3G is up-regulated in pancreatic cancer cells. Overexpression of A3G activates Akt pathway through inactivation of PTEN, which leads to the anoikis resistance in pancreatic cancer cells, meanwhile A3G combines with FZD to disrupt the activity of Wnt pathway, suggesting that A3G affects the malignant behaviors of pancreatic cancer cells besides antiviral ability.
引文
[1]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin 2012; 62(1):10-29.
    [2]Michl P, Gress TM. Current concepts and novel targets in advanced pancreatic cancer. Gut 2013; 62(2):317-326.
    [3]Nagaprashantha LD, Vatsyayan R, Lelsani PC, Awasthi S, Singhal SS. The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Int J Cancer 2011; 128(4):743-752.
    [4]Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124(4):619-626.
    [5]Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling:understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 2012; 24(2):393-401.
    [6]Xu J, Liu H, Chen L, Wang S, Zhou L, Yun X, Sun L, Wen Y, Gu J. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology 2012; 143(1):199-212.
    [7]Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 2004; 430(7003):1034-1039.
    [8]Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis--pathways to anchorage-independent growth in cancer. J Cell Sci 2011; 124(19):3189-3197.
    [9]Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis:an emerging hallmark in health and diseases. J Pathol 2012; 226(2):380-393.
    [10]Lonardo E, Hermann PC, Heeschen C. Pancreatic cancer stem cells-update and future perspectives. Mol Oncol 2010; 4(5):431-442.
    [11]Morris JPt, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10(10):683-695.
    [12]Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L, Fearon ER, Ljungman M, Simeone DM. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell 2009; 15(3): 207-219.
    [13]Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012; 109(29):11717-11722.
    [14]Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One 2007; 2(11):e1155.
    [15]Takahashi N, Fukushima T, Yorita K, Tanaka H, Chijiiwa K, Kataoka H. Dickkopf-1 is overexpressed in human pancreatic ductal adenocarcinoma cells and is involved in invasive growth. Int J Cancer 2010; 126(7):1611-1620.
    [16]Cho IR, Koh SS, Min HJ, Kim SJ, Lee Y, Park EH, Ratakorn S, Jhun BH, Oh S, Johnston RN, Chung YH. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the expression of beta-catenin, leading to a rapid proliferation of pancreatic cells. Exp Mol Med 2011; 43(2):82-90.
    [17]Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des 2012; 18(17):2464-2471.
    [18]Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, Fibbe WE, van Dongen JJ, Fodde R, Staal FJ. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011; 9(4):345-356.
    [19]Schwartz AL, Malgor R, Dickerson E, Weeraratna AT, Slominski A, Wortsman J, Harii N, Kohn AD, Moon RT, Schwartz FL, Goetz DJ, Kohn LD, McCall KD. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 2009; 15(12):4114-4122.
    [20]Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH, Gong HY, Lin CC, Kawakami K, Wu JL. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 2012; 56(6):2268-2276.
    [21]Liang Q, Xu Z, Xu R, Wu L, Zheng S. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One 2012; 7(1):e29950.
    [22]Cimino-Mathews A, Sharma R, Illei PB. Detection of human papillomavirus in small cell carcinomas of the anus and rectum. Am J Surg Pathol 2012; 36(7): 1087-1092.
    [23]Stoye JP. Studies of endogenous retro viruses reveal a continuing evolutionary saga. Nat Rev Microbiol 2012; 10(6):395-406.
    [24]Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 2012; 491(7426):774-778.
    [25]Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, Kochert K, Bouhlel MA, Richter J, Soler E, Stadhouders R, Johrens K, Wurster KD, Callen DF, Harte MF, Giefing M, Barlow R, Stein H, Anagnostopoulos I, Janz M, Cockerill PN, Siebert R, Dorken B, Bonifer C, Mathas S. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 2010; 16(5):571-579.
    [26]Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol 2008; 9(6):229.
    [27]Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, Kurosawa T, Yokomaku Y, Yamane T, Watanabe N, Suzuki A, Sugiura W, Iwatani Y The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 2012; 19(10):1005-1010.
    [28]Chiu YL, Greene WC. The APOBEC3 cytidine deaminases:an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 2008; 26:317-353.
    [29]Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, Wang Y, Xia J, Chen L, Cai C, Li H, Yen CJ, Kuo HP, Lee DF, Lang J, Huo L, Cheng X, Chen YJ, Li CW, Jeng LB, Hsu JL, Li LY, Tan A, Curley SA, Ellis LM, Dubois RN, Hung MC. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest 2011; 121(11): 4526-4536.
    [30]Iwatani Y, Chan DS, Liu L, Yoshii H, Shibata J, Yamamoto N, Levin JG, Gronenborn AM, Sugiura W. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A 2009; 106(46):19539-19544.
    [31]Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C, You X, Yu L, Guo F, Zhao L, Li Z, Zeng Y, Cen S. Functional analysis of the two cytidine deaminase domains in APOBEC3G. Virology 2011; 414(2):130-136.
    [32]Nowarski R, Britan-Rosich E, Shiloach T, Kotler M. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 2008; 15(10):1059-1066.
    [33]Cadima-Couto I, Freitas-Vieira A, Nowarski R, Britan-Rosich E, Kotler M, Goncalves J. Ubiquitin-fusion as a strategy to modulate protein half-life:A3G antiviral activity revisited. Virology 2009; 393(2):286-294.
