用户名: 密码: 验证码:
高速开关磁阻电机的关键技术研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技水平的发展,航空航天、能源、精密制造等诸多领域对高转速电机的需求越来越多。电机转速的大幅提升有利于提高电机的功率密度,减小设备的体积重量。因此,高速/超高速电机在军事和民用领域应用越来越广泛,已成为当今国际电工界的研究热点。
     开关磁阻电机(SRM)是近年来随着电力电子技术和控制技术的发展而逐渐完善起来的一种新型调速电机。由于SRM定转子均为凸极实心叠片结构,定子上绕有集中绕组,转子上无绕组、永磁材料及鼠笼线圈,具有结构简单坚固、成本低、可靠性高的特点,因此在许多工业调速领域获得了广泛应用。SRM的转子结构可以承受很高的机械应力,特别适合高转速要求,能适应高温等恶劣环境,在航空航天、高速加工等高速/超高速领域应用具有独特优势。
     本文主要致力于高速SRM系统的理论和应用基础研究,目标是为高速SRM的系统设计和工程应用提供较为完整的基本理论和关键技术支撑。在对前人成果的广泛了解和深入研究的基础上,本文以高速SRM电机本体的多参数综合设计、功率变换器主电路、专用集成电路等核心关键技术为突破口,对高速SRM在机理研究、样机研制、实验研究和工程应用中存在的关键技术难题进行了系统研究,建立了高速SRM研究与实验的技术平台。
     针对高速SRM的运行特点,本文在常规SRM的电磁设计流程的基础上,基于电磁、铁损、应力、转子振动等多物理场的有限元计算,构建了包括电磁设计、损耗计算、结构应力分析、转子动力学分析在内的高速SRM电机本体的多参数综合设计方法,成功研制了三种高速SRM实验样机,为高速SRM的电机本体设计奠定了理论基础。结合高速SRM样机的研究与实验需要,本文还对高速SRM的电磁性能优化、转子结构应力及动力学性能分析、铁损及风阻损耗计算等关键技术进行了理论和实验研究。
     分析了不对称半桥式主电路、裂相式主电路等典型SRM功率变换器主电路的优缺点,对适合于高速SRM的功率变换器主电路拓扑进行了探讨,分析了典型功率变换器主电路拓扑对SRM换相性能的影响,并对传统的双开关式不对称半桥主电路进行了改进,提出了一种可提高电机换相性能的三开关式不对称半桥主电路拓扑,并在一台SRM实验样机上,对双开关式主电路和三开关式主电路进行仿真分析和对比实验。
     成功研制了国内第一片SRM控制专用集成电路SR3P10K07A,介绍了SR3P10K07A的设计思路和设计过程,较为详细的介绍了该芯片中各功能模块的实现算法,并基于硬件电路对该芯片进行了逻辑功能验证。基于SR3P10K07A,本课题还设计制作了通用的SRM数字控制器,并在多台高速SRM样机中获得了成功应用。
     此外,本文分别对三种高速SRM样机进行了实验研究和工程应用。其中,样机Ⅰ的最高转速达到了136,000r/min,成功实现了该样机的超高速运行;作为高速原动机,样机Ⅰ还在南京航空航天大学微型发动机研究所开发的气浮轴承性能测试平台中获得了成功应用;对分别采用常规凸极转子和圆柱复合型转子这两种不同转子结构的样机Ⅱ进行了空载实验,对比了两种转子结构的风阻损耗;样机Ⅲ在常州新罗特数控机械有限公司生产的NRT40M高速数控模具雕刻机上进行了成功应用。
With the development of the science and technology, there is urgent need for high speed motor in aerospace, energy, precision manufacturing and many other fields. The increase of motor speed is conductive to improve the electrical power density, reduce the size and the weight of the equipment. As a result, high speed / super high speed motor have received high popularity in the field of military and civilian applications, and it have been the hot topic in the international electrical field at present.
     Switched reluctance machine (SRM) is a new type of adjustable-speed motor, based on the development of power electronic and control technology in recent years. It has been employed in variable speed industrial applications due to their simple and rugged structure, low cost, and high reliability. The rotor has no windings, magnets, or squirrel-cage winding, but is constructed from a stack of salient-pole laminations. This structure can withstand high mechanical stress, especially fit for the high speed requirements and adapt to the harsh environment. Therefore, SRM is considered the motor which has the advantage in the field of aerospace, high speed manufacturing of high speed / super high speed applications.
