用户名: 密码: 验证码:
空间和重离子辐射环境的诱变效应与DNA甲基化变化的关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨空间环境对植物种子产生生物学效应的机制,本论文从多个方面研究了空间飞行后当代水稻表型变化植株和非表型变化植株的表观遗传学效应,包括DNA甲基化多态性改变的程度及序列特征和遗传性,以及DNA甲基化变化与基因表达及基因组突变的关联。同时,通过对地基模拟辐射的研究剖析了空间环境中辐射因素对植物表观遗传学的影响。研究发现无论是空间飞行还是低剂量(2Gy)重离子辐射都能够引起水稻种子DNA甲基化的变化(P<0.05)。这种变化在表型变化植株上的程度明显高于非表型变化植株(P<0.01),而且DNA甲基化的变化更倾向于发生在基因组序列中的CNG位点上。DNA甲基化的多态性变化与基因组序列多态性变化的比较发现二者在变化率上具有相关性(P<0.001),即DNA甲基化变化明显的植株基因组序列变化也明显。序列特征研究表明空间飞行和重离子辐射引起的DNA甲基化变化广泛地分布在水稻基因组上包括基因外显子的区域上,但基因组序列多态性的变化则更倾向于发生在重复序列上。研究还发现部分发生在基因编码区的DNA甲基化和去甲基化变化与基因转录水平的下降或上升相对应。遗传性的分析表明无论是DNA甲基化的变化还是与甲基化变化相对应的基因转录水平的变化都能够遗传至下一代。以上结果说明表观遗传学机制参与了空间环境对植物种子的生物学效应,而且空间复合环境中的辐射因素可能是改变基因组甲基化的主要诱因。由于植物甲基化状态可影响基因表达并能稳定遗传,我们推测空间辐射引起植物种子当代出现表型变化且能稳定遗传的特征可能与基因组甲基化的变化相关。
     为了进一步研究辐射能够在水稻种子上产生明显表观遗传学效应的机制,本课题分析了种子与幼苗这两个不同发育阶段的水稻材料在相同剂量(2Gy)的重离子辐射后产生DNA甲基化改变的差异。结果发现种子的DNA甲基化变化程度明显高于幼苗(P=0.011)。为进一步分析这种特征与辐射诱因和抗逆生物学活性的关联,我们对比分析了0.02~20Gy剂量的重离子辐射引起水稻干种子、湿种子和幼苗的细胞生物学和抗氧化应激系统改变的特征。研究结果显示,当剂量小于2Gy时辐射能够对植物的生长产生刺激作用,而当剂量大于2Gy时则开始出现明显的抑制作用。三种不同时期水稻材料的比较发现低剂量辐射的生物学刺激效应和植物材料的含水量有关。染色体畸变的观察显示在三种水稻材料中染色体的畸变率都随着辐射剂量的增加而增加。但是,在较低剂量下(小于2Gy)水稻种子的染色体损伤要多于幼苗。丙二醛(MDA)的含量检测和两种抗氧化酶:超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活力检测结果表明,较低剂量(小于2Gy)辐射后,种子中的抗氧化酶的活力低于幼苗,MDA的含量高于幼苗;当辐射剂量大于2Gy时,幼苗中出现显著的抗氧化酶SOD和CAT活力下降和相应的MDA含量升高,与此同时染色体损伤也明显增加,存活率下降。这一结果说明低剂量的辐射生物学效应不但与辐射因素相关,还与生物体的抗氧化应激状态有非常重要的关联。抗氧化系统不能有效地激活很可能是种子对低剂量重离子辐射的敏感性高于幼苗的主要原因。
In order to study the mechanism of biological effects of space environment on plant seeds, in the present dissertation, we investigated the space flight induced epigenetic effects on rice plant with or without phenotypic mutations on many aspects including: level of polymorphic DNA methylation changes, character of genome sequences with DNA methylation changes, inheritance of polymorphic site and the relationship between DNA methylation changes with gene expression and genomic mutations. At the same time, we detected the epigenetic effects of on-ground radiation experiment to analysis the role of radiation in space environment induced biological effects. Results show that DNA methylation changes can be induced on rice by both space flight and low-dose (2Gy) heavy ion irradiation (P<0.05). The frequencies of DNA methylation changes on phenotypic mutants are obviously higher than that on normal plants (P<0.01). Moreover, DNA methylation changes are prone to happen on CNG sequences on rice genome. We also found the correlations of the polymorphic rate between DNA methylation and genomic sequence alterations (P<0.001). Higher level of DNA methylation changes and genomic sequence changes often appear on the same individuals. Sequencing of the polymorphic sequences show that space flight and heavy ion radiation induced DNA methylation changes are widely spread on rice genomes including coding regions, while changes of genomic sequence are more prone to appear on repeat regions. We also prove that the hyper-methylation or hypo-metylation changes on coding genes are corresponding to the increase and decrease of the expression of the gene. Both the altered DNA methylation patterns and the expression level changes are heritable. These results strongly suggest that epigenetic mechanisms are involved in the biological effects on rice seeds induced by space environment. Moreover, the radiation factor may be the main mutagen in the complex pressure in space. The heritable DNA methylation changes are related to gene expression, so we speculate that DNA methylation changes may be a reason of space radiation induced heritable phenotypic mutants in the first generation after treatment.