    [34]Smith HC. APOBEC3G:a double agent in defense. Trends Biochem Sci 2011; 36(5):239-244.
    [35]Carpenter MA, Rajagurubandara E, Wijesinghe P, Bhagwat AS. Determinants of sequence-specificity within human AID and APOBEC3G. DNA Repair (Amst) 2010; 9(5):579-587.
    [36]Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G Science 2004; 303(5665):1829. Saadin K, White IM. Breast cancer stem cell enrichment and isolation by mammosphere culture and its potential diagnostic applications. Expert Rev Mol Diagn 2013; 13(1):49-60.
    [2]Thurber AE, Douglas G, Sturm EC, Zabierowski SE, Smit DJ, Ramakrishnan SN, Hacker E, Leonard JH, Herlyn M, Sturm RA. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 2011; 30(27):3036-3048.
    [3]Xie G, Zhan J, Tian Y, Liu Y, Chen Z, Ren C, Sun Q, Lian J, Chen L, Ruan J, Ye C, Sun A, Yuan Y. Mammosphere cells from high-passage MCF7 cell line show variable loss of tumorigenicity and radioresistance. Cancer Lett 2012; 316(1): 53-61.
    [4]Chelico L, Pham P, Petruska J, Goodman ME Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem 2009; 284(41):27761-27765.
    [5]Kohli RM, Abrams SR, Gajula KS, Maul RW, Gearhart PJ, Stivers JT. A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem 2009; 284(34): 22898-22904.
    [6]Zennou V, Bieniasz PD. Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology 2006; 349(1):31-40.
    [7]Chaipan C, Smith JL, Hu WS, Pathak VK. APOBEC3G Restricts HIV-1 to a Greater Extent than APOBEC3F and APOBEC3DE in Human Primary CD4+ T Cells and Macrophages. J Virol 2013; 87(1):444-453.
    [8]Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol 2008; 9(6):229.
    [9]Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, Kurosawa T, Yokomaku Y, Yamane T, Watanabe N, Suzuki A, Sugiura W, Iwatani Y. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 2012; 19(10):1005-1010.
    [10]Nowarski R, Britan-Rosich E, Shiloach T, Kotler M. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 2008; 15(10):1059-1066.
    [11]Iwatani Y, Chan DS, Liu L, Yoshii H, Shibata J, Yamamoto N, Levin JG, Gronenborn AM, Sugiura W. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A 2009; 106(46):19539-19544.
    [12]Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C, You X, Yu L, Guo F, Zhao L, Li Z, Zeng Y, Cen S. Functional analysis of the two cytidine deaminase domains in APOBEC3G. Virology 2011; 414(2):130-136.
    [13]Shindo K, Takaori-Kondo A, Kobayashi M, Abudu A, Fukunaga K, Uchiyama T. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 2003; 278(45):44412-44416.
    [14]Smith HC. APOBEC3G:a double agent in defense. Trends Biochem Sci 2011; 36(5):239-244.
    [15]Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 2008; 456(7218):121-124.
    [16]Jager S, Kim DY, Hultquist JF, Shindo K, LaRue RS, Kwon E, Li M, Anderson BD, Yen L, Stanley D, Mahon C, Kane J, Franks-Skiba K, Cimermancic P, Burlingame A, Sali A, Craik CS, Harris RS, Gross JD, Krogan NJ. Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 2012; 481(7381): 371-375.
    [17]Nowarski R, Wilner OI, Cheshin O, Shahar OD, Kenig E, Baraz L, Britan-Rosich E, Nagler A, Harris RS, Goldberg M, Willner I, Kotler M. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood 2012; 120(2):366-375.
    [18]Zaranek AW, Levanon EY, Zecharia T, Clegg T, Church GM. A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing. PLoS Genet 2010; 6(5):e1000954.
    [19]Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, Wang Y, Xia J, Chen L, Cai C, Li H, Yen CJ, Kuo HP, Lee DF, Lang J, Huo L, Cheng X, Chen YJ, Li CW, Jeng LB, Hsu JL, Li LY, Tan A, Curley SA, Ellis LM, Dubois RN, Hung MC. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest 2011; 121(11): 4526-4536.
    [20]Huang J, Liang Z, Yang B, Tian H, Ma J, Zhang H. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J Biol Chem 2007; 282(46):33632-33640.
    [1]Xu J, Liu H, Chen L, Wang S, Zhou L, Yun X, Sun L, Wen Y, Gu J. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology 2012; 143(1):199-212.
    [2]Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH, Gong HY, Lin CC, Kawakami K, Wu JL. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 2012; 56(6):2268-2276.
    [3]Cimino-Mathews A, Sharma R, Illei PB. Detection of human papillomavirus in small cell carcinomas of the anus and rectum. Am J Surg Pathol 2012; 36(7): 1087-1092.
    [4]Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, Wang Y, Xia J, Chen L, Cai C, Li H, Yen CJ, Kuo HP, Lee DF, Lang J, Huo L, Cheng X, Chen YJ, Li CW, Jeng LB, Hsu JL, Li LY, Tan A, Curley SA, Ellis LM, Dubois RN, Hung MC. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest 2011; 121(11): 4526-4536.