     This dissertation focuses on basic research for the theory and application of high speed SRM system, in order to lay the foundation for the high speed SRM system design and engineering application. Based on the extensive and in-depth understanding of the outcomes in the past, some breakthrough have been made toward the multi-parameter integrated design, main circuit of power converter, application specific integrated circuit, and other core technology. At the mean time, some systematic study have been conducted toward the mechanism, prototype design, experiment and engineering applications, and a experimental platform of the high speed SRM has been built.
     In terms of the operational features of the high speed SRM, a multi-parameter integrated design method has been developed in this paper, on the basis of regular electromagnetic design process and the finite element calculation of multi-physics field, including the electromagnetic, core loss, stress, rotor vibration, etc. The method comprises of electromagnetic design, loss calculation, the structural stress analysis, rotor dynamic analysis. At the same time, three high speed SRM experimental prototypes were successfully developed, laying the theoretical foundation for SRM prototype designing. Taking into account the need for the experiment and research of high speed prototype, much theoretical and experimental research have been conducted toward key techniques such as electromagnetic performance optimization, rotor structure stress and dynamic performance analysis, iron and windage loss calculation, etc.
     In the dissertation, the advantages and disadvantages of some typical main circuit of SRM power converter, such as the asymmetrical half-bridge, split-phase main circuit is analyzed, and the influence to the SRM commutation performance brought by the topology of the typical power converter have also been discussed. On the basis of the topology of the conventional double-switch asymmetrical half-bridge main circuit, a three-switch asymmetrical half-bridge topology is proposed which could enhance the motor commutation performance. Meanwhile, the simulation analysis and comparison experiment was conducted between the double-switch and the three-switch main circuit based on a experiment prototype.
     An application specific integrated circuit (ASIC) of SRM named SR3P10K07A was designed, which is the first integrated circuit for the SRM control in our country. The specific design process and the detailed information of the implementation algorithms of every function block have been introduced in this paper. Then the logic function of this chip has been verified on the basis of the hard-ware circuit. Based on the SR3P10K07A, a common set of SRM digital controller was designed and developed in this dissertation, the successful application to several high speed SRM have proved the feasibility of this chip.
     In addition, the experiment research and engineering application was initiated toward three high speed SRM prototypes in this dissertation. The experiment result shows the maximum speed of the prototypeⅠachieve 136,000r/min. As a high speed prime motor, the prototypeⅠhave acquired the successful application in the air-bearing performance test platform developed by the Micro Engine Institute of NUAA. Meanwhile, a no-load experiment was made to conventional salient rotor and cylindrical composite salient rotor respectively based on the prototypeⅡ, and the comparison of the windage loss was made toward this two different rotor structure. The prototypeⅢhave a successful application in the high speed computerized numerical control engraving machine NRT40M produced by the CHANGZHOU NEW ROUTER NC MACHINERY CO., LTD.
引文
[1]王凤翔,高速电机的设计特点及相关技术研究,沈阳工业大学学报,2006,28(3):258-264.
    [2] Quigley R E J. More Electric Aircraft. IEEE Proc APEC’93, 1993, 906-911.
    [3] Cloyd J S. Status of the United States Air Force’s More Electric Aircraft Initiative. IEEE AES system Magazine, 1998, 13(4):17-22.
    [4] Weimer J A. The Role of electric machines and drivers in the more electric aircraft. IEEE, Electric Machine and Drivers Conference, 2003, vol.1:11-15.
    [5] Howse M. All electric aircraft. Power Engineering Journal, 2003, 17(4):35-37.
    [6] Liuchen Chang. Recent developments of electric vehicles and their propulsion systems. IEEE, Aerospace and electronic systems magazine, 1993, 8(12):3-6.
    [7] Ehsani M, Rahman K M, and Toliyat H. Propulsion system design of electric and hybrid vehicles. IEEE, Trans on Industrial Electronics. 1997, 44 (1): 19-27.
    [8] Qianfan Zhang, Shumei Cui, Xinjia Tian. Hybrid switched reluctance motor applied in electric vehicles. IEEE, Vehicle Power and Propulsion Conference, 2007:359-363.
    [9] Huynh C, Hawkins L, Farahani A, et al. Design and development of a 2 MW, high speed permanent magnet alternator for shipboard application. USA Electric Machines Technology Symposium, Philadelphia, 2004.
    [10] Hennagir T. Distributed generation hits markets. Power Engineering, 1997, 101(10):18-23.
    [11] Zahawi B A T, James B P. Starr F. High speed turbo alternator for domestic combined heat and power unit. IEEE, Trans on EDM, 1997, vol.1:215-218.
    [12]翁一武,苏明,翁史烈,先进微型燃气轮机的特点与应用前景,热能动力工程,2003,18(2):111-116.