     In this study, we also compared the DNA methylation changes on different life stages of rice (seed and seedling) under the heavy ion radiation at same dose (2Gy) to explain the mechanism of the high level epigenetic changes on seeds of plant. The results show that frequencies of DNA methylation changes on rice seeds are higher than that on seedlings (P=0.011). Observations on chromosomal aberrations show that the frequencies of chromosomal aberrations were increased with the increasing dose in all of the three rice materials. More chromosomal damages were observed in seeds than seedlings at dose lower than 2Gy. Detect of malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD) and catalase (CAT) also show that the activities of SOD and CAT in seeds are lower than that in seedlings at dose lower than 2Gy. The content of MDA in seeds is higher than in seedlings at dose lower than 2Gy. At dose higher than 2Gy, obvious increase of content of MDA and decrease of activity of SOD and CAT together with the high level of chromosomal damages and lethal effects are observed in seedlings. Our results prove that the biological effects of radiation are not only related to the kind of radiation, but also related to the ability of antioxidant systems of biological materials. We suggest that the higher radiosensitivity to IR induced chromosomal damages of non-growing seeds than growing seedlings at lower dose may be because of the inactive antioxidant systems in seeds.
引文
1. W. Schimmerling. Overview of NASA's Space Radiation Research Program. Gravitational and Space Biology Bulletin. 2003, 16(2):5~9
    2. M. Yamauchi, K. Suzuki. Stabilization of Alanine Substituted P53 Protein and Ser15, Thr18 and Ser20 in Response to Ionizing Radiation. Biochem. Biophys. Res. Commun. 2004, 323:906~911
    3.王同权,沈永平,王尚武,等.空间辐射环境中的辐射效应.国防科技大学学报. 1999, l121(14):36~39
    4.汤章城.空间生物技术研究与应用动态.生命科学. 2002, (12):376~378
    5.杨垂绪,梅曼彤.太空放射生物学.中山大学出版社. 1995, 1~18, 3~96, 109~129
    6. G. Herneck. Radiobiological Experiments in Space. Nucl. Tracks Radiat. Meas. 1992, 20(1):185~205
    7. M. Picket, K. E. Gartenbach, A. R. Kranz, et al. Heavy Ion Induced Mutation in Genetic Effective Cells of High Plant. Adv. Space Res. 1992, 12:69~75
    8. Y. N. Maksimova. Effect on Seeds of Heavy Charged Particles of Galactic Cosmic Radiation. Space Biol. Aerosp. Med. 1985, 19(3):103~107
    9. L. V. Nevzgodina, Y. N. Maksimova. Cytogenetic Effects of Heavy Charges Particles of Galactic Cosmic Radiation in Experiments aboard Cosmos 1129 Biosatellite. Space Biol. Aerosp. Med. 1982, 16(4):103~108
    10. T. Ohnishi, A. Takahashi, K. Ohnishi, et al. Studies about Space Radiation Promote New Fields in Radiation Biology. J. Radiat. Res. 2002, 43:S7~12
    11. I. Koturbash, R. E. Rugo, C. A. Hendricks, et al. Irradiation Induces DNA Damage and Modulates Epigenetic Effectors in Distant Bystander Tissue in vivo. Oncogene. 2006, 25(31):4267~4275
    12. O. V. Belyakov, S. A. Mitchell, D. Parikh, et al. Biological Effects in Unirradiated Human Tissue Induced by Radiation Damage up to 1 Mm Away. PNAS. 2005, 102(40):14203~14208
    13. W. Han, L. Wu, S. Chen, et al. Constitutive Nitric Oxide Acting as a Possible Intercellular Signaling Molecule in the Initiation of Radiationinduced DNA Double Strand Breaks in non-Irradiated Bystander Cells. Oncogene. 2007,26:2330~2339
    14. N. Hamada, H. Matsumoto, T. Hara, et al. Intercellular and Intracellular Signaling Pathways Mediating Ionizing Radiationinduced Bystander Effects. J. Radiat. Res. 2007, 48:87~95
    15. L. B. Smilenov, E. J. Hall, W. M. Bonner, et al. A Microbeam Study of DNA Double-Strand Breaks in Bystander Primary Human Fibroblasts. Radiat. Prot. Dosimetry. 2006, 122(1-4):256~259
    16. N. Hamada, M. Ni, T. Funayama, et al. Temporally Distinct Response of Irradiated Normal Human Fibroblasts and Their Bystander Cells to Energetic Heavy Ions. Mutat. Res. 2008, 639(1-2):35~44
    17. N. Hamada, T. Hara, M. Omura-Minamisawa, et al. Heavy-ion Microbeam Irradiation Induces Bystander Killing of Human Cells. Biol. Sci. Space. 2008, 22:46~53
    18. M. Iwakawa, N. Hamada, K. Imadome, et al. Expression Profiles are Different in Carbon Ion-irradiated Normal Human Fibroblasts and Their Bystander Cells. Mutat. Res. 2008, 642(1-2):57~67
    19. W. F. Morgan, M. B. Sowa. Non-targeted Bystander Effects Induced by Ionizing Radiation. Mutat. Res. 2007, 616(1-2):159~164
    20. P. Marozik, C. Mothersill, C. B. Seymour, et al. Bystander Effects Induced by Serum from Survivors of the Chernobyl Accident. Exp. Hematol. 2007, 35(4):55~63
