用户名: 密码: 验证码:
无铅焊点的热损伤电测理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度电子封装集成化,使得焊点可靠性评估和检测更加困难,而封装无铅化,又给焊点可靠性研究带来新的问题。无铅焊点的可靠性问题中,热可靠性问题占了大部分,其热可靠性问题是源于热损伤。因此,对无铅焊点的热损伤研究成为热点问题。怎样检测无铅焊点热损伤是研究者面对的重要课题。
     本文是在热载荷条件下基于电测理论及方法的单个无铅焊点热损伤的基础研究。主要工作及结论如下:
     1、无铅焊点的热损伤理论研究
     本文描述单个无铅焊点热损伤电测方法的概念,并分析电测方法的优缺点和可行性。基于弹塑性热应力理论,结合无铅焊点的热载荷实际情况,分析了热对焊点的影响、焊点热损伤和失效的特征,针对焊点热损伤不同机理分析讨论了热蠕变和热疲劳损伤,将其受损截面和孔洞等效为有效损伤承载截面面积,基于能量守恒揭示了无铅焊点的损伤变量与剪切应变间的关系,为讨论损伤变量与电阻应变奠定了理论基础。
     从金属导体电阻的本质出发,结合固体裂纹等效理论揭示了电阻应变与裂纹扩展的定量关系。基于“有效承载横截面面积”模型和损伤力学导出无铅焊点损伤变量与电阻应变的关系,并进行了模拟实验。研究结果表明,不同载荷下的焊点的电阻应变特性反映了相应损伤变量的变化规律。通过损伤变量建立了焊点的电阻应变与焊点的热蠕变和热疲劳的塑性应变的定量关系,为实现在线电阻测量无铅焊点热损伤的方法提供理论依据。
     2、无铅焊点特性测试系统研制
     以无铅焊点电阻及电阻应变与焊点损伤变量的关系为理论依据,采用电子技术、单片机技术和电子测量技术,研制了通过监测无铅焊点电阻描述其损伤过程的测试系统。该系统由上位机(PC)、下位机(单片机)、控制和测试装置的软硬件、测试平台等组成。为了保证测试系统的精度采取了如下的措施:选择精密元器件,应用多数据采集平均后计数,改四探针法为五点差分法等,使得测量电阻精度达到了微欧级。将无铅焊点在热载荷下的温度、时间、电阻、电阻应变等参量,以曲线的方式显示在PC机的界面上,它们反映了焊点的热损伤状态和失效过程。自制温度控制仪,采用Pt100铂电阻作为测温元件,测量分辨率达到0.125℃;实现了电加热炉功率的调节,并辨识系统工作模式,自动记录循环次数。
     3、电阻应变描述的无铅焊点热损伤实验研究
     在无铅焊点的恒温剪切蠕变实验中,室温(25℃)和高温(125℃)实验结果表明,两者的电阻应变特性曲线均可分为减速应变区域、线性(稳定)应变区域和加速应变区域,分别对应金属蠕变损伤的第一阶段、第二阶段与第三阶段;电阻应变反映了焊点的热损伤,只需测试焊点在一段时间内少数几个时刻的电阻应变,便判定服役焊点所处的损伤程度;两者不同之处在于高温时的电阻应变大于室温时的电阻应变,表示高温时焊点的损伤大于室温时的损伤,并且使用寿命较室温时短。
     在无铅焊点的热疲劳实验中,温度范围从40℃到125℃,热循环加剪切应力蠕变疲劳实验结果表明:电阻应变变化过程反映焊点的热疲劳损伤过程;在循环温度范围内,高、低温端的不可逆电阻应变趋势相似,也有减速变化区域、线性(稳定)变化区域和加速变化区域,很好地反映了热蠕变的变化特性,但高温的不可逆损伤略强于低温的不可逆损伤;对焊点在循环的断裂前一两个循环周期研究,发现失效均发生在循环上升阶段。
     实验结果与理论关系吻合,证明此方法适合作为无铅焊点可靠性检测方法。
     4、基于电阻应变的无铅焊点热损伤与失效检测应用研究
     应用电测无铅焊点损伤理论,探讨了无铅焊点厚度的尺寸效应,温度与电阻应变迟滞回线和焊点失效判据,结论如下:
     (1)无铅焊点厚度的尺寸效应
     在剪切蠕变条件下,通过试验和有限元仿真的方法,对横截面积为1mm2的不同厚度的矩形焊点(Sn3.5Ag)研究。结果表明,当焊点厚度为0.25mm时,不仅电阻应变最小,而且蠕变性能最优。该无铅焊点的厚度尺寸效应,为其制作工艺提供了理论依据。
     (2)温度与电阻应变迟滞回线
     在无铅焊点的热蠕变疲劳中,通过分析和研究温度与电阻应变的关系表明:它们具有类似于材料力学的应力应变迟滞回线的特性,该迟滞回线反映无铅焊点的损伤变化和积累程度,可逆电阻应变范围对应于可逆损伤变化,不可逆电阻应变范围对应于不可逆损伤积累,焊点的失效取决于不可逆损伤积累程度。温度与电阻应变的迟滞回线为无铅焊点热损伤的检测提供了新的检测方法。
     (3)无铅焊点的失效判据
     对大量无铅焊点热载荷下的电阻应变特性进行了分析研究,结果显示,每条电阻应变特性曲线均存在线性区域与加速区域的临界点,该临界点与热损伤变量的临界点对应,试验测得的临界电阻应变是0.05左右,过临界点之后焊点热损伤急速积累很快断裂失效,加速变化至失效的时间约占焊点使用寿命的20%-30%;40℃的电阻应变曲线临界点滞后于125℃的电阻应变曲线临界点,滞后时间约占焊点使用寿命的7.5%;在实际检测中临界点作为失效的判据;这些技术参数丰富了无铅焊点的可靠性检测内容。
Because of the high integration level of electronic packaging, the reliability of solder joints is difficult to evaluate. Meanwhile, lead-free packaging brings new problems to the research of this topic. For lead free solder joints, thermal reliability is a major problem due to root thermal damage. The measurement of this thermal task has become a crucial issue nowadays.