    [13] Nakamura S. High-Speed spindles for Machine tools. Precision Engineering, 1996, vol.30:4-11.
    [14] Matsui N, Kosaka T, Minoshima N, et al. Development of SRM for spindle motor system, IEEE Industry Applications Conference, 1998, vol.1:580-585.
    [15]张伯霖,杨庆东,陈长年,高速切削技术及应用,北京,机械工业出版社,2002.
    [16]张长栓,热牵伸辊用高速永磁同步电动机的研制,中小型电机,2000,27(4):27-28.
    [17] Brown R L. Benefits and pitfalls when using permanent magnet motors in spinning applications. IEEE Annual, Textile, Fiber and Film Industry Technical Conference, 1998,vol.6:1-5.
    [18] Lustenader E L, Guess R H, Richter E, et al. Development of a hybrid flywheel/battery drive system for electric applications. IEEE Trans.Veh.Tech, 1997, 26(2):135-143.
    [19] Nagorny A S, Dravid N V, Jansen R H, et al. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications. IEEE International Conference on Electric Machines and Drives, 2005, pp: 635-641.
    [20] Cardenas R, Pena R, Perez M, et al. Power smoothing using a switched reluctance machine driving a flywheel. IEEE Transaction on Energy Conversion, 2006, 21(1):294-295.
    [21] LaGrone S C, Griggs M C, Bressani M. Application of a 5500 rpm high speed induction motor and drive in a 7000 hp natural gas compressor installation. Petroleum and Chemical Industry Conference, Industry Applications Society 39th Annual, 1992:141-146.
    [22] Kano Y, Kosaka T, Matsui N. Optimum design approach for two-phase switched reluctance compressor drives. IEEE International Electric Machines & Drives Conference, 2007, vol.1:797-804.
    [23] Bottauscio O. Casaro F, Chiampi M, et al. High-speed drag-cup induction motors for turbo-molecular pump applications. IEEE Transactions on Magnetics, 2006, vol.42 (10):3449-3451.
    [24] Rahman M A, Chiba A, Fukao T. Super high speed electrical machines-summary. Power Engineering Society General Meeting .Denver: IEEE, 2004, vol.2:1272-1275.
    [25] West J G W. DC, induction, reluctance and PM motors for electric vehicles. Power Engineering Journal, 1994, 8(2):77-88.
    [26] Binder A, Schneider T, Klohr M. Fixation of buried and surface mounted magnets in high speed permanent magnet synchronous motors. Conference Record of the IEEE Industry Applications Society Fortieth Annual Meeting, Hong Kong, 2005:2843-2848.
    [27]王继强,王凤翔,鲍文博等,高速永磁电机转子设计与强度分析,中国电机工程学报,2005,25(15):140-145.
    [28]唐孝镐,宁玉泉,傅丰礼,实心转子异步电机及其应用,北京,机械工业出版社,1991.
    [29]张明玉,唐孝镐,林金铭,国内外新型派生实心转子异步电动机的发展与展望,电气应用,1994,20(3):13-15.
    [30] Lawrenson P J. Stephenson J M, Fulton N N, et al. Variable-speed switched reluctance motors. IEE Proceedings-Electric Power Applications, 1980, 127(4): 253-265.
    [31]刘迪吉,张焕春,傅丰礼等,开关磁阻调速电动机,北京,机械工业出版社,1994.
    [32]詹琼华,开关磁阻电动机,武汉,华中理工大学出版社,1992.
    [33]林鹤云,周鹗,黄建中,开关磁阻电机磁场有限元分析与铁耗计算,电工技术学报,1996,11(1):24-29.
    [34]王宏华,陈永校,许大中等,开关磁阻电机定子振动抑制,电工技术学报,1998,13(2):9-12.
    [35]李声晋,马瑞卿,卢刚等,4kW开关磁阻发电机,西北工业大学学报,1999,17(2):327-331.
    [36]吴建华,开关磁阻电机设计与应用,北京,机械工业出版社,2000.
    [37]刘闯,朱学忠,曹志亮等,6kW开关磁阻起动/发电机系统设计及实现,南京航空航天大学学报,2000,16(1):1-5.
    [38]刘闯,开关磁阻电机起动/发电系统理论研究与工程实践,[博士学位论文],南京,南京航空航天大学,2000.
    [39]刘迪吉,曲民兴,朱学忠等,开关磁阻发电机,南京航空航天大学学报,2003,35(2):1-6.
    [40]严加根,航空高压直流开关磁阻起动/发电机系统的研究[博士学位论文],南京,南京航空航天大学,2006.