    21. I. Koturbash, A. Boyko, R. Rodriguez-Juarez, et al. Role of Epigenetic Effectors in Maintenance of the Long-Term Persistent Bystander Effect in Spleen in vivo. Carcinogenesis. 2007, 28(8):1831~1838
    22. M. A. Khan, J. Van Dyk, I. W. Yeung, et al. Partial Volume Rat Lung Irradiation; Assessment of Early DNA Damage in Different Lung Regions and Effect of Radical Scavengers. Radiother Oncol. 2003, 66(1):95~102
    23. H. Zhang, X. Duan, Z. Yuan, et al. Chromosomal Aberrations Induced by (12)C6+ Ions and 60Co Gamma-rays in Mouse Iimmature Oocytes. Mutat. Res. 2006, 595(1-2):37~41
    24. N. Shikazono, C. Suzuki, S. Kitamura, et al. Analysis of Mutations Induced by Carbon Ions in Arabidopsis Thaliana. J. Exp. Bot. 2005, 56(412):587~596
    25. K. Naito, M. Kusaba, N. Shikazono, et al. Transmissible and Nontransmissible Mutations Induced by Irradiating Arabidopsis thaliana Pollen with -Rays andCarbon Ions. Genetics. 2005, 169(2):881~889
    26. W. F. Morgan, M. B. Sowa. Effects of Ionizing Radiation in Nonirradiated Cells. PNAS. 2005, 102(40):14127~14128
    27. C. Mothersill, M. A. Kadhim, S. O. Reilly, et al. Dose- and Time-response Relationships for Lethal Mutations and Chromosomal Instability Induced by Ionizing Radiation in an Immortalized Human Keratinocyte Cell Line. Int. J. Radiat. Biol. 2000, 76(6):799~806
    28. B. Paquette, J. B. Little. In vivo Enhancement of Genomic Instability in Minisatellite Sequences of Mouse C3H/10T1/2 Cells Transformed in vitro by X-Rays. Cancer Res. 1994, 54(12):3173~3178
    29. G. E. Watson, S. A. Lorimore, S. M. Clutton, et al. Genetic Factions Influencing Alpha-Particle-Induced Chromosomal Instability. Int. J. Radiat. Biol. 1997, 71(5):497~503
    30. K. Valerie, A. Yacoub, M. P. Hagan, et al. Radiation-induced Cell Signaling: Inside-out and Outside-in. Mol. Cancer Ther. 2007, 6(3):789~801
    31. H. P. Rodemann, M. A. Blaese. Responses of Normal Cells to Ionizing Radiation. Semin. Radiat. Oncol. 2007, 17(2):81~88
    32. P. Jeggo, M. Lobrich. Radiation-induced DNA Damage Responses. Radiat. Prot. Dosimetry. 2006, 122(1-4):124~127
    33. S. G. Andreev, Y. A. Eidelman, I. V. Salnikov, et al. Mechanistic Modelling of Genetic and Epigenetic Events in Radiation Carcinogenesis. Radiat. Prot. Dosimetry 2006, 122(1-4):335~339.
    34. M. Sowa, B. J. Arthurs, B. J. Estes, et al. Effects of Ionizing Radiation on Cellular Structures Induced Instability and Carcinogenesis. EXS. 2006, (96):293~301
    35. T. Ogata, T. Teshima, K. Kagawa, et al. Particle Irradiation Suppresses Metastatic Potential of Cancer Cells. Cancer Res. 2005, 65(1):113~120
    36. M. Amino, K. Yoshioka, T. Tanabe, et al. Heavy Ion Radiation Up-Regulates Cx43 and Ameliorates Arrhythmogenic Substrates in Hearts after Myocardial Infarction. Cardiovasc. Res. 2006, 72(3):412~421
    37.苏锋涛,李强,金晓东. 12C和X射线辐照人肺癌细胞H1299的生物学效应.原子核物理评论. 2008, 25(1):72~76
    38. B. E. Paap, D. M. Wilson, B. M. Sutherland. Human Abasic Endonuclease Action on Multilesion Abasic Clusters: Implications for Radiation-InducedBiological Damage. Nucleic Acids Res. 2008, 36(8):2717~2727
    39.何晶,李强,金晓东. 12C6+离子辐照诱发人类肝L02细胞hprt基因突变的研究.核技术. 2008, 31(3):188~192
    40. F. Moriconi, H. Christiansen, D. Raddatz, et al. Effect of Radiation on Gene Expression of Rat Liver Chemokines: in vivo and in vitro Studies. Radiat. Res. 2008, 169(2):162~169
    41. N. Hamada. Recent Insights into the Biological Action of Heavy-Ion Radiation. J. Radiat. Res. 2009, 50(1):1~9
    42. N. Hamada, K. Kataoka, S. Sora, et al. The Small-Molecule Bcl-2 Inhibitor HA14-1 Sensitizes Cervical Cancer Cells, But Not Normal Fibroblasts, to Heavy-ion Radiation. Radiother. Oncol. 2008, 89(2):227~230
    43. H. Kitabayashi, H. Shimada, S. Yamada, et al. Synergistic Growth Suppression Induced in Esophageal Squamous Cell Carcinoma Cells by Combined Treatment with Docetaxel and Heavy Carbon-Ion Beam Irradiation. Oncol. Rep. 2006, 15(4):913~918
    44. M. Kalimullah, J. U. Gaikwad, S. Thomas, et al. Assessment of 1H Heavy Ion Irradiation Induced Effects in The Development of Rice (Oryza sativa L.) Seedlings. Plant Sci. 2003, 165(3):447~454
    45. L. B. Zhou, W. J. Li, S. Ma, et al. Effects of Ion Beam Irradiation on Adventitious Shoot Regeneration From in vitro Leaf Explants of Saintpaulia Ionahta. Nucl. Instr. and Meth. B. 2006, 244:349
    46.张红霞,吴能表,洪鸿.不同强度的UV-B辐射对蚕豆种子萌发及幼苗生长的影响.西南大学学报. 2008, 30(8):132~136
    47.冯虎元,徐世健,安黎哲,等. UV-B辐射对8个大豆品种种子萌发率和幼苗生长的影响.西北植物学报. 2001, 21(1):14~20
    48. Y. Hase, M. Yamaguchi, M. Inoue, et al. Reduction of Survival and Induction of Chromosome Aberrations in Tobacco Irradiated by Carbon Ions with Different Linear Energy Transfers. Int. J. Radiat. Bio. 2002, 78(9):799~806.