     This project is focused on the study of single lead free solder joints (the specimen length and width 1.0mm, SnAgCu and SnAg solder paste), by detecting micro-resistance change through thermal load electrical measurement. Key conclusions as follows:
     1. Theoretical research of lead free solder joints thermal damage
     The electrical test method for singular lead free solder joint was described, and analyzed in this dissertation. Based on elastoplasticity thermal stress and the actual thermal load, several features of lead free solder joints have been studied, including the thermal damage and fatigue property. Among different mechanisms of solder joint thermal damage, the thermal creep and fatigue damages were discussed; the damage cross section and voids were equivalent to damage cross section. The relationship between the damage variable of lead free solder joints and shear stress-strain was revealed, which established the theoretical model for damage variable and resistance strain.
     By nature of metal conductor resistance, according to solid fracture theory, the quantitative relationship was revealed for the resistance strain and the crack expanding. Founded on "effective bearing cross section surface" model and Damage mechanics, the formula between damage variable and resistance strain was derived for lead free solder joints. This formula were analyzed and discussed under different thermal load. Generally, the quantitative relationship was set up by damage variable for resistance strain of solder joint and plastic strain of thermal creep and fatigue. Theoretical foundation has been laid down for damage variable and resistance strain, which support the design of using resistance to survey thermal damage of lead free solder joints.
     2. Test system for lead free solder joints
     Based on previous knowledge, the test system for lead-free solder joints has been manufactured using single-chip computer and electrical measurement technology; the overall damage process was monitored by detecting resistance change of lead-free solder joints. In order to ensure accuracy of the test system, several measures were adopted, such as precision electron components, data averaging, improved five probes difference method. Physical variables of lead-free solder joints were displayed on PC screen in temporal curves, as temperature, resistance, resistance strain, which indicate the property of fracture mechanism and resistance strain under various thermal loads. Self-regulating temperature control apparatus, using Pt100 platinum resistance as the component of measurement temperature, increases the resolution up to 0.125℃; the power of resistor oven was adjusted by the software, the system work model was designed, and the cycle numbers were recorded automatically.
     3. Investigation of thermal damage of lead free solder joint with resistance strain
     In shear creep experiment of lead free solder joint with ambient temperature, the resistance strain curve of solder joint was divided into three sections (deceleration, linear and acceleration) which correspond to the first, second and third stage of creep failure. Therefore, the damage degree of solder can be determined by the resistance strain of temporal checkpoints in stretch
     In shear creep experiment of lead free solder joint at high temperature, the change of electrical resistance strain generally follows the creep discipline. The process trend curve of high temperature shear creep is similar to ambient temperature. However, the resistance strain of high temperature is larger than that of ambient temperature, which indicates a more serious damage degree. Consequently, the viable time of solder joint at high temperature is shorter than ambient temperature. In addition, as far as fracture surface of solder joint was concerned, a let of cracks were shown on the broken surface of solder joint.
     In the thermal circulation and shear creep experiment of lead-free solder joint, the varying property of thermal creep fatigue was successfully represented by resistance strain of lead free solder joint. Few cycles before breaking in the thermal circulation process of lead free solder joint were closely investigated. The broken fracture occured in rising phase of circulation, and the range was found. Under situation of serious damage, such as cycling down, the damage degree recovered properly, the broken fracture happened in next rising circulation.
     The theoretical relationship of is verified by the experimental results in the investigation. The method described is an effective approach as detection method for the reliability of lead free solder joints.
     4. The reliability application research of lead free solder joints with resistance strain
     To apply electrical measure damage theory of lead free solder joints, the thickness effect, the hysteresis loop between temperature and resistance strain and the failure criterion of lead free solder joints were investigated, the conclusions as follow:
     (1) The thickness effect of lead free solder joint
     In shear creep, the highness was investigated for 1mm2 rectangle Sn3.5Ag solder joint, the quantitative relationship between resistance strain and thickness of solder joint shown, when the thickness is about 0.25mm, its resistance strain is the least; meanwhile the creep property is top-notch, which represents the highest reliability of lead-free solder joints.
     (2) The hysteresis effect between temperature and resistance strain for leadfree solder joint
     In thermal creep fatigue, the property of hysteresis loop between temperature and resistance strain for lead-free solder joints is similar to that for material mechanics. This property reflects the actual damage status of lead-free solder joints, where the irreversible resistance strain range matches the irreversible damage accumulation;
     (3) The failure criterion of lead free solder joint
     There are long-drawna lineation change zone and accelerated non-linear exponential change zone for the resistance strain curve of lead free solder joint. The period from exponential change to failure is about 20%-30% of the total useful time of lead free solder joints, the critical point of resistance strain matches along with the critical point of damage. The failure develops rapidly after the point. The curve critical point of resistance strain at 40℃lags behind at 125℃, the hysreresis time is about 7.5% of the total useful time. It is because the plastic strain happened primarily in holding high the temperature, the solder joint is more easy damaged in high temperature zone.
引文
[1]中国电子学会生产技术学分会丛书编委会 组编.微电子封装技术[M].合肥: 中国科技大学出版社2003年4月第一版
    [2]D.Shangguan. Packaion &Board Assembly Technology Trend and Impact on the Supply Chain[J].(Keynote) Proceedings of the 6th IEEECPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis(HDP'04), June 2004, p14-17
    [3]贾松良,王永弟,菜坚 等.译校 芯片尺寸封装—设计、材料、工艺、可靠性及应用[M].北京:清华大学出版社2003年10月第—次印刷
    [4]刘建影,孙鹏.无铅焊料互联及可靠性[M].北京电子工业出版社,2008年1月第一次印刷
    [5]Tummala R R,Rymaszewski E J, Klopfenstein A G, et al. Microelectronics Packaging Handbook(Second Edition)[M].Beijing:PHEI,2001
    [6]史建卫,徐波,袁和平,等.SMT焊点质量检测方法[J].电子工业专用设备2005,128(9):26-33
    [7]U.S Department of Health and Human Services. Toxicology Profile for Lead[M].Clement International Corporation, April 1993
    [8]M. Costic,J. Sullivan, B. Bryant, et al. LCI for Automotive Electronic Systems: Substitution Assessment of Ag-Sn for Pd-Sn Solder[C]. Proceedings of the International Symposium on Electronics and the Environment, May 1996, 58-63
    [9]潘宏明,杨道国,罗海萍等.无铅倒装焊封装工艺中的芯片应力及开裂分析[J].电子元件与材料,2006,25(9):57-59
    [10]钟文仁,邱建嘉,蔡新春.含铅与无铅锡球在FCOB封装体上之热-机械行为的比较[J].中原学报,2005,33(3):449-458
    [11]罗道军,林湘云,刘瑞槐.无铅焊料的选择与对策[J].电子工艺技术,2004,25(6):256-258
    [12]D.Shangguan. Study of Compatibility for Lead-Free Solder PCB Assembly[C]. Proceedings of the IPC and Solder tech First International Conference on Lead-Free Electronics, June 2003,298-308
    [13]D.Shangguan. Key Topics in Lead-Free Solder PCB Assembly[C]. Proceedings of NEPCON 2003,111-121
    [14]D.Shangguan. Managing Compatibility Issues Transitioning To Volume Manufacturing for Lead-Free Solder PCB Assembly[C]. Proceedings of 2003 International Printed Conference and Exhibition,2003,12:10-12
    [15]D.Shangguan. Managing Lead-Free Compatibility[J]. Circuits Assem, Nov 2003,30-33
    [16]D.Shangguan. Challenge & Opportunities in Lead-Free Solder PCB Assembly[J]. Global SMT & Packaging,2002,10:18-24
    [17]D.Shangguan. Leading the Lead-Free Transition[J]. Circuits Assem, March 2004.