    [41] Krishnan R, Bharadwaj A S. A comparative study of various motor drive systems for aircraft applications. IEEE Industry Applications Society Annual Meeting, 1991, vol.1:252-258.
    [42] Emadi K, Ehsani M. Aircraft power systems: technology, state of the art and future trends. IEEE Aerospace and Electronics Systems Magazine, 2000, vol.15 (1):28-32.
    [43] Krishnan R D. Blanding, Bhanot A, et al. High reliability SRM driver system for aerospace application. The 29th Annual Conference of the IEEE Industrial Electronics Society, IECON’03, 2003, vol.2:1110-1115.
    [44] Radun A V. High-power density switched reluctance motor for aerospace applications. IEEE Trans on Industry Application, 1992, 28(1):113-119.
    [45] Ferreira C A, Jones S R, Drager B T, et al, Design and implementation a five horsepower switched reluctance fuel-lube pump for a gas turbine engine. Conference Proceedings of Ninth Annual Applied Power Electronics Conference and Exposition, APEC’94, 1994, vol.1:56-62.
    [46] MacMinn S R, Jones W D. A very high speed switched reluctance starter/generator for aircraft engine application. NAECON’89, 1989, vol.1:1759~1764.
    [47] Ferreira C A, Jones S R, Heglund W S, et al. Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application. IEEE Transactions on Industry Applications, 1995, 31(3):553-561.
    [48] Ferreira C A, Richter E. Detail design of 250kW switched reluctance starter/generator for aircraft engine, IEEE Transaction, Journal of Aerospace, 1993, 102(1):289-300.
    [49] Richter E, Ferreira C. Performance evaluation of a 250 kW switched reluctance starter generator. Conference Record of the 1995 IEEE Industry Applications Conference, Thirtieth IAS Annual Meeting, IAS '95, 1995, vol.1:434-440.
    [50] Brown G V, Kascak A F. NASA Glenn Research Centre Program in High Power Density Motors for Aeropropulsion, NASA/TM-2005-213800.
    [51] Wu Tao, Zhu xuezhong, Liu Diji, Researched of reinforced excition Scheme for The switched reluctance Generator. Chinese, Journal of Aeronautics, 2003, 15 (4):234-238.
    [52]刘闯,朱学忠,李磊等,开关磁阻发电机的脉宽调整控制,南京航空航天大学学报,2000,32(3):245-250.
    [53]毛良明,经亚枝,樊小明等,反串线圈法间接位置传感器检测技术在开关磁阻电机发电机系统中的应用研究,电机工程学报,2000,20 (10):71-74.
    [54]刘闯,刘迪吉,朱学忠,一种无位置传感器的开关磁阻发电机控制策略研究,电机工程学报,2002,22 (6):71-74.
    [55]李声晋,卢刚,马瑞卿等,开关磁阻组合起动/发电机设计及试验,电机工程学报,2000,20 (2):10-14.
    [56] Jack A G, Mecrow B C, Weiner C. Switched reluctance and permanent magnet motors suitable for vehicle drives-a comparison. Electric Machines and Drives, International Conference IEMD '99, 1999:505-507.
    [57] Uematsu T,Wallace R S. Design of a 100 kW switched reluctance motor for electric vehicle propulsion. Conference Proceedings of Applied Power Electronics Conference and Exposition, 1995. APEC'95, vol.1:411-415.
    [58] Rahman K M, Fahimi B, Suresh G, et al. Advantages of switched reluctance motor applications to EV and HEV: design and control issues, IEEE Transactions on Industry Applications, 2000, 36(1):111-121.
    [59] Kachapornkul S, Jitkreeyarn P, Somsiri P, et al. A design of 15 kW switched reluctance motor for electric vehicle applications. International Conference on Electrical Machines and Systems, ICEMS, 2007:1690-1693.
    [60]詹琼华,马志源,郭伟,电动汽车用20kW开关磁阻电动机的设计与试验研究,电机与控制学报,1999,3(3):161-180.
    [61] Zhan Q H; Wang S H, Ma Z Y, et al. Design of a 50 kW switched reluctance machine for HEVpropulsion system. IEEE 58th Vehicular Technology Conference, 2003, vol.5:3207-3211.
    [62] Kuss H, Wichert T, Szvmanski B, Design of a high speed switched reluctance motor for spindle drive. Compatibility in Power Electronics, CPE'07, 2007:1-5.
    [63] Matsui N, Akao N, Wakino T. High-precision torque control of reluctance motors. IEEE Trans on Industry Applications,1991, 27(5):902-907.