    49. L. F. Wu, Z. L. Yu. Radiobiological Effects of a Low-energy Ion Beam on Wheat. Radiat. Environ. Biophys. 2001, 40(1):53~57
    50. T. Abe, T. Matsuyama, S. Sekido, et al. Chlorophyll-deficient Mutants of Rice Demonstrated the Deletion of a DNA Fragment by Heavy-Ion Irradiation. J. Radiat. Res. 2002, 43:s157~161
    51. N. Shikazono, Y. Yokota, S. Kitamura, et al. Mutation Rate and Novel ttMutants of Arabidopsis Thaliana Induced by Carbon Ions. Genetics. 2003, 163(4):1449~1455
    52.曲颖,李文建,周利斌,等.重离子辐射植物的诱变效应研究及应用.原子核物理评论. 2007, 24(4):294~298
    53. E. J. Calabrese, L. A. Baldwin. Radiation Hormesis: Its Historical Foundations as a Biological Hypothesis. Hum. Exp. Toxicol. 2000, 19(1):41~75
    54. E. J. Calabrese, L. A. Baldwin. Radiation Hormesis: The Demise of a Legitimate Hypothesis. Hum. Exp. Toxicol. 2000, 19(1):76~84
    55. A. Tanaka, S. Tano, T. Chantes, et al. A New Arabidopsis Mutant Induced by Ion Beams Affects Flavonoid Synthesis with Spotted Pigmentation in Testa. Genes Genet. Syst. 1997, 72(3):141~148
    56. M. Okamura, N. Yasuno, M. Ohtsuka, et al. Wide Variety of Flower Color and Shape Mutants Regenerated from Leaf Cultures Irradiated with Ion Beams. Nucl. Instr. and Meth. B. 2003, 206:574~578
    57. K. Hamada, M. Inoue, A. Tanaka, et al. Potato Virus Y-resistant Mutation induced by the Combination Treatment of Ion Beam Exposure and Anther Culture in Nicotiana tabacum L. Plant Biotech. 1999, 16:285~289
    58. H. Xie, H. Li, J. Wang, et al. Preliminary Research into Site Chosen Mutation with Heavy Ion Beams for Crop Breeding. Nuclear Physics Review. 2001, 18(3):174~176
    59.董喜存,李文建,何金玉,等.碳离子束对甜高粱辐射诱变的当代效应.辐射研究与辐射工艺学报. 2007, 25(6):359~362
    60.徐明照,程备久,周立人,等.同步辐射(软X射线)辐照玉米的细胞学效应研究.激光生物学报. 2008, 17(3):306~310
    61.王彩莲,陈秋方,金卫,等.同步辐射(软X射线)对水稻的细胞学效应研究.核农学报. 2000, 14(3):141~144
    62.冯岩,卫增泉,李文建,等.沿重离子贯穿深度的番茄干种子辐射生物学效应研究.激光生物学报. 2002, 11(6):442~449
    63. H. L. Qin, Y. G. Wang, J. M. Xue, et al. Biological Effects of Protons Targeted to Different Ranges in Arabidopsis Seeds. Int. J. Radiat. Biol. 2007, 83(5):301~308
    64. G. Yang, T. Mei, H. Yuan, et al. Bystander/abscopal Effects Induced in Intact Arabidopsis Seeds by Low-Energy Heavy-Ion Radiation. Radiat. Res. 2008, 170(3):372~380
    65. M. L. Lewis, J. L. Reynolds, L. A. Cubano, et al. Spaceflight Alters Microtubules and Increases Apoptos is in Human Lymphocytes (Jurkat). FASEB J. 1998, 12(11):1007~1018
    66. S. Gaboyard, M. P. Blanchard, C. Travo, et al. Affects Cytoskeleton of Rat Utricular Hair Cells during Maturation in vitro. Neuroreport. 2002, 13(16):2139~2142
    67. W. J. Landis , K. J. Hodgens, D. Block, et al. Spaceflight Effects on Cultured Embryonic Chick Bone Cells. J. Bone Miner Res. 2000, 15(6):1099~1112
    68.耿传营,向青,唐劲天.空间环境对离体动物细胞的影响.科技导报. 2007, 25(2):28~33
    69. J. B. Boonyaratanakornkit, A. Cogoli, C. F. Li, et al. Key Gravity-sensitive Signaling Pathways Drive T Cell Activation. FASEB J, 2005, 19(14):2020~2022
    70.曲鑫建,李惠侠,孙世铎,等.模拟微重力条件下wb-F344细胞的三维培养.生物工程学报. 2006, 22(4): 672~676
    71. S. J. Pardo, M. J. Patel, M. C. Sykes, et al. Simulated Microgravity Using the Random Positioning Machine Inhibits Differentiation and Alters Gene Expression Profiles of 2T3 Preosteoblasts. Am. J. Physiol. Cell Physiol. 2005, 288(6):1211~1221
    72. M. Hughes-Fulford, K. Rodenacker, U. Jutting, et al. Reduction of Anabolic Signals and Alteration of Osteoblast Nuclear Morphology in Microgravity. J. Cell Biochem. 2006, 99(2):435~449
    73. J. W. Wilson, C. M. Ott, K. H?ner zu Bentrup, et al. Space Flight Alters Bacterial Gene Expression and Virulence and Reveals a Role for Global Regulator Hfq. PNAS. 2007, 104(41):16299~16304
    74.赵林姝,刘录祥.俄罗斯空间植物学研究进展.核农学报. 1998, 12(4):252~256
    75. J. B. West. Physiology in Microgravity. Appl. Physiol. 2000, 89(1):379~384
    76.柴大敏,向青,陶仪声,等.空间环境对植物影响的研究进展.科技导报. 2007, 25(1):38~42
    77. M. Saiki, H. Fujita, K. Soga, et al. Cellular Basis for the Automorphic Curvature of Rice Coleoptiles on a Three-Dimensional Clino- Stat: Possible Involvement of Reorientation of Cortical Micro-Tubules. J. Plant Res. 2005, 118(3):199~205
    78.徐继,刘存德.空间条件下植物植物生长发育及其应用的研究进展.空间科学学报, 1997, 17:35~41