    [5]Qiu W, Su GH. Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. Cancer Metastasis Rev 2012; [Epub ahead of print]
    [6]Ding Y, Cravero JD, Adrian K, Grippo P. Modeling pancreatic cancer in vivo:from xenograft and carcinogen-induced systems to genetically engineered mice. Pancreas 2010; 39(3):283-292.
    [7]Gray MJ, Wey JS, Belcheva A, McCarty MF, Trevino JG, Evans DB, Ellis LM, Gallick GE. Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Res 2005; 65(9): 3664-3670.
    [8]Gajate C, Matos-da-Silva M, Dakir el H, Fonteriz RI, Alvarez J, Mollinedo F. Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum. Oncogene 2012; 31(21): 2627-2639.
    [9]Nitsche C, Edderkaoui M, Moore RM, Eibl G, Kasahara N, Treger J, Grippo PJ, Mayerle J, Lerch MM, Gukovskaya AS. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology 2012; 142(2):377-387.
    [10]Nambiar D, Prajapati V, Agarwal R, Singh RP. In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells. Cancer Lett 2012; [Epub ahead of print].
    [11]Prasad R, Vaid M, Katiyar SK. Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One 2012; 7(8):e43064.
    [12]Subramaniam D, Periyasamy G, Ponnurangam S, Chakrabarti D, Sugumar A, Padigaru M, Weir SJ, Balakrishnan A, Sharma S, Anant S. CDK-4 inhibitor P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis. Mol Cancer Ther 2012; 11(7):1598-1608.
    [13]Song B, Liu XS, Rice SJ, Kuang S, Elzey BD, Konieczny SF, Ratliff TL, Hazbun T, Chiorean EG, Liu X. Plkl phosphorylation of orc2 and hbol contributes to gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 2013; 12(1):58-68.
    [1]Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling:understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 2012; 24(2):393-401.
    [2]Sakamoto S, McCann RO, Dhir R, Kyprianou N. Talinl promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res 2010; 70(5):1885-1895.
    [3]Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis:an emerging hallmark in health and diseases. J Pathol 2012; 226(2):380-393.
    [4]Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, Lu J. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol 2012; 32(10):1893-1907.
    [5]Yoo BH, Berezkin A, Wang Y, Zagryazhskaya A,Rosen KV. Tumor suppressor protein kinase Chk2 is a mediator of anoikis of intestinal epithelial cells. Int J Cancer 2012; 131(2):357-366.
    [6]Kumar S, Park SH, Cieply B, Schupp J, Killiam E, Zhang F, Rimm DL, Frisch SM. A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol Cell Biol 2011; 31(19):4036-4051.
    [7]Xu J, Liu H, Chen L, Wang S, Zhou L, Yun X, Sun L, Wen Y, Gu J. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology 2012; 143(1):199-212.
    [8]Chiarugi P, Giannoni E. Anoikis:a necessary death program for anchorage-dependent cells. Biochem Pharmacol 2008; 76(11):1352-1364.
    [9]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4):704-715.
    [10]Jia J, Zhang W, Liu JY Chen G, Liu H, Zhong HY, Liu B, Cai Y, Zhang JL, Zhao YF. Epithelial mesenchymal transition is required for acquisition of anoikis resistance and metastatic potential in adenoid cystic carcinoma. PLoS One 2012; 7(12):e51549.
    [11]Broustas CQ Zhu A, Lieberman HB. Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance. J Biol Chem 2012; 287(49):41324-41333.
    [12]Nagaprashantha LD, Vatsyayan R, Lelsani PC, Awasthi S, Singhal SS. The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Int J Cancer 2011; 128(4):743-752.
    [13]Buchheit CL, Rayavarapu RR, Schafer ZT. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol 2012; 23(4): 402-411.
    [14]Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis--pathways to anchorage-independent growth in cancer. J Cell Sci 2011; 124(19):3189-3197.
    [15]Tang MK, Zhou HY, Yam JW, Wong AS. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 2010; 12(2):128-138.
    [16]Kemmner W, Kessel P, Sanchez-Ruderisch H, Moller H, Hinderlich S, Schlag PM, Detjen K. Loss of UDP-N-acetylglucosamine 2-epimerase/N-acetylmann- osamine kinase (GNE) induces apoptotic processes in pancreatic carcinoma cells. FASEB J 2012; 26(2):938-946.
    [17]Miyazawa Y, Uekita T, Hiraoka N, Fujii S, Kosuge T, Kanai Y, Nojima Y, Sakai R. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res 2010; 70(12):5136-5146.
    [18]Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med 2010; 31(2):205-214.
    [19]Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer Lett 2008; 272(2):177-185.
    [20]Horbinski C, Mojesky C, Kyprianou N. Live free or die:tales of homeless (cells) in cancer. Am J Pathol 2010; 177(3):1044-1052.
    [21]Kruyt FA, Schuringa JJ. Apoptosis and cancer stem cells:Implications for apoptosis targeted therapy. Biochem Pharmacol 2010; 80(4):423-430.
    [22]Zeimet AG, Reimer D, Sopper S, Boesch M, Martowicz A, Roessler J, Wiedemair AM, Rumpold H, Untergasser G, Concin N, Hofstetter G, Muller-Holzner E, Fiegl H, Marth C, Wolf D, Pesta M, Hatina J. Ovarian cancer stem cells. Neoplasma 2012; 59(6):747-755.