    [64] Humiston T, Pillay P, Faiz J. The switched reluctance motor drive for distributed generation. IEEE AFRICON Conference, 1999, vol.2:669-674.
    [65] Wiegele T G. Micro-turbo-generator design and fabrication: a preliminary study. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 1996, vol.4:2308-2313.
    [66] Cheng-Tsung Liu, Yen-Ming Chen, Da-Chen Pang. Optimal design of a micro axial flux switched-reluctance motor. IEEE International Conference on electric Machines and Drives, 2005, pp: 1130-1134.
    [67] Silva Neto J L, De Andrade R, Rolim L G B, et al. Experimental Validation of a Dynamic model of a SRM used in superconducting bearing flywheel energy storage system. IEEE International Symposium on Industrial Electronics, 2006, vol.3:2492-2497.
    [68] Lafoz M, Ugena D, Vazquez C, et al. A 200 kVA prototype of kinetic energy storage system based on switched reluctance machine technology. 2005 European Conference on Power Electronics and Applications, 2005, pp: 1-8.
    [69] Iglesias I J, Garcia-Tabares L, Agudo A,et al. Design and simulation of a stand-alone wind-diesel generator with a flywheel energy storage system to supply the required active and reactive power. IEEE 31st Annual Power Electronics Specialists Conference, 2000, vol.3:1381-1386.
    [70] Morel L,Fayard H,VivesFos R,et al.Study of ultra high speed switched reluctance motor drive.Proceedings of IEEE Industry Applications Conference,Rome,2000,vol.1:87-92.
    [71] Kozuka S,Tanabe N,Asama J,et al.Basic characteristics of 150,000r/min switched reluctance motor drive.Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,IEEE,2008:1-4.
    [72] Radun A V. Design considerations for the switched reluctance motor. IEEE Trans. On Industry Applications, 1995, 31(5):1079-1087.
    [73] Su S P, Li Q F. Design of multi-pole single phase switched reluctance generator. Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001, vol.2:938-941.
    [74] Sahraoui H, Zeroug H, Toliyat H A. Switched reluctance motor design using neural-networkmethod with static finite-element simulation. IEEE Transactions on Magnetics, 2007, 43 (12):4089-4095.
    [75] Anwar M N, Husain I. Design perspectives of a low acoustic noise switched reluctance machine. Conference Record of the 2000 IEEE Industry Applications Conference, 2000, vol.1:99-106.
    [76] Sanada M, Morimoto S, Takeda Y. Novel rotor pole design of switched reluctance motors to reduce the acoustic noise. Conference Record of the 2000 IEEE Industry Applications Conference, 2000, vol.1:107-111.
    [77]孟光,转子动力学研究的回顾与展望,振动工程学报,2002,vol.15 (1):1-9.
    [78]邱家俊,机电耦联动力系统的非线性振动,北京,科学出版社,1996.
    [79] Ha K H, Hong J P, Orbital analysis of rotor due to electromagnetic force for switched reluctance motor IEEE Transactions on Magnetics, 2000, 36(4): 1407-1411.
    [80] Bose B K, Millier T J E, et al. Mierocomputer control of switched reluetance motor, IEEE Trans on Industry Applications, 1986, 22(4): 708-715.
    [81] Ray W F, Davis R M, Blake R J. The control of SR motors, Proceedings of international conference on appied motion contronl, 1986, pp: 137-145.
    [82] Marija I S, Rieeardo M, Peresada S M, et al. Feedback Linering control of switched reluetance motor, IEEE Transactions on Automatic Control, 1987, 32(5):371-379.
    [83] Panda S K, Dash P K. Application of nonlinear control to switched reluetance motors: a feedback 1inearisation approach, IEE Proceedings of Electric Power Appications, 1995, vol.143: 37-79.
    [84] Buja G S, Menis R, Valla M I. Varlable structure control of an SRM drive, IEEE Transactions on Industrial Electronics, 1993, 40(1):56-63.
    [85] Sayeed M, Malik E E, Iqbal H. Torque ripple Minimization in Switched Reluctance Motors Using Adaptive Fuzzy Control, IEEE Transactions on Industry Applications, 1999, 35 (2):461-468.
    [86]葛宝明,交流传动系统的新型控制策略,[博士学位论文],杭州,浙江大学,2000.
    [87]夏长亮,王明超,基于RBF神经网络的开关磁阻电机单神经元PID控制,中国电机工程学报,2005,25(15):161-165.
    [88]朱学忠,刘闯,刘迪吉,开关磁阻电机发电运行的角度位置控制,南京航空航天大学学报,2001,33(1):64-67.