    79. X. Yu, H. Wu, L. Wei, et al. Characteristics of Phenotype and Genome Mutations after Space Flight in Rice, Adv. Space Res. 2007, 40:528~534
    80. V. Nevzgodian, Y. Gaubin, E. E. Kovalev, et al. Changes in Developmental Capacity of Artemia Cyst and Chromosomal Aberrations in Lettuce Seeds Flown Aboard Salyut-7 (BioblocⅢExperiment). Adv. Space Res. 1984, 4(10):71~76
    81. A. R. Kranz. Genetic and Physiological Damage Induced By Cosmic Radiation on Dry Plant Seeds during Space Flight. Adv. Space Res. 1986, 6(12):135~138
    82. T. W. Halstead, F. R. Dutcher. Plants in Space. Ann. Rev. Plant Physiol. 1987, 38:317~345
    83. M. Pickert, K. E. Gartenbach, A. R. Kranz. Heavy Ion Induced Mutations in Genetic Effective Cells of a Higher Plant. Adv. Space Res. 1992, 12(2):69~72
    84. G. S. Nechitailo, J. Lu, H. Xue, et al. Influence of Long Term Exposure to Space Flight on Tomato Seeds. Adv. Space Res. 2005, 36:1329~1333
    85.刘敏,薛淮,鹿金颖,等.空间环境对植物试管苗生长发育及遗传变异的影响.科技导报. 2004, 6:23~25
    86.骆艺,王旭杰,梅曼彤,等.空间搭载水稻种子后代基因组多态性及其与空间重离子辐射关系的探讨.生物物理学报. 2006, 22(2):131~137
    87. Y. Li, M. Liu, Z. Cheng, et al. Space Environment Induced Mutations Prefer to Occur at Polymorphic Sites of Rice Genomes. Adv. Space Res. 2007, 40:523~527
    88. M. Kim, E. Wolff, T. Huang, et al. Developing a Genetic System in Deinococcus radiodurans for Analyzing Mutations. Genetics. 2004, 166(2):661~668
    89. Z. Cheng, M. Liu, M. Zhang, et al. Transcriptomic Analyses of Space-induced Rice Mutants with Enhanced Susceptibility to Rice Blast. Adv. Space Res. 2007, 40:540~549
    90. W. Lu, X. Wang, Q. Zheng, et al. Diversity and Stability Study on Rice Mutants Induced in Space Environment. Genomics, proteomics & bioinformatics. 2008, 6(1):51~60
    91. Y. Ma, Z. Cheng, W. Wang, et al. Proteomic Analysis of High Yield Rice Strain Mutated by Space Flight. Adv. Space Res. 2007, 40:535~539
    92. W. Wang, D. Gu, Q. Zheng, et al. Leaf Proteomic Analysis of Three Rice Heritable Mutants after Seed Space Flight. Adv. Space Res. 2008, 42(6):1066~1071
    93. X. Ou, L. Long, Y. Zhang, et al. Spaceflight Induces Both Transient and Heritable Alterations in DNA Methylation and Gene Expression in Rice (Oryza sativa L.). Mutat. Res. 2009, 662(1-2):44~53
    94.余红兵,周峰,姚鹃,等.高空气球搭载诱导水稻后代形态变异研究.江苏农业科学. 2005, (1):21~22
    95.颉红梅,卫增泉,梅曼彤,等.搭载水稻种子被空间重离子击中的定位研究.核技术. 2005, 28(9):671~674
    96.潘毅,薛淮,鹿金颖,等.空间环境与模拟微重力环境对高等植物试管苗的影响.科技导报. 2007, 25(19):36~42
    97. L. Wei, Q. Yang, H. Xia, et al. Analysis of Cytogenetic Damage in Rice Seeds Induced by Energetic Heavy Ions on-Ground and after Spaceflight. J. Radiat. Res. 2006, 47(3-4):273~278
    98.魏力军,王俊敏,杨谦,等.水稻空间搭载与地面γ辐照诱变效应的比较研究.中国农业科学. 2006, 39(7):1306~1312
    99.王俊敏,徐建龙,魏力军,等.空间环境和地面γ辐照对水稻诱变的差异.作物学报. 2006, 32(7):1006~1010
    100. J. Costello, M. Fruhwald. Aberrant CpG-island Methylatin Hasnon-Random and Tumours-Type-Specific Patterns. Nat. Genet. 2000, 24(2):132~138
    101. M. A. Gama-Sosa, R. M. Midgett, V. A. Slagel, et al. Tissue-specific Differences in DNA Methylation in Various Mammals. Biochim. Biophys. Acta. 1983, 740(2):212~219
    102. A. P. Feinberg, B. Vogelstein. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature. 1983, 301(5895):89~92
    103. A. Eden, F. Gaudet, A. Waghmare, et al. Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science. 2003, 300(5618):455
    104. K. D. Robertson, A. P. Wolffe. DNA Methylation in Health and Disease. Nat. Rev. Genet. 2000, 1(1):11~19
    105. B. F. Vanyushin. DNA Methylation in Plants. Curr. Top. Microbiol. Immunol. 2006, 301:67~122
    106. A. Bird. DNA Methylation Patterns and Epigenetic Memory. Genes & Dev.2002, 16(1):6~21
    107. T. Kakutani, K. Munakata, E. J. Richards, et al. Meiotically and Mitotically Stable Inheritance of DNA Hypomethylation Induced by Ddm1 Mutation of Arabidopsis thaliana. Genetics. 1999, 151(2):831~838
    108. L. Z. Xiong, C. G. Xu, M. A. Saghai Maroof, et al. Patterns of Cytosine Methylation in an Elite Rice Hybrid and Its Parental Lines Detected by a Methylation-Sensitive Amplification Polymorphism Technique. Mol. Gen. Genet. 1999, 261(3):439~446
    109. C. M. Papa, N. M. Springer, M. G. Muszynski, et al. Maize Chromomethylase Zea Methyltransferase is Required for CpNpG Methylation. Plant Cell. 2001, 13(8):1919~1928