    [23]Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011; 18(9):1414-1424.
    [24]Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, McNamara DA, Murray F, Kay EW, Hector S, Green DR, Huber HJ, Prehn JH. Systems Analysis of BCL2 Protein Family Interactions Establishes a Model to Predict Responses to Chemotherapy. Cancer Res 2013; 73(2):519-528.
    [25]Skommer J, Brittain T, Raychaudhuri S. Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 2010; 15(10):1223-1233.
    [26]Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, Ariyaratne PN, Takahashi N, Sawada K, Fei Y, Soh S, Lee WH, Huang JW, Allen JC, Jr., Woo XY, Nagarajan N, Kumar V, Thalamuthu A, Poh WT, Ang AL, Mya HT, How GF, Yang LY, Koh LP, Chowbay B, Chang CT, Nadarajan VS, Chng WJ, Than H, Lim LC, Goh YT, Zhang S, Poh D, Tan P, Seet JE, Ang MK, Chau NM, Ng QS, Tan DS, Soda M, Isobe K, Nothen MM, Wong TY, Shahab A, Ruan X, Cacheux-Rataboul V, Sung WK, Tan EH, Yatabe Y, Mano H, Soo RA, Chin TM, Lim WT, Ruan Y, Ong ST. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18(4): 521-528.
    [27]Singh R, Saini N. Downregulation of BCL2 by miRNAs augments drug-induced apoptosis-a combined computational and experimental approach. J Cell Sci 2012; 125(6):1568-1578.
    [28]Wang C, Youle RJ. Predominant requirement of Bax for apoptosis in HCT116 cells is determined by Mcl-l's inhibitory effect on Bak. Oncogene 2012; 31(26): 3177-3189.
    [29]Szabo I, Soddemann M, Leanza L, Zoratti M, Gulbins E. Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts:novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Differ 2011; 18(3):427-438.
    [30]Galmiche A, Ezzoukhry Z, Francois C, Louandre C, Sabbagh C, Nguyen-Khac E, Descamps V, Trouillet N, Godin C, Regimbeau JM, Joly JP, Barbare JC, Duverlie G, Maziere JC, Chatelain D. BAD, a proapoptotic member of the BCL2 family, is a potential therapeutic target in hepatocellular carcinoma. Mol Cancer Res 2010; 8(8):1116-1125.
    [31]Vogler M. BCL2A1:the underdog in the BCL2 family. Cell Death Differ 2012; 19(1):67-74.
    [32]Woods NT, Yamaguchi H, Lee FY, Bhalla KN,Wang HG. Anoikis, initiated by Mcl-1 degradation and Bim induction, is deregulated during oncogenesis. Cancer Res 2007; 67(22):10744-10752.
    [33]Tait SW, Green DR. Mitochondria and cell death:outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11(9):621-632.
    [34]Mahajan K, Mahajan NP. PI3K-independent AKT activation in cancers:a treasure trove for novel therapeutics. J Cell Physiol 2012; 227(9):3178-3184.
    [35]Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A. Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci U S A 2011; 108(15): 6085-6090.
    [36]Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 2009; 125(12):2863-2870.
    [37]Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13(5):283-296.
    [38]Mosessian S, Avliyakulov NK, Mulholland DJ, Boontheung P, Loo JA, Wu H. Analysis of PTEN complex assembly and identification of heterogeneous nuclear ribonucleoprotein C as a component of the PTEN-associated complex. J Biol Chem 2009; 284(44):30159-30166.
    [39]Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 2004; 430(7003):1034-1039.
    [40]Yu X, Liu L, Cai B, He Y, Wan X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 2008; 99(3):543-552.
    [41]Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 2001; 276(52):48627-48630.
    [42]Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH, Martin SS, Weber DJ, Bachman KE. Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res 2009; 69(21):8275-8283.
    [43]Zhang S, Yu D. PI(3)king apart PTEN's role in cancer. Clin Cancer Res 2010; 16(17):4325-4330.
    [44]Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis 2007; 28(7):1379-1386.
    [45]Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 2012; [Epub ahead of print].
    [46]Hu H, Li Z, Chen J, Wang D, Ma J, Wang W, Li J, Wu H, Li L, Wu M, Qian Q, Su C. P16 reactivation induces anoikis and exhibits antitumour potency by downregulating Akt/survivin signalling in hepatocellular carcinoma cells. Gut 2011; 60(5):710-721.
    [1]Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R, Rodriguez-Justo M, Keshav S, Travis SP, Graham TA, East J, Clark S, Tomlinson IP. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 2013; 62(1): 83-93.
    [2]Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149(6): 1192-1205.
    [3]Merrill BJ. Wnt pathway regulation of embryonic stem cell self-renewal. Cold Spring Harb Perspect Biol 2012; 4(9):a007971.
    [4]Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4(5): a008052.
    [5]Herr P, Hausmann G, Basler K. WNT secretion and signalling in human disease. Trends Mol Med 2012; 18(8):483-493.
    [6]Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 2012; 4(4):a007989.
    [7]Morris JPt, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10(10):683-695.
    [8]MacDonald BT, Tamai K,He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases. Dev Cell 2009; 17(1):9-26.