    [89] Miller T J E, Cossar C, Anderson D. A new control IC for switched reluctance motor drives.Fourth International Conference on Power Electronics and Variable-Speed Drives, 1991, 1 (324):331-335.
    [90] Cossar C, Miller T J E. Application Experience in Switched Reluctance Motor Control Using ASIC Technology. IEE Colloquium on ASIC Technology for Power Electronics Equipment, 1992:1-4.
    [91] Vijayan S, Ramprasath V, Paramasivam S, et al. Simulation of an ingenious digital controller for a 6/4 pole switched reluctance motor. The 4th International Conference on Power Electronics and Motion Control, 2004, vol.2:1054-1059.
    [92] Heath J R, Radun A V. Application and verification of a digital model of the 3-phase current regulator function of a switched reluctance cycloconverter controller. Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp:908-913.
    [93] Barnes M, Pollock C. Power electronic converters for switched reluctance drives. IEEE Transaction on Power Electronics, 1998, 13(6):1100-1111.
    [94] Murai Y, Cheng J, Yoshida M, New soft-switched/switched-reluctance motor drive circuit. IEEE Transaction on Industry Applications, 1995, 35(1): 78-85.
    [95] Rolim L G B, Suemitsu W I, Watanabe E H, et al. Development of an improved switched reluctance motor drive using a soft-switching converter. IEE Proceedings Electric Power Applications, 1999, 145(5):488-494.
    [96]罗建武,詹琼华,邓琼,一种新型开关磁阻电机软开关功率变换器的研究,中国电机工程学报,25(17):142-149.
    [97] Becerra R C, Ehsani M, Miller T J E. Commutation of SR Motors. IEEE Transactions on Power Electronics, 1993, 8(3):257-262.
    [98]陈昊,樊小明,朱学忠,开关磁阻电动机的换相基本理论与实践,南京航空航天大学学报,1996,28(4):492-498.
    [99] Krishnan R, Materu P. Design of a single switch per phase converter for switch reluctance motor drives. IEEE Transactions on Ind. Electronics, 1990, pp: 469-476.
    [100] Hava A M, Blasko V, Lipo T A. A modified C-dump converter for variable-reluctance machines. IEEE Transaction on Industry Applications, 1992, 28(5):1017-1022.
    [101] Bolognani S, et al. Sliding mode control of the energy recovery chopper in a C-Dump switched reluctance motor drive. IEEE Transaction on Industry Applications, 1993, 29(1):181-186.
    [102] Kim K D, Shin D J, Huh U Y, Application modified C-dump converter for industrial low voltage SRM. ISIE 2001, vol.3:1804-1809.
    [103] Andriamifidy J L, Vives Fos R, Ramiarinjaona C. Predetermination of the electromagnetic losses in high speed electrical machines: application to switch reluctance motor. Sixth International Conference on Electrical Machines and Drives, 1993, Conf. Publ. No. 376:223-228.
    [104] Calverley S D, Jewell G W, Saunders R J. Aerodynamic losses in switched reluctance machine. IEE Proceedings Electric Power Applications, 2000, 147(6):443-448.
    [105] Balamurugan S, Sumathi P. Analysis of temperature rise in switched reluctance motor due to the core and copper loss by coupled field finite element analysis. IEEE 2004 International Conference on Power System Technology, 2004, vol.1:630-634.
    [106] Powell D J, Jewell G W, Calverley S D. Iron loss in a modular rotor switched reluctance machine for the‘More Electric’Aero-Engine. IEEE Transactions on Magnetics, 2005, 41 (10):3934-3936.
    [107] Acarnley P P, Hill R J, Hooper C W, Detection of rotor position in stepping and switched reluctance motors by monitoring of current waveforms. IEEE Transactions on Industrial Electronics, 1990, 37 (2):215-222.
    [108] Atsuo K. Survey of position sensorless switched reluctance motor control. 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994, vol.3:1595-1598.
    [109] Lumsdaine A., Lang J.H., State observers for variable-reluctance motors. IEEE Transactions on Industrial Electronics, 1990, 37(2):133~142
    [110] Lyons J P, McMinn S R, Preston M A. Flux/Current methods for SRM rotor position estimation. IEEE-IAS Conference, 1991, pp: 482-487.
    [111] Ehsani M, Husain I, Kulkarni A. Elimination of discrete position sensor and current sensor in switched reluctance motor drives. IEEE Transactions on Industry Applications, 1992, 28 (1):128-135.
    [112] Husain I, Ehsani M. Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages. IEEE Transactions on Industry Applications, 1994, 30(3):665-672.