    110. I. Wanger, I. Capesius. Determination of 5-Methylcytosine from Plant DNA by HPLC. Biochim. Biophy. Acta. 1981, 654(1):52~56
    111. R. Messegure, M.W. Ganal, J.C. Steffens, et al. Characterization of the Level, Target Sites and Inheritance of Cytosine Methylation in Tomato Nuclear DNA. Plant Mol. Biol. 1991, 16(5):753~770
    112. E. J. Finnegan, W. J. Peacock, E. S. Dennis, et al. DNA Methylation, a Key Regulator of Plant Development and Other Processes. Curr. Opin. Genet. Dev. 2000, 10(2):217~223
    113. Y. Gruenbaum, T. Naveh-Many, H. Cedar, et al. Sequence Specificity of Methylation in Higher Plant DNA. Nature. 1981, 292(5826):860~862
    114. J. Reinders, C. D. Vivier, G. Theile, et al. Genome-wide, High-Resolution DNA Methylation Profiling Using Bisulfite-Mediated Cytosine Conversion. Genome Res. 2008, 18(3):469~476
    115. A. Kovarik, R. Matyasek, A. Leitch, et al. Variability in CpNpG Methylation in Higher Plant Genomes. Gene. 1997, 204(1-2):25~33
    116. X. Zhang, J. Yazaki, A. Sundaresan, et al. Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell. 2006, 126(6):1189~1201
    117. W. Reik, W. Dean, J. Walter. Epigenetic Reprogramming in Mammalian Development. Science. 2001, 293(5532):1093~1098
    118. S. W. Chan, I. R. Henderson, S. E. Jacobsen. Gardening the Genome: DNA Methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005, 6(5):351~360
    119. E. J. Finnegan, K. A. Kovac. Plant DNA Methyltransferases. Plant Mol. Biol.2000, 43(2-3):189~201
    120. Y. I. Buryanov, T. V. Shevchuk. DNA Methyltransferases and Structural-Functional Specificity of Eukaryotic DNA Modification. Biochemistry. 2005, 70(7):730
    121. X. Cao, S. E. Jacobsen. Role of the Arabidopsis DRM Methyltransferases in de novo DNA Methylation and Gene Silencing. Current Biology. 2002, 12(13):1138~1144
    122. X. Cao, N. M. Springer, M. G. Muszynski, et al. Conserved Plant Genes with Similarity to Mammalian Denovo Methyltransferases. PNAS. 2000, 97(9):4979~4984
    123. R. K. Gener, K. A. Kovac, E. S. Dennis, et al. Multiple DNA Methyltransferase Genes in Arabidopsis thaliana. Plant Mol. Biol. 1999, 41(2):269~278
    124. T. Kakutani, J. A. Jeddeloh, S. K. Flowera, et al. Developmental Abnormalities and Epimutations Associated with DNA Hypomethylation Mutations. PNAS. 1996, 93(22):12406~12411
    125. E. J. Finnegan, W. J. Peacock, E. Dennis. DNA Methylation, a Key Regulation of Plant Development and Other Processes. Curr. Opion. Genet. Develop. 2000, 10(2):217~223
    126. M. J. Ronemus, M. Galbiati, C. Ticknor, et al. Demethylation Induced Developmental Plieotropy in Arabidopsis. Science. 1996, 273(5275):654~657
    127. G. J. King. Morphological Development in Brassica Oleracea is Modulated by in vivo Treatment with 5-Azacytidine. J. Hort. Sci. 1995, 70(2):333~342
    128. H. Sano, I. Kamada, S. Youssefian, et al. A Single Treatment of Rice Seedling with 5-azacytidine Induces Heritable Dwarfism and Undermethylation of Genomic DNA. Mol. Gener. Genet. 1990, 220:441~447
    129. E. J. Finnegan, W. J. Peacock, E. S. Dennis. Reduced DNA Methylation in Arabidopsis Thaliana Results in Abnormal Plant Development. PNAS. 1996, 93(16):8449~8454
    130. Y. Nakano, N. Steward, M. Sekine, et al. A Tobacco NtMET1 cDNA Encoding a DNA Methyltransferase: Molecular Characterization and Abnormal Phenotypes of Transgenic Tobacco Plants. Plant Cell Physiol. 2000, 41(4):448~457
    131. O. Mathieu, J. Reinders, M. Caikovski, et al. Transgenerational Stability of The Arabidopsis Epigenome is Coordinated by CG Methylation. Cell. 2007,130(5):851~862
    132. W. Xiao, K. D. Custard, R. C. Brown, et al. DNA Methylation is Critical for Arabidopsis Embryogenesis and Seed Viability. Plant Cell. 2006, 18(4):805~814
    133. E. J. Finnegan, R. K. Genger, K. Kovac, et al. DNA Methylation and the Promotion by Vernalization. PNAS. 1998, 95(10):5824~5829
    134. J. E. Burn, D. J. Bagnall, J. D. Metzger, et al. DNA Methylation Vernalization and the Initiation of Flowering. PNAS. 1993, 90(1):287~291
    135. C. C. Sheldon, J. E. Burn, P. P. Perez, et al. The FLF MADS Box Gene: a Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation. Plant Cell. 1999, 11(3): 445~458