    [9]Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 2010; 24(22): 2517-2530.
    [10]Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 2010; 20(6): 346-354.
    [11]Demorest ZL, Li M, Harris RS. Phosphorylation directly regulates the intrinsic DNA cytidine deaminase activity of activation-induced deaminase and APOBEC3G protein. J Biol Chem 2011; 286(30):26568-26575.
    [12]Shirakawa K, Takaori-Kondo A, Yokoyama M, Izumi T, Matsui M, Io K, Sato T, Sato H, Uchiyama T. Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nat Struct Mol Biol 2008; 15(11): 1184-1191.
    [13]Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012; 109(29):11717-11722.
    [14]White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 2012; 142(2):219-232.
    [15]Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des 2012; 18(17):2464-2471.
    [16]McCleary-Wheeler AL, McWilliams R, Fernandez-Zapico ME. Aberrant signaling pathways in pancreatic cancer:a two compartment view. Mol Carcinog 2012; 51(1): 25-39.
    [17]Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One 2007; 2(11):e1155.
    [18]Cho IR, Koh SS, Min HJ, Kim SJ, Lee Y, Park EH, Ratakorn S, Jhun BH, Oh S, Johnston RN, Chung YH. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the expression of beta-catenin, leading to a rapid proliferation of pancreatic cells. Exp Mol Med 2011; 43(2):82-90.
    [19]Zeng G, Germinaro M, Micsenyi A, Monga NK, Bell A, Sood A, Malhotra V, Sood N, Midda V, Monga DK, Kokkinakis DM, Monga SP. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 2006; 8(4):279-289.
    [20]Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L, Fearon ER, Ljungman M, Simeone DM. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell 2009; 15(3): 207-219.
    [21]Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008; 22(9):3358-3369.
    [22]Ueno K, Hirata H, Hinoda Y, Dahiya R. Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int J Cancer 2013; 132(8):1731-1740.
    [23]King TD, Zhang W, Suto MJ, Li Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal 2012; 24(4):846-851.
    [24]Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62(4):632-667.
    [1]Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C, You X, Yu L, Guo F, Zhao L, Li Z, Zeng Y, Cen S. Functional analysis of the two cytidine deaminase domains in APOBEC3G. Virology 2011; 414(2):130-136.
    [2]Iwatani Y, Chan DS, Liu L, Yoshii H, Shibata J, Yamamoto N, Levin JG, Gronenborn AM, Sugiura W. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A 2009; 106(46):19539-19544.
    [3]Shindo K, Takaori-Kondo A, Kobayashi M, Abudu A, Fukunaga K, Uchiyama T. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 2003; 278(45):44412-44416.
    [4]Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol 2008; 9(6):229.
    [5]Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, Kurosawa T, Yokomaku Y, Yamane T, Watanabe N, Suzuki A, Sugiura W, Iwatani Y. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 2012; 19(10):1005-1010.
    [6]Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR. Complementary function of the two catalytic domains of APOBEC3G. Virology 2005; 333(2):374-386.
    [7]Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 2008; 456(7218):121-124.
    [8]Kavela S, Shinde SR, Ratheesh R, Viswakalyan K, Bashyam MD, Gowrishankar S, Vamsy M, Pattnaik S, Rao S, Sastry RA, Srinivasulu M, Chen J, Maddika S. PNUTS Functions as a Proto-Oncogene by Sequestering PTEN. Cancer Res 2013; 73(1):205-214.
    [9]Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis 2007; 28(7):1379-1386.
    [10]Mosessian S, Avliyakulov NK, Mulholland DJ, Boontheung P, Loo JA, Wu H. Analysis of PTEN complex assembly and identification of heterogeneous nuclear ribonucleoprotein C as a component of the PTEN-associated complex. J Biol Chem 2009; 284(44):30159-30166.
    [11]Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012; 109(29):11717-11722.
    [12]King TD, Zhang W, Suto MJ, Li Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal 2012; 24(4):846-851.
    [13]Ueno K, Hirata H, Hinoda Y, Dahiya R. Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int J Cancer 2013; 132(8):1731-1740.
    [14]Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by Frizzled. Science 2012; 337(6090):59-64.
    [15]Hendaoui I, Lavergne E, Lee HS, Hong SH, Kim HZ, Parent C, Heuze-Vourc'h N, Clement B, Musso O. Inhibition of Wnt/beta-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8. PLoS One 2012; 7(1):e30601.
    [16]Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62(4):632-667.
    [1]Herr P, Hausmann G, Basler K. WNT secretion and signalling in human disease. Trends Mol Med 2012; 18(8):483-493.
    [2]Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149(6): 1192-1205.
    [3]Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 2012; 4(4):a007989.
    [4]Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4(5): a008052.
    [5]MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases. Dev Cell 2009; 17(1):9-26.
    [6]Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 2010; 24(22): 2517-2530.
    [7]Cadigan KM, Liu YI. Wnt signaling:complexity at the surface. J Cell Sci 2006; 119(Pt 3):395-402.
    [8]Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of beta-catenin degradation in an intact Axinl complex. Cell 2012; 149(6): 1245-1256.
    [9]Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10(7):468-477.
    [10]Semenov MV, Habas R, Macdonald BT, He X. SnapShot:Noncanonical Wnt Signaling Pathways. Cell 2007; 131(7):1378.
    [11]Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3):469-480.