    [18]D.Shangguan. Understanding Compatibility and Clarifying Issues in Lead-Free transition[J]. Electronics Manufacturing China,2004,4:20-24
    [19]D.Shangguan, and A. Acharit. Evaluation of Lead-Free Eutectic Sn-Ag Solder for Automotive Electronics Packaging Applications[C]. Proceedings of the International Electronics Manufacturing Technology Symposium,1994, 9:25-37
    [20]D.Shangguan, and A. Acharit. Lead-Free Solder Development for Automotive Electronics Packaging Applications [C]. Proceedings of the Surface Mount International Conference,1995,8:423-428
    [21]D.Shangguan, and G. Gao. Environmentally Conscious Manufacturing technologies for Automotive Electronics [C]. Proceedings of the Second International Symposium on Electronic Packaging Technology(ISEPT'96),1996,12:391-402
    [22]D.Shangguan, and G. Gao. Lead Free & No-Clean Soldering for Automotive Electronics, Solder[J]. Surf. Mt. Technol.,26(1997), p5-8
    [23]National Center for Manufacturing Sciences(NCMS),Lead-Free Solder Project-Final report, Aug 1997.
    [24]A.Rae and C. Handwerker, NEMI's Lead-Free Alloy:Still on Target, Circuits Assem[J].2004,4:20-25.
    [25]J.S.Hwang, Environment-Friendly Electronics:Lead-Free Technology[M]. electroche
    -mical Publications Ltd.,2001.
    [26]J.La, C.P.Waong, N.C.Lee, et al.e with Lead-Free, Halogen-Free and conductive Adhesive Materials [M]. McGraw-Hill,2003
    [27]菅沼克昭 著,宁晓山 译 无铅焊接技术[M].北京:科学出版社2004年 第一版
    [28]J.C.Foley, A.Giekler, F.H.Leprevost. Analysis of Ring and Plug Shear Strengths for ComParison of Lead free Solders[J]. Journal of Electronic Materials,2000,29(10):1258-1263
    [29]颜秀文,丘泰,张振忠.无铅电子封装材料及焊点可靠性研究进展[J].电子元件与材料,2006,25(3):5-8
    [30]JEDEC standard:JESD22-A104-B, Temperature cycling[M].2000
    [31]M. Erinc, P.J.G. Schreurs and M.G.D. Geers.Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints [J].International Journal of Solids and Structures,2007,44(17): 5680-5694
    [32]顾永莲,杨邦朝.无铅焊点的可靠性问题[J].电子与封装,2005,5(5):12-16
    [33]Lau John H, Pao Yi-Hsin. Solder joints reliability of BGA, CSP, flip chip, and fine pitch SMT assemblies[J]. New York, USA:McGraw-Hill,1997
    [34]黄春跃,周德俭,李春泉.CCGA焊点热循环加载条件下应力应变有限元分析[J].桂林电子工业学院学报,2001,21(3):22-28
    [35]曹昱,易丹青,王颖,等.Sn-Ag基无铅焊料的研究与发展[J].四川有色金属,2001,(3):5-12
    [36]戚琳,赵杰,王来,等.波峰焊及再流焊无铅焊点组织演变规律的研究[J].电子工艺技术,2004,25(2):64-67
    [37]李晓延,严永长.电子封装焊点可靠性及寿命预测方法[J].机械强度,2005,27(4):470-479
    [38]肖克,罗乐.无铅焊料表面贴装焊点的可靠性[J].世界电子元器件,2002,5:50-52
    [39]Mulugeta, Abtew, Guna Selvaduray. Lead-free solder in electronics[J]. Mater Sci Eng,2000,27:95-141
    [40]Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joint in electronic packaging technology[J]. Mater Sci Eng,2002,38:55-105
    [41]Frank W Gayle, Gary B ecka, Jerry Badgett, et al. High temperature Lead-free solder for microelectronics[J]. J Electron Mater,2001,6:17-21
    [42]Gan H, Choi W J, Xu G, et al. Electro migration in solder joints and solder lines[J]. J Electron Mater,2002,6:34-37
    [43]Masazumi Amagai. Mechanical reliability in electronic packaging[J]. Microelectron Reliab,2002,42:607-627
    [44]Zribi A, Kinyanjui R, Borgesen P, et al. Aspects of the structural evolution of lead-free solder joints[J]. J Electron Mater,2002,6:38-40
    [45]S.Wiese, K. J. Wolter. Creep of thermally aged SnAgCu-solder joints[J]. Microelectronics Reliability,2007,47:223-232
    [46]Ikuo Shohji, Hideo Mori, Yasumitsu Orii. Solder joint reliability evaluation of chip scale package using a modified Coffin-Manson equation[J]. Microelectronics Reliability,2004,44:269-274
    [47]张群.倒装焊及相关问题研究[D]:[博士论文],上海:中科院上海冶金研究所,2001
    [48]Liu X W, Plumbridge W J. Thermomechanical Fatigue of Sn-37wtPd Model Solder Joints[J]. Materials Science and Engineering,2003, A362:309-321
    [49]Shi X Q, Pang H L and Zhang X R. Investigation of Long-Term Reliability and Failure Mechanism of Solder Interconnections with Multifunctional Micero-moire Interferometry System[J]. Microelectronics Reliability,2004, 44:841-852