    [113]邱亦慧,詹琼华,马志源等,基于简化磁链法的开关磁阻电机间接位置检测,中国电机工程学报,2001,21(10):59-62.
    [114]樊小明,经亚枝,开关磁阻电机的一种无位置检测器方案的研究,电工技术学报,1997,12(6):27-31.
    [115]詹琼华,王双红,肖楚成,开关磁阻电动机电容式位置检测技术,电工技术学报,1999,14(3):1-5.
    [116] Lyons J P, Preston M A, Gurumoorthy R, et al. Design and control of a fault-tolerant active magnetic bearing system for aircraft engines. Proceedings of 4th International symposium on magnetic bearings, 1994, pp: 449-454.
    [117] Sotelo G G, Andrade R, Ferreira A C. Magnetic bearing sets for a flywheel system, IEEE Transactions on Applied Superconductivity, 2007, 17(2):2150-2153.
    [118] Ki-Chang Lee, Yeon-Ho Jeong, Dae-Hyun Koo, et al. Development of a radial active magnetic bearing for high speed turbo-machinery motors, 2006 International Joint Conference, SICE-ICASE, 2006, pp:1543-1548.
    [119]曾学明,磁轴承电控系统研究,[博士学位论文],南京,南京航空航天大学,2002.
    [120]邓智泉,杨钢,张媛等,一种新型的无轴承开关磁阻电机数学模型,中国电机工程学报,2005,25(9):139-146.
    [121]王宝国,无轴承电机磁悬浮机理及控制方法研究,[博士学位论文],沈阳,沈阳工业大学,2002.
    [122]陈昊,谢桂林,两种开关磁阻电机系统的对比研究,中国矿业大学学报,2000,29(5):476-479.
    [123]唐超,开关磁阻电机振动和噪音的研究与实践,[硕士学位论文],南京,南京航空航天大学,2005.
    [124] Mecrow B C, Finch J W, El-Kharashi E A, etc. Switched reluctance motors with segmental rotors, IEEE Proceedings of Electric Power Applications, 2002, 149(4):245-254.
    [125] Hall R, Jack A G, Mecrow B C, et al. Design and Initial Testing of an Outer Rotating Segmented Rotor Switched Reluctance Machine for an Aeroengine Shaft-Line-Embedded Starter/Generator, Electric Machines and Drives, IEE International Conference, 2005, pp: 1870-1877.
    [126]陈昊,谢桂林,张超,开关磁阻电机功率变换器主电路研究,电力电子技术,2000,34(3):22-25.
    [127] Schramm D S, Williams B W, and Green T C. Torque ripple reduction of switched reluctance motors by phase current optimal profiling, Conference Record of the IEEE-PESC’92, 1992: 857-860.
    [128]姚国飞,曹志亮,朱学忠等,SR电机起动转矩的仿真分析与试验,电源技术学报,2003, 1(7):564-568.
    [129]陈昊,开关磁阻调速电动机系统理论研究与实践,[博士学位论文],南京,南京航空航天大学,1996.
    [130]雷菊妹,王宏华,开关磁阻电动机电压斩波续流方式研究,中小型电机,2002,29(6):7-9.
    [131]瞿遂春,三相开关磁阻调速电动机单绕组双开关型主电路的PWM电流斩波方式研究,电气传动,1997,(5):14-17.
    [132]王旭东,王喜莲,王炎等,开关磁阻电动机电流双幅值斩波控制,中国电机工程学报,2000,20(4):83-86.
    [133] Liu Chang, Yan Jiagen, Zhu Xuezhong, et al. Investigation and Practice for Basic Theory of Switched Reluctance Generators, Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, vol.1: 575-579.
    [134] Wang Xilian, Zhang Yihuang, Wang Xudong, Optional-angle Controller of Switched Reluctance Motor Based on EPROM, Proceedings of the fifth International Conference on Electrical Machines and Systems, 2001, vol.1: 600-603.
    [135]赵修科,实用电源技术手册磁性元器件分册,沈阳,辽宁科学技术出版社,2002:80-82。
    [136]周强,朱学忠,刘闯,基于JMAG的开关磁阻电动机场路直接耦合分析,微电机,2007,40(10):1-5.
    [137] Lee J H, Lee E W, Kim J H, Design of the single phase SRM for the blower considering self-stating, IEEE ICEMS2005, September 2005, vol.1: 667-670.
    [138]李育锡,王三民,改进整体传递矩阵法计算复杂转子系统临界转速,航空动力学报,2005,20(3):413-417.