    [12]Gao C, Chen YG. Dishevelled:The hub of Wnt signaling. Cell Signal 2010; 22(5): 717-727.
    [13]Ford CE, Ma SS, Quadir A, Ward RL. The dual role of the novel Wnt receptor tyrosine kinase, ROR2, in human carcinogenesis. Int J Cancer 2012; [Epub ahead of print].
    [14]Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY, Weiss SJ. Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci U S A 2012; 109(28):11312-11317.
    [15]White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 2012; 142(2):219-232.
    [16]Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R, Rodriguez-Justo M, Keshav S, Travis SP, Graham TA, East J, Clark S, Tomlinson IP. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 2013; 62(1): 83-93.
    [17]Kaler P, Augenlicht L, Klampfer L. Activating mutations in beta-catenin in colon cancer cells alter their interaction with macrophages; the role of snail. PLoS One 2012; 7(9):e45462.
    [18]Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Burgess AW, Busam D, Zhao Q, Strausberg RL, Simpson AJ, Tomlinson IP, Gibbs P, Sieber OM. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/beta-catenin signalling thresholds for tumourigenesis. Oncogene 2012; [Epub ahead of print].
    [19]Han J, Sridevi P, Ramirez M, Ludwig KJ, Wang JY. beta-Catenin-Dependent Lysosomal Targeting of Internalized Tumor Necrosis Factor-alpha Suppresses Caspase-8 Activation in Apoptosis-Resistant Colon Cancer Cells. Mol Biol Cell 2013; 24(4):465-473.
    [20]Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, Woolfenden S, Yu KK, Markovits J, Killary K, Sonkin D, Yao YM, Warmuth M, Sellers WR, Schlegel R, Stegmeier F, Mosher RE, McLaughlin ME. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108(41): 17135-17140.
    [21]Esufali S, Charames GS, Pethe VV, Buongiorno P, Bapat B. Activation of tumor-specific splice variant Raclb by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res 2007; 67(6):2469-2479.
    [22]Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, Chan AT, Sung JJ, Tao Q. WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res 2008; 14(1):55-61.
    [23]Lara E, Calvanese V, Huidobro C, Fernandez AF, Moncada-Pazos A, Obaya AJ, Aguilera O, Gonzalez-Sancho JM, Sanchez L, Astudillo A, Munoz A, Lopez-Otin C, Esteller M, Fraga MF. Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Mol Cancer 2010; 9:170.
    [24]Luna-Ulloa LB, Hernandez-Maqueda JG, Santoyo-Ramos P, Castaneda-Patlan MC, Robles-Flores M. Protein kinase C zeta is a positive modulator of canonical Wnt signaling pathway in tumoral colon cell lines. Carcinogenesis 2011; 32(11): 1615-1624.
    [25]Cui J. Jiang W, Wang S, Wang L, Xie K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des 2012; 18(17):2464-2471.
    [26]McCleary-Wheeler AL, McWilliams R, Fernandez-Zapico ME. Aberrant signaling pathways in pancreatic cancer:a two compartment view. Mol Carcinog 2012; 51(1): 25-39.
    [27]Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One 2007; 2(11):e1155.
    [28]Zeng G, Germinaro M, Micsenyi A, Monga NK, Bell A, Sood A, Malhotra V, Sood N, Midda V, Monga DK, Kokkinakis DM, Monga SP. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 2006:8(4):279-289.
    [29]Takahashi N, Fukushima T, Yorita K, Tanaka H, Chijiiwa K, Kataoka H. Dickkopf-1 is overexpressed in human pancreatic ductal adenocarcinoma cells and is involved in invasive growth. Int J Cancer 2010; 126(7):1611-1620.
    [30]Zhong Y, Wang Z, Fu B, Pan F, Yachida S, Dhara M, Albesiano E, Li L, Naito Y, Vilardell F, Cummings C, Martinelli P, Li A, Yonescu R, Ma Q, Griffin CA, Real FX, Iacobuzio-Donahue CA. GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS One 2011; 6(7): e22129.
    [31]Cho IR, Koh SS, Min HJ, Kim SJ, Lee Y, Park EH, Ratakorn S, Jhun BH, Oh S, Johnston RN, Chung YH. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the expression of beta-catenin, leading to a rapid proliferation of pancreatic cells. Exp Mol Med 2011; 43(2):82-90.
    [32]Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L, Fearon ER, Ljungman M, Simeone DM. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell 2009; 15(3): 207-219.
    [33]Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008; 22(9):3358-3369.
    [34]Morris JPt, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10(10):683-695.
    [35]Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, Clevers H, Hart IR, Kocher HM. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology 2011; 141 (4):1486-1497.
    [36]Kobayashi T, Shimura T, Yajima T, Kubo N, Araki K, Tsutsumi S, Suzuki H, Kuwano H, Raz A. Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. Int J Cancer 2011; 129(12):2775-2786.
    [37]Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, Braunschweig T, Lohr M, Jesenofsky R, Friess H, Wente MN, Kristiansen G, Jahnke B, Denz A, Ruckert F, Schackert HK, Kloppel G, Kalthoff H, Saeger HD, Grutzmann R. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med 2008; 12(6):2823-2835.
    [38]Tsao CM, Yan MD, Shih YL, Yu PN, Kuo CC, Lin WC, Li HJ, Lin YW. SOX1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Hepatology 2012; 56(6):2277-2287.