    [50]李禾,傅艳军,李仁增等球栅阵列倒装焊封装中的热应变质的测试[J].半导体学报,2002,23(6):655-659
    [51]王青春,梁旭文,王金铭等SMT焊点形态对热应力分布影响的有限元分析[J]. 电子工艺技术,1996,6:14-17
    [52]D.Gupta, K.Vieregge, W.Gust. Interface diffusion in eutectic PbSn solder[J]. Acta Mater,1999,47(1):5-12
    [53]Xu Chen, Gang Chen. Cyclic stress-Strain relationship of 63Sn37Pb solder under biaxial proportional and non-proportional loading [J]. Materials and Design,2005,10:25-28
    [54]吕建刚,傅承诵,戴福隆.用云纹干涉法研究金属焊点的热变形问题[J].实验力学,1997,12(2):242-247
    [55]王卫宁,梁镜明.表面安装技术(SMT)可靠性问题研究的实验测试方法及其研究现状与进展[J].首都师范大学学报,1997,18:99-103
    [56]刘常康,周德俭.PBGA焊点热疲劳寿命的正交试验及回归分析[J].电子工艺技术,1999,20(3):90-93
    [57]P.L.Tu, Y.C.Chan, C.W.Tang, et al. Growth Kinetics of Ni-Sn/Cu-Sn Intermetallic Compounds in μBGA Solder Joint on Au/Ni Substrate[J]. Scripta Mater,2001,44(2):317-323
    [58]S.S.Manson. Thermal Stress and Low Cycle Fatigue[J]. McGraw-Hill New York,1996,4:145-148
    [59]Solomon.H. IEEE, Trans Compon Hybrids Manuf Technol[C].1986,9:423
    [60]Engelmajer W.Fatigue life of leadless chip carrier solder joints during power cycling[C]. IEEE, Components, hybrids and manufacturing technology, 1983,6(3):232-237
    [61]Barrett.J.Electronic systems package:Future reliability challenges[J]. Microelectronics Reliability,1998, (38):1277-1286
    [62]Qiang Y. Multidisciplinary reliability design of electronics packaging based on the first order reliability method and structural equation modeling[C].10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004,3571-3589
    [63]Summkawa M., Saza Y, Sato T. Reliability of soldered joints in CSPs of various designs and mounting conditions[J]. IEEE Transactions on ComPonents and Packaging Technologies, June,2001,24(2):293-299
    [64]Nagaraj B., Nataraju B.S., Ghosal A. Dynamics of a two-link flexible system undergoing locking:Mathematical modeling and comparison with experiments[J]. Journal of Soundand Vibration, Nov,1997,207(4):567-589
    [65]Amagai M. Chip scale package(CSP) solder joint reliability and modeling[J]. Microelectronics Reliability,1999(39):463-477
    [66]Basaran C., Chandaroy R. Using finite element analysis for simulation of reliability tests on solder joints in microeleetronic package[J]. Computers and Structures,2000,74(2):215-231
    [67]Kheng L.T., Chua T.Y., Beng L.T.. Reliability assessment of transfer mold CSP[C]. Proceedings of IEEE/CPMP Electronic Packaging Technology Conference[C],1998:274-278
    [68]Atmel Corporation. AT89S52 Datasheet [DB/OL]. http://www.atmel.com/, 2005
    [69]王青伟.芯片加热器的研制[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2002
    [70]McDougall J., Choi S., Bieler T.R., et al. Quantification of creep strain distribution in small crept lead-free in-situ composite and non composite solder joints [J]. Materials Science and Engineering,2000, A285:25-34
    [71]Lau K.J., Tang C.Y., Chow C.L., et al. Microscopic experimental investigation on shear failure of solder joints [J]. International Journal of Fracture,2004, 130:617-634
    [72]廖福平,周浪,黄惠珍,等.无铅电子钎料合金蠕变性能研究[J].电子元件与材料,2005,24(4):65-67
    [73]Choi S, Lee J G, Guo F, et al. Creep properties of Sn-Ag solder joints containing intermetallic particles[J].JOM,2001,53 (6):22-26
    [74]Knecht S, Fox L R. Constitutive relation and creep-fatigue life model for eutectic Tin-lead solder [J]. IEEE Trans. Compon. Hybrids, Manuf.Technol,1990,13 (2):424-433
    [75]Syed A. Solder joint life prediction model and application to ball grid array design optimization. Proceedings of the Ⅷ International Congress on Experimental/Numerical Mechanics in Electronic Packaging, Nashville [J], TN, USA, June 10-13, Vol.1,1996.136-144.
    [76]Budynas, Richard G. Advanced Strength and Applied Stress Analysis (Second Edition)[M]. Beijing:Tsinghua University Press,2001.