    [139] Xie Danmei, Huang Juan, Wan Jianfeng, et al. Analysis on problem of removing the odd point in rotors torsional vibration characteristics' calculation using Riccati method, Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2003, pp:2185-2188.
    [140]高金吉,缪红燕,徐鸿等,多转子轴系优化耦联及其不平衡响应有限元分析,振动与冲击,2005,24(2):1-9.
    [141] Srinivas K N. Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads. IEEE Transactions on Magnetics, 2004, 40(4): 1911-1919.
    [142]钟一谔,何衍宗,王正等,转子动力学,北京,清华大学出版社,1987.
    [143]刘闯,朱旭勇,卿湘文,开关磁阻电机转子动力学建模与分析,中国电机工程学报,2008,28(3):83-89.
    [144] D.Guo, F.L.Chu, Z.C.Zheng, the Influence of Rotation on Vibration of a Thick CylindricalShell, Journal of Sound and Vibration, 2001, 242(3): 487-505.
    [145]姚学诗,周传荣,汽轮发电机转子磁拉力对弯曲振动的影响,振动与冲击,2002,21(2):74-82.
    [146] R.Gasch,H.Pfützner,转子动力学导论(周仁睦译),北京,机械工业出版社,1986.
    [147]吴建华,开关磁阻电机的损耗计算,微特电机,1996,(2):20-22.
    [148] ShyShenq, Liou P, Jim Ye. Flux distribution and core losses of switched reluctance motors, Electrical and Computer Engineering, Conference, Calgary, Alta, Canadian, 1996.
    [149] .Materu P N, Krishnan R. Esitimation of switched reluctance motor losses. IEEE Transactions on Industry Applications, 1992, 28 (3): 668-679.
    [150] Boivie J. Iron loss model and measurement of the losses in a switched reluctance motor. Sixth International Conference on Electrical Machines and Drives, 1993, pp:219 -222.
    [151]龚余才,潘双来,电路理论基础,北京,航空工业出版社,2000,pp:301.
    [152]杨丽,开关磁阻电机损耗及热分析研究,[硕士学位论文],南京,南京航空航天大学,2006.
    [153] Panda D, Ramanarayanan V. Effect of mutual inductance on steady-state performance and position estimation of switched relucantce drive. Thirty-Fourth IAS Annual Meeting, 1999, vol.4: 2227-2234.
    [154]刘闯,曹志亮,孙健,圆柱凸极复合型的转子结构,中国,发明专利,授权号:ZL200610039202.2,2006.
    [155]尹协远,孙德军,旋涡流动的稳定性,北京,国防工业出版社,2000.
    [156]金君,梁德旺,黄国平等,NAPA软件的并行化研究和效率分析,南京航空航天大学学报,2006,38(4):413-418.
    [157] Pollock C, Willianms B W, Power converter circuits for switched reluctance motors with the minimum number of switches. Proc. Inst .Elect. Eng. 1990, 137(6): 373-384.
    [158] Krishnan R, Lee S. PM brushless DC motor drive with a new power -converter topology. Industry Applications, IEEE Transactions on, 1997, 33 (4): 973-982.
    [159] Ehsani M, Bass J T, Miller T J E, et al. Development of a unipolar converter for variable reluctance motor drives, IEEE Trans. Ind. Applicat., 1987, 23(3): 545-553.
    [160] Mir S, Husain I, Elbuluk M E. Energy efficient C-dump converters for switched reluctance Motors, IEEE Transaction on Power Eectronics, 1997, 12 (5): 912-921.
    [161]刘闯,周强,朱学忠,三开关式功率变换器,中国,发明专利,授权号:ZL200610039335.X,2006.
    [162]李继生,张静,雷素英等,用8098单片机控制的开关磁阻电机双闭环调速系统,沈阳工业学院学报,1997,16(1):29-33.
    [163]严加根,刘闯,严利等,开关磁阻起动/发电机系统数字控制器的研究,电力电子技术,2005,39(6):98-101.
    [164]杜慧敏,李宥谋,赵全良,基于Verilog的FPGA设计基础,西安,西安电子科技大学出版社,2006.
    [165]刘皖,何道君,谭明,FPGA设计与应用,北京,清华大学出版社,2006.
    [166] Peng Bao, Fan Tingting, Ma Jianguo, Application of Verilog HDL language in FPGA development, Control & Automation, n 10A, 2004, pp: 80-82.
    [167]孙丰军,余春暄,SPI串行总线接口的Verilog实现,现代电子技术,2005,16(20):105-106,109.
    [168]王宏华,对降低SR电机振动和噪声的两步换相法的实验分析,电机与控制学报,1997,17(5):326-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700