    [39]Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, Wang N, Niu Y, Wu Z, Zhou J, Qiu SJ, Shi YH, Yu B, Tang N, Chu W, Wang M, Wu J, Zhang Z, Yang S, Gu J, Wang H, Qin W. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma:a large-scale, multicentre study. Lancet Oncol 2012; 13(8):817-826.
    [40]Fatima S, Lee NP, Tsang FH, Kolligs FT, Ng IO, Poon RT, Fan ST, Luk JM. Dickkopf 4 (DKK4) acts on Wnt/beta-catenin pathway by influencing beta-catenin in hepatocellular carcinoma. Oncogene 2012; 31(38):4233-4244.
    [41]Tung EK, Wong BY, Yau TO, Ng IO. Upregulation of the Wnt co-receptor LRP6 promotes hepatocarcinogenesis and enhances cell invasion. PLoS One 2012; 7(5): e36565.
    [42]Shih YL, Hsieh CB, Lai HC, Yan MD, Hsieh TY, Chao YC, Lin YW. SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer 2007; 121(5):1028-1035.
    [43]Wu Y, Li J, Sun CY, Zhou Y, Zhao YF, Zhang SJ. Epigenetic inactivation of the canonical Wnt antagonist secreted frizzled-related protein 1 in hepatocellular carcinoma cells. Neoplasma 2012; 59(3):326-332.
    [44]Toyama T, Lee HC, Koga H, Wands JR, Kim M. Noncanonical Wntll inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res 2010; 8(2):254-265.
    [45]Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, Atabey N, Ozturk M. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer 2009; 8:90.
    [46]Moyes LH, McEwan H, Radulescu S, Pawlikowski J, Lamm CG, Nixon C, Sansom OJ, Going JJ, Fullarton GM, Adams PD. Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus. J Pathol 2012; 228(1):99-112.
    [47]Salahshor S, Naidoo R, Serra S, Shih W, Tsao MS, Chetty R, Woodgett JR. Frequent accumulation of nuclear E-cadherin and alterations in the Wnt signaling athway in esophageal squamous cell carcinomas. Mod Pathol 2008; 21(3): 271-281.
    [48]Li J, Ying J, Fan Y, Wu L, Ying Y, Chan AT, Srivastava Q Tao Q. WNT5A antagonizes WNT/beta-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol Ther 2010; 10(6):617-624.
    [49]Fu L, Zhang C, Zhang LY, Dong SS, Lu LH, Chen J, Dai Y, Li Y, Kong KL, Kwong DL, Guan XY. Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta-catenin signalling pathway. Gut 2011; 60(12):1635-1643.
    [50]Liu J, Zhang Y, Xu R, Du J, Hu Z, Yang L, Chen Y, Zhu Y, Gu L. PI3K/Akt-dependent phosphorylation of GSK3beta and activation of RhoA regulate Wnt5a-induced gastric cancer cell migration. Cell Signal 2013; 25(2): 447-456.
    [51]Radulescu S, Ridgway RA, Cordero J, Athineos D, Salgueiro P, Poulsom R, Neumann J, Jung A, Patel S, Woodgett J, Barker N, Pritchard DM, Oien K, Sansom OJ. Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation. Oncogene 2012; [Epub ahead of print].
    [52]Asciutti S, Akiri G, Grumolato L, Vijayakumar S, Aaronson SA. Diverse mechanisms of Wnt activation and effects of pathway inhibition on proliferation of human gastric carcinoma cells. Oncogene 2011; 30(8):956-966.
    [53]He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998; 281(5382):1509-1512.
    [54]Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726):422-426.
    [55]Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8(12):1398-1406.
    [56]Zhang W, Glockner SC, Guo M, Machida EO, Wang DH, Easwaran H, Van Neste L, Herman JG, Schuebel KE, Watkins DN, Ahuja N, Baylin SB. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 2008; 68(8):2764-2772.
    [57]Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sorensen FB, Verspaget HW, Simon R, Kruhoffer M, Aaltonen LA, Laurberg S, Orntoft TF. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer 2009; 100(3):511-523.
    [58]Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM. Sox 17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007; 27(22): 7802-7815.
    [59]Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008; 283(26):17969-17978.
    [60]Otsubo T, Akiyama Y, Yanagihara K,Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 2008; 98(4):824-831.
    [61]Li Y, Bavarva JH. Wang Z, Guo J, Qian C, Thibodeau SN, Golemis EA, Liu W. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 2011; 30(23):2633-2643.
    [62]Caspi E, Rosin-Arbesfeld R. A novel functional screen in human cells identifies MOCA as a negative regulator of Wnt signaling. Mol Biol Cell 2008; 19(11): 4660-4674.
    [63]Lavergne E, Hendaoui I, Coulouarn C, Ribault C, Leseur J, Eliat PA, Mebarki S, Corlu A, Clement B, Musso O. Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active beta-catenin. Oncogene 2011; 30(4):423-433.
    [64]Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci U S A 2011; 108(41):17022-17027.
    [65]Han C, Lim K, Xu L, Li G, Wu T. Regulation of Wnt/beta-catenin pathway by cPLA2alpha and PPARdelta. J Cell Biochem 2008; 105(2):534-545.