    [77]S.Wiese, K.-J. Wolter. Creep of thermally aged SnAgCu-solder joints [J]. Microelectronics Reliability,2007,(47):223-232
    [78]Kerr M, Chawala N. Creep deformation of Sn-3.5Ag-solder/Cu couple at small length scales [J]. Acta Mater,2004,52:4527-4537
    [79]Yang W, Felton LE, Messler Jr RW. The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joint [J]. J Electron Mater,1995,24(10):1465-1472
    [80]Shohij K, Yoshida T, Takahashi T, et al. Tesile properties of Sn-Ag based lead-free solders and strain rate sensivity[J]. Mater Sci Eng,2004, A366:50-55
    [81]Ochova F, Deng X, Chawala N. Effects of cooling rate on creep behavior of a Sn-3.5Ag alloy [J]. J Electron Mater,2004,33 (12):1596-1607
    [82]Dutta I, Park C, Choi S. Impression creep characterization of rapidly cooled Sn-3.5Ag solders [J]. Mater Sci Eng,2004, A379:401-410
    [83]Whitelaw RS, Neu RW, Scott DT. Deformation behavior of two lead-free solders:Indalloy 227 and castin alloy [J]. J Elctron Packaging,1999, 121:99-107
    [84]Yang H, Deane P, Magill P, et al. Creep deformation of 96.5Sn-3.5Ag solder joints in a flip-chip package[C]. In:Proceedings of the IEEE 46th electronic components and technology conference,1996.1136
    [85]Mavoori H, Chin J, Vaynman S, et al. Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders [J]. J Electron Mater,1997, 26(7):783-790
    [86]Guo Z, Pao Y-H, Conrad H. Plastic deformation kinetics of 95.5Sn4Cu0.5Ag solder joints [J].J Electron Packaging,1995,117:100-104
    [87]Neu RW, Scott DT, Woodmansee MW. Thermomechanical behavior of 96Sn-4Ag and castin alloy [J]. J Elctron Packaging,2001,123:238-246
    [88]Wade N, Wu K, Kunii J, et al. Effects of Cu, Ag and Sb on the creep-rupture strength of lead-free solder alloys [J]. J Electron Mater,2001, 30(9):1228-1231
    [89]Xiao Q, Nguyen L, Armstrong WD. Aging and creep behavior of Sn3.9Ag0.6Cu solder alloy[C]. In:Procceedings of the IEEE 54th electronics components and technology conference, Las Vegas, June 1-4,2004:1325
    [90]Pang JHL, Xiong BS, Low TH. Comprehensive mechanics characterization of lead-free 95.5Sn-3.8Ag-0.7Cu solder [J]. Micromater Nanomater,2004, 3:86-93
    [91]Darveaux R, Banerji K. Constitutive relations for tin-based-solder joints[C]. In: Proceedings of the IEEE 42nd electronic components and technology conference,1992:538
    [92]Schubert A, Walter H, Gollhart A, et al. Material mechanics and reliability issues of lead-free solder interconnects[C]. In:Proceedings of the 2nd ESIME conference,2001:171
    [93]Zhang Q, Dasgupta A, Haswell P. Partitionated viscoplastic-constitutive properties of Pb-free Sn3.9Ag0.6Cu solder [J]. J Electron Mater,2004, 33(11):1338-1349
    [94]Solomon.H.D.Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pd Solder [J].J Electron Packaging Trans ASME.1991, 113:102-108.
    [95]C.Kanchanomai,S.Yamamoto,Y.Miyashita,et al. Low Cycle Fatigue Test for Solders Using Non-Conatct Digital Image Measurement System [J].International Journal of Fatigue,2002,24:57-67.
    [96]C.Kanchanomai,Y.Mutoh.Temperature Effect on Low Cycle Fatigue Behavior of Sn-Pd Eutectic Solder[J]. Scripta Materialia,2004,50:83-88.
    [97]G.P. Zhang, C.A. Volkert, R. Schwaiger,et al. Fatigue and thermal fatigue damage analysis of thin metal films[J].Microelectronics Reliability, Volume 47, Issue 12, December 2007, Pages 2007-2013
    [98]S. Manian Ramkumar, Reza Ghaffarian and Arun Varanasi. Lead-free 0201 manufacturing, assembly and reliability test results[J].Microelectronics and Reliability,2006,46(2-4):244-262
    [99]杨宣科,吴天禄,江仙美 等.金属高温强度及试验[M].上海:科学技术出版社,1984
    [100]Akay H, Zhang H, Paydar N.Experimental Correlations of an Energy-Based Fatigue Life Prediction Method for Solder Joints,Advance in Electrnic Packaging[A].proe.of the Pacific Rim/ASME,International Intersociety Electronic and Photonic Packaging Conference,InterPack'97,New York,USA,1997,2:1567-1574.
    [101]Darveaux R. Solder Joint Fatigue Life Model, in Design and Reliability of Solder Interconnections[J].Orlando, Florida, USA:the Minerals, Metals and Materials Society(TMS),1997:213-218.
    [102]张俊善 著.材料的高温变形与段裂[M].北京:科学出版社,2007:347.
    [103]J.勒迈特 著.损伤力学教程[M].北京:科学出版社,1996,1月第一版1
    [104]张安哥,朱成九,陈梦成 编著.疲劳、断裂与损伤[M]成都:西南交通大学出版社,2006年2月第一版.
    [105]乔生儒,杨中学,韩栋等.3D-C/SiC复合材料拉伸蠕变损伤和蠕变机理[J].材料工程,2004,4:34-36.
    [106]杨厚君,李正刚,林介东.电阻法在金属材料蠕变损伤检测中的应用[J].武汉水利电力大学学报,1999,32(6):74-77.
    [107]杨厚君,李正刚,肖文凯.一种评估火电厂高温部件蠕变寿命的方法——电阻法[J].电力建设,1999,1:2-4.
    [108]Lokochtchenko A.M..用电阻测量方法研究蠕变状态下的金属损伤[J].力学学报,1992,24(2):191-196.
    [109]陈荐,黄志杰,李录平.基于电阻值变化的汽轮机转子材料剩余寿命研究.长沙电力学院学报(自然科学版),2004,19(3):63-65.
    [110]刘金海,曾大本,汪睿.用电阻法测量球墨铸铁的疲劳损伤[J].清华大学学报(自然科学版),1999,39(2):14-17.
    [111]姜菊生,许金泉.金属材料疲劳损伤的电阻研究法[J].机械强度,1999,21(3): 232-234.
    [112]孙斌祥,郭乙木.考虑电阻率变化的电阻法预测金属材料剩余寿命[J].工程设计,2001,(2):81-84.
    [113]Li Jiang, Keling Yang, Jiemin Zhou, et al. Quantification of creep strain in small lead-free solder joints with the in-situ micro electronic-resistance measurement[J]. Microelectronics Reliability,2008,3(48):438-444
    [114]Sanchez, John E. Jr., Pham, Van. Interpretation of resistance changes during interconnect reliability testing[J]. Materials Reliability in Microelectronics, 1994,459-464.
    [115]Frank Stepniak. Failure criteria of flip chip joints during accelerated testing[J]. Microelectronics Reliability,2002,42:1921-1930
    [116]T.I.SHIH, Y.C.LIN, J.G.DUH, et al. Electrical Characteristics for Sn-Ag-Cu Solder Bump whit Ti/Ni/Cu Under-Bump Metallization after Temperature Cycling Tests[J]. Journal of Electronic Materials,2006,10(35):251-257
    [117]吴丰顺,张伟刚,张金松,等.无铅互连凸点电迁移失效的四探针测量[J].华中科技大学学报.2007,35(6):85-88
    [118]鲜飞.BGA焊点的质量控制[J].半导体行业,2007,12:46-50
    [119]M.N.奥齐西克 著,俞昌铭主译.热传导[M].北京:高等教育出版社,1984年.