    136. Z. Lippman, A. V. Gendrel, M. Black, et al. Role of Transposable Elements in Heterochromatin and Epigenetic Control. Nature, 2002, 430(6998):471~476
    137. H. Cui, N. V. Fedoroff. Inducible DNA Demethylation Mediated by the Maize Suppressor-mutator Transposon-Encoded TnpA Protein. Plant cell. 2002, 14(11):2883~2899
    138. A. Boyko, P. Kathiria, F. J. Zemp, et al. Transgenerational Changes in the Genome Stability and Methylation in Pathogen-Infected Plants: (Virus-Induced Plant Genome Instability). Nucleic Acids Res. 2007, 35(5):1714~1725
    139. E. J. Finnegan, R. K. Genger, W. J. Peacock, et al. DNA Methylation in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49:223~247
    140. P. Meyer. Transcriptional Transgene Silencing and Chromatin Components. Plant Mol. Bio. 2000, 43(2):221~234
    141. J. He, Q. Yang, L. J. Chang. Dynamic DNA Methylation and Histone Modifications Contribute to Lentiviral Transgene Silencing in Murine Embryonic Carcinoma Cells. J. Virol. 2005, 79(21):13497~13508
    142.吴刚. cry1Ab基因在转基因水稻中的遗传、表达与沉默.浙江大学博士学位论文. 2000, 63~66
    143. Z. Y. Chen, E. Riu, C. Y. He, et al. Silencing of Episomal Transgene Expression in Liver by Plasmid Bacterial Backbone DNA Is Independent of CpG Methylation. Mol. Ther, 2008, 16(3):548~556
    144. M. F. Fraga, E. Ballestar, M. F. Paz, et al. Epigenetic Differences Arise during the Lifetime of Monozygotic Twins. PNAS. 2005, 102(30):10604~10609
    145. J. Liu, H. Chen, C. Deng, et al. Identification of the Control Region forTissue-specific imprinting of the Stimulatory G proteinα-subunit. PANS. 2005, 102(15):5513~5518
    146. B. Panning, R. Jaenisch. DNA Hypomethylation Can Activate Xist Expression and Silence X-Linked Genes. Genes & Dev. 1996, 10(16):1991~2002
    147. R. K. Tran, J. G. Henikoff, D. Zilberman. DNA Methylation Profiling Identifies CG Methylation Clusters in Arabidopsis Genes. Curr. Biol. 2005, 15(2):154~159
    148. R. J. Lawrence, K. Earley, O. Pontes, et al. A Concerted DNA Methylation/Histone Methylation Switch Regulates rRNA Gene Dosage Control and Nucleolar Dominance. Mol. Cell. 2004, 13(4):599~609
    149. T. M. Murphy, A. S. Perry, M. Lawler. The Emergence of DNA Methylation as a Key Modulator of Aberrant Cell Death in Prostate Cancer. Endocr. Relat. Cancer. 2008, 15(1):11~25
    150. Y. W. Lee, L. Broday, M. Costa. Effects of Nickel on DNA Methyltransferase Activity and Genomic DNA Methylation Levels. Mutat. Res. 1998, 415(3):213~218
    151. S. Hix, O. Augusto. DNA Methylation by Tert-Butyl Hydroperoxide-Iron (II): a Role for the Transition Metal Ion in the Production of DNA Base Adducts. Chem. Biol. Interact. 1999, 118(2):141~149
    152. R. T. Grant-Downton, H. G. Dickinson, et al. Epigenetics and Its Implications for Plant Biology. 1. The Epigenetic Network in Plants. Ann. Bot. 2005, 96(7):1143~1164
    153.葛才林,杨小勇,刘向农,等.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报. 2002, 28( 5):363~368
    154. M. Labra, F. Grassi, S. Imazio, et al. Genetic and DNA-methylation Changes Induced by Potassium Dichromate in Brassica Napus L. Chemosphere. 2004, 54(8):1049~1058
    155. L. Long, X. Lin, J. Zhai, et al. Heritable Alteration in DNA Methylation Pattern Occurred Specifically at Mobile Elements in Rice Plants Following Hydrostatic Pressurization. Biochem. Biophys. Res. Commun. 2006, 340(2):369~376
    156. P. Raja, B. C. Sanville, R. C. Buchmann, et al. Viral Genome Methylation as an Epigenetic Defense against Geminiviruses. J. Virol. 2008, 82(18):8997~9007
    157. J. F. Kalinich, G. N. Catravas, S. L. Snyder. The Effect of Gamma Radiation on DNA Methylation. Radiat. Res. 1989, 117(2):185~197
    158. R. Tawa, Y. Kimura, J. Komura, et al. Effects of X-ray Irradiation on Genomic. DNA Methylation Levels in Mouse Tissues. J. Radiat. Res. 1998, 39(4):271~278
    159. I. Pogribny, I. Koturbash, V. Tryndyak, et al. Fractionated Low-Dose Radiation Exposure Leads to Accumulation of DNA Damage and Profound Alterations in DNA and Histone Methylation in the Murine Thymus. Mol. Cancer Res. 2005, 3(10):553~561
    160. I. Koturbash, I. Pogribny, O. Kovalchuk. Stable Loss of Global DNA Methylation in the Radiation-Target Tissue - a Possible Mechanism Contributing to Radiation Carcinogenesis? Biochem. Biophys. Res. Commun. 2005, 337(2):526~533