    [66]Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne TF, Hamakubo T, Ito S, Aburatani H, Yanagisawa M, Kodama T, Sakai J. COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc Natl Acad Sci U S A 2009; 106(14):5819-5824.
    [67]Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R, Xie K, Yung WK, Medema RH, He X, Huang S. FoxMl promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 2011; 20(4):427-442.
    [68]Bowman A, Nusse R. Location, location, location:FoxM1 mediates beta-catenin nuclear translocation and promotes glioma tumorigenesis. Cancer Cell 2011; 20(4): 415-416.
    [69]Lee JM, Kim IS, Kim H, Lee JS, Kim K, Yim HY, Jeong J, Kim JH, Kim JY, Lee H, Seo SB, Rosenfeld MG, Kim KI, Baek SH. RORalpha attenuates Wnt/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol Cell 2010; 37(2):183-195.
    [70]Jingushi K, Takahashi-Yanaga F, Yoshihara T, Shiraishi F, Watanabe Y, Hirata M, Morimoto S, Sasaguri T. DIF-1 inhibits the Wnt/beta-catenin signaling pathway by inhibiting TCF7L2 expression in colon cancer cell lines. Biochem Pharmacol 2012; 83(1):47-56.
    [71]Nishiyama M, Skoultchi AI, Nakayama KI. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-beta-catenin signaling pathway. Mol Cell Biol 2012; 32(2):501-512.
    [72]Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC. beta-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. Cell 2012; 151(7):1457-1473.
    [73]Anton R, Chatterjee SS, Simundza J, Cowin P, Dasgupta R. A systematic screen for micro-RNAs regulating the canonical Wnt pathway. PLoS One 2011; 6(10):-26257.
    [74]Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, Sun S. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 2012; 56(5):1631-1640.
    [75]Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, Park C, Kim K, Lee S, Gumbiner BM, Yook JI, Weiss SJ. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011; 4(197): 71.
    [76]Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011; 480(7375):118-122.
    [77]Canal F, Perret C. PKM2:a new player in the beta-catenin game. Future Oncol 2012; 8(4):395-398.
    [78]Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 2012; 72(14):3607-3617.
    [79]Brabletz S, Schmalhofer O, Brabletz T. Gastrointestinal stem cells in development and cancer. J Pathol 2009; 217(2):307-317.
    [80]Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165): 1003-1007.
    [81]Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 2012; 30(11):2378-2386.
    [82]Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, Fibbe WE, van Dongen JJ, Fodde R, Staal FJ. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011; 9(4):345-356.
    [83]Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L, Sloncova E, Huranova M, Stancikova J, Hlavata A, Svec J, Sedlacek R, Luksan O, Oliverius M, Voska L, Jirsa M, Paces J, Kolar M, Krivjanska M, Klimesova K, Tlaskalova-Hogenova H, Korinek V. Troy, a Tumor Necrosis Factor Receptor Family Member, Interacts With Lgr5 to Inhibit Wnt Signaling in Intestinal Stem Cells. Gastroenterology 2012; [Epub ahead of print].
    [84]Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, Chang M, Scott EW, Huang EH. Transition from colitis to cancer:high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res 2012; 72(19):5091-5100.
    [85]Verkaar F, Zaman GJ. New avenues to target Wnt/beta-catenin signaling. Drug Discov Today 2011; 16(1-2):35-41.
    [86]Zimmerman ZF, Moon RT, Chien AJ. Targeting wnt pathways in disease. Cold Spring Harb Perspect Biol 2012; 4(11):a008086.
    [87]Ueno K, Hirata H, Hinoda Y, Dahiya R. Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int J Cancer 2013; 132(8):1731-1740.
    [88]Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012; 109(29):11717-11722.
    [89]King TD, Zhang W, Suto MJ, Li Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal 2012; 24(4):846-851.
    [90]Zhang H, Zhang X, Wu X, Li W, Su P, Cheng H, Xiang L, Gao P, Zhou G. Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/beta-catenin pathway. Cancer Lett 2012; 323(1):106-113.
    [91]Grossmann TN, Yeh JT, Bowman BR, Chu Q, Moellering RE, Verdine GL. Inhibition of oncogenic Wnt signaling through direct targeting of beta-catenin. Proc Natl Acad Sci U S A 2012; 109(44):17942-17947.
    [92]Farhana L, Dawson MI, Das JK, Murshed F, Xia Z, Hadden TJ, Hatfield J, Fontana JA. Adamantyl Retinoid-Related Molecules Induce Apoptosis in Pancreatic Cancer Cells by Inhibiting IGF-1R and Wnt/beta-Catenin Pathways. J Oncol 2012; 2012: 796729.
    [93]Lachenmayer A, Alsinet C, Savic R, Cabellos L, Toffanin S, Hoshida Y, Villanueva A, Minguez B, Newell P, Tsai HW, Barretina J, Thung S, Ward SC, Bruix J, Mazzaferro V, Schwartz M, Friedman SL, Llovet JM. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res 2012; 18(18):4997-5007.
    [94]Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 2012; 336(6088):1549-1554.
    [95]Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461(7264): 614-620.
    [96]Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 2009; 5(2):100-107.
    [97]Miki T, Yasuda SY, Kahn M. Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 2011; 7(4):836-846.
    [98]Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2012; 13(1):11-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700