    [120]俞昌铭 编著.热传导及其数字分析[M].北京:清华大学出版社,1982年
    [121]E.梅兰,帕尔库斯 著,何善堉 译.由于定常温度场而产生的热应力[M].北京:科学出版社,1955年
    [122]竹内羊一郎 著,郭廷玮,李安定 译.热应力[M].北京:科学出版社,1982年
    [123]严宗达,王礼洪 编著.热应力[M].北京:高等教育出版社,1993年10月第一版
    [124]平修二 主编,郭廷玮,李安定,张质贤 译.热应力与热疲劳(基础理论与设计应用)[M].北京:国防工业出版社,1984年1月第一次出版
    [125]盖脱伍德 著,魏信方,邵成勋,张成煦译 热应力[M].北京:科学出版社,1964
    [126]徐秉业,黄炎,刘信声 等编.弹性理学与塑性力学解题指导及习题集[M].北京:科学高等教育出版社,1985
    [127]杨绪灿,金建三 编著,弹性力学[M].北京:高等教育出版社,1987年3月第一版
    [128]宋天霞 编著 非线性结构有限元计算[M].武汉:华中理工大学出版社,1996
    [129]杨伯源,张义同 编著 工程弹塑性力学[M].北京:机械工业出版社,2003
    [130]李维特,黄保海,毕仲波 热应力理论分析及应用[M].北京:中国电力出版社,1987
    [131]姜晋庆,张铎 结构弹塑性有限元分析法[M].北京:宇航出版社,1990
    [132]杨科灵.剪切蠕变下锡银焊点的电阻应变特性研究[D].[硕士学位论文].长沙:中南大学,2007
    [133]傅冰.倒装焊焊点的可靠性分析[D].[硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [134]李小侠,朱荣林.无铅焊接技术对印制电路板可靠性的影响[J].上海交通大学学报,2007,41(4):95-99
    [135]K.N.Tu, K.Zeng. SnPb solder reaction in flip chip technology[J]. Mater Sci Eng R,2001,34:1-58
    [136]H.K.Kim, H.K.Liou, K.N.Tu. Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu[J]. Appl Phys Lett,1995,66(18):2337-2339
    [137]K.N.Tu. Cu/Sn interfacial reactions:thin film case versus bulk case[J]. Mater Chem Phys,1996,46:217-223
    [138]H.K.Kim, K.N.Tu. Kinetics analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening[J]. Phys. Rev.B, 1996,53(23):16027-16034
    [139]K.N.Tu, F.Ku, T.Y.Lee. Morphological stability of solder reaction products in flip chip technology [J]. J Electron Mater 2001,30(9):1129-1134
    [140]D.Gupta, K.Vieregge, W.Gust. Interface diffusion in eutectic PbSn solder[J]. Acta Mater,1999,47(1):5-12
    [141]A.C.K.So, Y.C.Chan, J.K.L.Lai. Aging studies of CuSn intermetallic compounds in annealed surface mount solder joints[C]. IEEE Trans on CPMT,1997,20(2):161-166
    [142]P.L.Tu, Y.Cln.Chan, J.K.L.Lai. Effects of intermetallic compounds on the thermal fatigue of surface mount solder joints[C]. IEEE Trsns CPMT,1997, 20:87-93
    [143]K.Jung, H.Conrad. Microstructure coarsening during static annealing of 60Sn40Pb solder joints:III Intermetallic compound growth kinetics[J]. J
    Electron Mater,2001,30:1308-1312
    [144]P.L.Tu, Y.C.Chan, K.C.Hung. Reliability of MicroBGA Assembly Using No-Flow Underfill[J]. Microelectronics Reliability,2001,41:1993-2000
    [145]P.L.Tu, Y.C.Chan, C.W.Tang, K.et al. Growth Kinetics of Ni-Sn/Cu-Sn Intermetallic Compounds in μBGA Solder Joint on Au/Ni Substrate[J]. Scripta Mater,2001,44(2):317-323
    [146]P.L.Tu, Y.C.Chan, C.W.Tang, et al. Study of Micro-BGA Solder joint reliability[J]. Microelectronics Reliability,2001,41:287-293
    [147]Speight M V, Harriss J E. The Kinetics of Stress Induced Growth of Grain-Boundary Voids[J]. Metall. Sci.J.,1967,1 (5):83-85
    [148]Chuang T J, Rice J R. The Shape of Intergradunlar Creep Cracks Growing bu Diffusion [J]. Acta Metall.1973,21(12):1625-1628
    [149]Cocks A CF, Ashby M F. On Creep Fracture bu Void Growth [J].Prog. Mater. Sci.,1982,27(34):189-244
    [150]冯端等.金属物理学 第三卷 金属力学性质[M].北京:科学出版社,1999
    [151]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990
    [152]Nabarro F. R. N.. Report on Conference on Strength of Solids[J]. Physical Society,1948,75
    [153]S. Wiese, K.-J. Wolte. Microstructure and creep behaviour of eutectic SnAg and SnAgCu solders[J]. Microelectronics Reliability,2004,44:1923-1931
    [154]Skrzypek J,Ganczarski A. Modeling Material Damage and Creep Failure of Structure[M].Berlin:Springer,1999
    [155]S.S.Manson. Thermal Stress and Low Cycle Fatigue[J]. McGraw-Hill New York,1996,4:145-148
    [156]Solomon.H. IEEE, Trans Compon Hybrids Manuf Technol[C].1986,9:423
    [157]Engelmajer W.Fatigue life of leadless chip carrier solder joints during power cycling[C]. IEEE, Components, hybrids and manufacturing technology,1983, 6(3):232-237
    [158]严燕来,叶庆好.大学物理拓展与应用[M].北京:高等教育出版社,2002
    [159]杨兵初,钟心刚.固体物理[M].长沙:中南大学出版社,2002
    [160]Suresh S.(美).王光中等译.材料的疲劳[M].北京:国防工业出版社,1993
    [161]Lemaitre J, Chaboche J L.固体材料力学.北京:国防工业出版社,1997
    [162]Jie Zhao, Yoshiharu Mutoh, Yukio Miyashita.Fatigue crack growth behavior
    of Sn-Pb and Sn-based lead-free solders[J]. Engineering Fracture Mechanics, 70:2187-2197
    [163]四川矿业学院数学教研组 编 数学手册[M].北京:科学出版社,1978
    [164]田原,官东,李素若 等.Delphi7.0程序设计[M].北京:清华大学出版社,2005
    [165]IBM Corporation.迭代化软件开发技术[M]:IBM Rational技术白皮书.http://www.ibm.com/developerworks/cn/rational/r-id/,2004
    [166]贾卫忠,王开松,李存华.Delphi基于ADO通用数据库连接的实现和应用[J].电脑知识与技术,2006,14:33-35
    [167]Atmel Corporation. AT89S52 Datasheet. http://www.atmel.com/,2005
    [168]Paul M D,丁家峰,曹建.基于AT89C51的金属材料电阻率测量仪[J].中南工业大学学报,2000,31(6):506-509
    [169]华文玉,陈存礼.单点圆形模型-直线四探针测量金属-半导体的接触电阻率[J].半导体学报,1993,14(12):760-764
    [170]Burr-Brown Corporation.OPA548 Datasheet. http://www.burr-brown.com/, 1997
    [171]Toshiba,Corporation.4N35,Datasheet.http://www.semicon.toshiba.co.jp/, 2006
    [172]NationalSemiconductorCorporation.DAC0832,Datasheet.http://www.national. com,1999
    [173]Texas Instruments Incorporated. TL082 Datasheet. http://www.ti.com/,1999
    [174]Analog Devices Incorporated. OP07 Datasheet. http://www.analog.com, 2002
    [175]慰广军,朱宇虹.几种恒流源电路的设计[J].电子与自动化,2000,(1):45-46
    [176]黄小平,蓝德良,孙江晖等.精密多功能恒流源[J].计量技术,2001,7:7-9
    [177]杨恩江.一种精密实用的仪表恒流源电路的设计[J].仪表技术,1996,2:32-34
    [178]陈梁,刘春霞.PC机并行口控制的大功率恒流源[J].电子与自动化,1998,5:30-32
    [179]于诚.锰铜电阻及其稳定性[J].中国仪器仪表,1994,(2):37-39
    [180]International Rectifier Company.1N5817 Datasheet. http://www.irf.com/, 2002
    [181]梅玉芳.仪表放大器及其应用问题研究[J].中国科技信息,2006,(16):54-49
    [182]Linear Technology Corporation. LTC6915 Datasheet. http://www.linear.com, 2004
    [183]Maxim Integrated Products. ICL7650 Datasheet. http://www. maxim-ic.com, 2000
    [194]Maxim Integrated Products. MAX430 Datasheet. http://www. maxim-ic.com, 1998
    [185]Analog Devices Incorporated. AD7705/AD7706 Datasheet. http:// www.analog.com,2006
    [186]陈勇钢,吴伯农.AD7705高精度数据采集的实现[J].国外电子测量技术,2006,25(1):38-40
    [187]万宇杰.基于AD7705的RTD温度测量C51程序设计.仪器仪表标准化与计量,2004,(4):32-34
    [188]Maxim Integrated Products. MAX6250 Datasheet. http://www. maxim-ic.com,1998
    [189]安徽蚌埠天光测控仪表厂.TJL-1S型拉力传感器http://www.tg688.com/p2-l.htm,2006
    [190]Burr-Brown Corporation.INA125 Datasheet. http://www.burr-brown.com/, 1998
    [191]张翠莲,杨家强,邓善熙.铂电阻温度传感器的非线性特性及其线性校正方法[J].微计算机信息,2002,(1):43-45
    [192]Gert N.Helles.PT100铂电阻温度变送器[J].世界电子元器件,2003,8:64-65
    [193]National Semiconductor Corporation. ADC0832 Datasheet. http://www.national.com,1999
    [194]ON Semiconductor. MC74HC573A Datasheet. http://onsemi.com,2000
    [195]长沙市太阳人电子有限公司.SMC 1602A LCM使用说明书.http://www.sunman.com.cn,2006
    [196]Maxim Integrated Products. MAX232 Datasheet. http://www. maxim-ic.com, 2000
    [197]Keil Elektronik GmbH/Keil Software Inc. μVision IDE and Debugger. http://www.keil.com/,2006
    [198]尹勇,王洪成.单片机开发环境μVision2使用指南及USB固件编程与调
    试[M].北京:北京航空航天大学出版社,2004
    [199]Atmel Corporation. Atmel MCU ISP Software. http://www.atmel.com/,2001
    [200]王建玲,杨成利.应用CD4052扩展单片机串行口[J].河南机电高等专科学校学报.2005,3:17-18
    [201]袁冬媛,徐富新.大学物理实验教程[M].长沙:中南大学出版社,2002
    [202]张永瑞,刘振起,杨林耀等.电子测量技术基础[M].西安:西安电子科技大学出版社,1994
    [203]石健.浅谈用固态继电器代替传统的电磁继电器[J].元器件应用,2007,12:49-50
    [204]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2000
    [205]范新有.民用锅炉温度测控仪的研制与开发[D].[硕士学位论文].西安:西安交通大学,2001
    [206]刘伯春.智能PID调节器的设计与应用[J].电气自动化,1995,3:18-21
    [207]谢新民.具有专家系统的PID自适应调节器[J].自动化与仪器仪表,1992,4:4-7
    [208]许丽川.过程控制调节规律的研究——单片机温度控制系统的设计制作[D].[硕士学位论文].重庆:电子科技大学,2000
    [209]Keil Elektronik GmbH/Keil Software Inc. μVision IDE and Debugger[DB/OL]. http://www.keil.com/,2006
    [210]夏继强,沈德金编著.单片机实验与实践教程[M].北京:北京航空航天大学出版社,2001
    [211]Qingli Hao, Valentin Kulikov, Vladimir M. Mirsky.Investigation of contact and bulk resistance of conducting polymers by simultaneous two-and four-point technique[J]. Sensors and Actuators B,2003,94:352-357
    [212]E.Gebhardt, GPetzow. Over structure of silver-copper-tin systems[J]. Z Metallkde,1959,50:597-605
    [213]C.M.Miller,I.E.Anderson,J.Smith. A viable tin-lead solder substitute[J]. J Electron Mater,1994,23:595-601
    [214]Y.Kariya,M.Otstuka. Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi,Cu,Zn and In)solder alloys[J]. J Electron Mater,1998,27 (11): 1229-1235
    [215]OriginLab Company. Fast Fouries Transform (FFT)[DB/OL]. http://www.originlab.com,2006
    [216]Mei Wei, Guoan Bi. Fast algorithms for polynomial time frequency
    transform[J]. Signal Processing,2007,87:789-798
    [217]Al Na'mneh, W.David Pan. Five-step FFT algorithm with reduced computational complexity[J]. Information Processing Letters,2007, 101:262-267
    [218]Tzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures[J].Anal. Chem.1964,36:1627-39.
    [219]InLab Company. Origin:Smoothing using Savitzky-Golay Filtering[DB/OL].http://www.originlab.com/index.aspx?s=8&lm=115&pid= 104,2006
    [220]Hninger. Teach Me Data Analysis[DB/OL]. http://www.vias.org/,2006
    [221]Ggs J.E.J.. Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data[J]. Fire Safety Journal,2005,40:493-505
    [222]Jianwen, Ying Kui, Bai Jing. Savitzky-Golay smoothing and differentiation filter for even number data[J]. Signal Processing,2005,85:1429-1434
    [223]Jianwen, Ying Kui, He Ping, et al. Properties of Savitzky-Golay digital differentiatiors[J]. Digital Signal Processing,2005,15:122-136
    [224]Kamei T, Nakamura M. Hybrid IC structures using solder reflow technology [J]. Microelectronics and Reliability,1980,20 (3):388
    [225]Hall P M. Solder post attachment of ceramic chip carriers to ceramic film integrated circuits[J]. Microelectronics Journal,1983,14 (5):81
    [226]Kawai S, Nishimura A, Hattori T, et al. Reliability evaluation of electronic devices[J]. Mater Sci Eng,1991, A143:247-256
    [227]Goldman L S. Geometric optimization of controlled collapse interconnections[J]. IBM J. Res. Devel,1969,13 (3):251-265
    [228]Satoh R, Ohshima M, Komura H, etal. Development of a new micro-solder bonding method for VLSI. [J] Int Electronics Packaging Soc Inc,1983,3: 455-461
    [229]Nagesh V K. Reliability of flip chip solders bump joints. Microelectronics and Reliability,1983,23 (3):588
    [230]Goldman L S, Totta P A. Area array solder interconnection for VLSI[J]. Solid State Technology,1983,26 (6):91-97
    [231]Howard R T. Optimization of indium lead alloys for controlled collapse chip connec-tion application[J]. IBM J. Res. Devel,1982,26 (3):372-389
    [232]Matsui N, Sasaki S, Ohsak T. VLSI chip interconnection technology using stacked solder bumps. Microelectronics and Reliability,1989,29(4):198
    [233]吴懿平,崔昆,张乐福.焊膏厚度对CBGA组装板可靠性的影响[J].电子工艺技术,2000,21(4):153-156
    [234]Guo Z. F, Conrad H. Effect of micro structure size on deformation kinetics and thermo mechanical fatigue of 63Sn37Pb solder joints[J]. J Electron package,1996,118 (2):49-53
    [235]Kim K S, Huh S H, Suganuma K. Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu[J]. Microelectronics and Reliability,2003,43:259-267
    [236]王谦,汪刚强,耿志挺.电子封装中的焊点及其可靠性[J].电子元件与材料,19(2):24-26
    [237]Pang J H L. Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models[J]. Advanced Packaging,24:499-506
    [238]http://www.boulder.nist.gov/div853/lead%20free/solders.html
    [239]孙忠新.控制BGA组装过程中的焊点空洞[J].印制电路信息,1999,6:34-36
    [240]韩潇,丁汉.CSP封装Sn3.5Ag焊点的热疲劳寿命预测[J].半导体学报,2006,27(9):1695-1700
    [241]Lee H T, Chen M H, Jao H M, et al. Influence of interfacial inter-metallic compound on fracture behavior of solder joints [J]. Mater Sci Eng,2003, A358:134-141
    [242]Wong C K, Pang J H L, Tew J W, et al. The influence of solder volume and pad area on Sn-3.8Ag-0.8Cu and Ni UBM reaction in reflow soldering and isothermal aging[J]. Microelectronics Reliability,48 (2):258-268
    [243]黄志高,赖恒,曾民勇,陈志高.磁性多层膜的磁滞回线和磁阻曲线的唯像理论研究[J].福建师范大学学报(自然科学版),2001,(1):48-52
    [244]王茂祥,孙平.(Pb_(l-x)Srx)TiO_3铁电薄膜电滞回线的测试分析[J].真空与低温,2006,(3):10-15
    [245]吴迈,赵欣.钢-混凝土组合梁滞回关系参数分析[C].北京:第七届全国现代结构工程学术研讨会论文集,2007
    [246]胡炳亭.电子封装焊料高温力学性能实验及焊点热循环数值模拟研究[D].长沙:中南大学硕士学位论文,2007
    [247]蒋礼, 杨科灵,周孑民,等.在线测量Sn-3.5Ag焊点蠕变的电阻应变[J].中南大学学报(自然科学版),2008,39(1):80-85.
    [248]束德林.工程材料力学性能[M].机械工业出版社,北京:2003
    [249]魏鹤林.球栅阵列器件焊接合格率预测及缺陷分析[J].电子元件与材料,2007,26(5):62-65.
    [250]Choi K-S, Choi S, Kim Y-G, et al. Solder joint reliability of the BLP (Bottom-Leaded Plastic) package [J]. Proceedings of Semicon Korea, Seoul, Korea,1997,2:63-73.
    [251]Lau H John, Lee Ricky Shi-Wei. Chip Scale Package, CSP:Design, Materials, Process, Reliability, and Applications [M]. Copyright by The McGraw-Hill Companies, Inc,1999:369.
    [252]Wang Z P, Tan Y M, Chua K M. Board level reliability assessment of chip scale packages [J]. Microelectronics & Reliability,1999,39:1351-1356.
    [253]Frank Stepniak. Failure criteria of flip chip joints during accelerated testing [J]. Microelectronics & Reliability,2002,42:1921-1930.
    [254]李晓延,王志升.倒装芯片封装结构中SnAgCu焊点热疲劳寿命预测方法研究[J].机械强度,2006,28(6):893-898.
    [255]IPC-Association Connecting Electronics Industries. Performance and reliability test methods for flip chip, chip scale, BGA and other surface mount array package applications [M]. USA:Published by IPC, J2STD2029, 2000,2.
    [256]向可.热载荷下无铅焊点可靠性电测方法研究[D].[硕士学位论文],长沙:中南大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700