    161. J. Loree, I. Koturbash, K. Kutanzi, et al. Radiation-induced Molecular Changes in Rat Mammary Tissue: Possible Implications for Radiation-Induced Carcinogenesis. Int. J. Radiat. Biol. 2006, 82(11):805~815
    162. O. Kovalchuk, P. Burke, J. Besplug, et al. Methylation Changes in Muscle and Liver Tissues of Male and Female Mice Exposed to Acute and Chronic Low-Dose X-Rayirradiation. Mutat. Res. 2004, 548(1-2):75~84
    163. I. Pogribny, J. Raiche, M. Slovack, et al. Dose-dependence, Sex- and Tissue-specificity, and Persistence of Radiation-Induced Genomic DNA Methylation Changes. Biochem. Biophys. Res. Commun. 2004, 320(4):1253~1261
    164. S. Kaup, V. Grandjean, R. Mukherjee, et al. Radiation-Induced Genomic Instability is Associated with DNA Methylation Changes in Cultured Human Keratinocytes. Mutat. Res. 2006, 597(1-2):87~97
    165. O. A. Sedelnikova, A. Nakamura, O. Kovalchuk, et al. DNA Double-Strand Breaks Form in Bystander Cells after Microbeam Irradiation of Three-Dimensional Human Tissue Models. Cancer Res. 2007, 67(9):4295~4302
    166. O. Kovalchuk, P. Burke, A. Arkhipov, et al. Genome Hypermethylation in Pinus Silvestris of Chernobyl-A Mechanism for Radiation Adaptation? Mutat. Res. 2003, 529(1-2):13~20
    167. P. D. Rabinowicz, K. Schutz, N. Dedhia, et al. Differential Methylation of Genes and Retrotransposons Facilitates Shotgun Sequencing of the Maize Genome. Nature Genet. 1999, 23(3):305~308
    168. Y. Ding, X. Wang, L. Su, et al. SDG714, a Histone H3K9 Methyltransferase, is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell. 2007, 19(1):9~22
    169. C. Cheng, M. Daigen, H. Hirochika, et al. Epigenetic Regulation of the Rice Retrotransposon Tos17. Mol. Genet. Genomics. 2006, 276(4):378~390
    170. A. Fire, S. Xu, M. K. Montgomery, et al. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature. 1998, 391(6669):806~811
    171. B. Huettel, T. Kanno, L. Daxinger, et al. RNA-directed DNA Methylation Mediated by DRD1 and Pol Ivb: A Versatile Pathway for Transcriptional Gene Silencing in Plants. Biochim. Biophys. Acta. 2007, 1769(5-6):358~374
    172. A. J. Herr, M. B. Jensen, T. Dalmay, et al. RNA Polymerase IV Directssilencing of Endogenous DNA. Science. 2005, 308(5718):118~120
    173. Y. Onodera, J. R. Haag, T. Ream, et al. Plant Nuclear RNA Polymerase IV Mediates Sirna and DNA Methylation-Dependent Heterochromatin Formation. Cell. 2005, 120(5):613~622
    174. K. C. Kuo, R. A. McCune, C. W. Gehrke, et al. Quantitative Reversed-Phase High Performance Liquid Chromatographic Determination of Major and Modified Deoxyribonucleosides in DNA. Nucleic Acids Res. 1980, 8(20):4763~4776
    175. J. W. Johnston, K. Harding, D. H. Bremner, et al. HPLC Analysis of Plant DNA Methylation: a Study of Critical Methodological Factors. Plant Physiol. Biochem. 2005, 43(9):844~853
    176. B. H. Ramsahoye. Measurement of Genome Wide DNA Methylation by Reversed-Phase High-Performance Liquid Chromatography. Methods. 2002, 27(2):156~161
    177. E. J. Oakeley, A. Podesta, J. P. Jost. Developmental Changes in DNA Methylation of the Two Tobacco Pollen Nuclei during Maturation. PNAS. 1997, 94(21):11721~11725
    178. J. Wu, J. Issa, J. Hermen. Expression of an Exogenous Eukaryotic DNA Methyl Transferase Gene Induces Transformation of NIN3T3 Ceils. PNAS. 1993, 90(19):8891~8895
    179. E. J. Oakeley, F. Schmitt, J. P. Jost, et al. Quantification of 5-Methylcytosine in DNA by the Chloroacetaldehyde Reaction. Biotechniques. 1999, 27:744~6,748~50, 752
    180. M. Frommer, L. E. McDonald, D. S. Millar, et al. A Genomic Sequencing Protocol that Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. PNAS. 1992, 89(5):1827~1831
    181. S. J. Cokus, S. Feng, X. Zhang, et al. Shotgun Bisulphite Sequencing of the Arabidopsis Genome Reveals DNA Methylation Patterning. Nature. 2008, 452(7184):215~219
    182. D. Zilberman, S. Henikoff. Genome-wide Analysis of DNA Methylation Patterns. Development. 2007, 134(22):3959~3965
    183. A. S. Yang, M. R. H. Estécio, K. Doshi, et al. A Simple Method for Estimating Global DNA Methylation Using Bisulfite PCR of Repetitive DNA Elements. Nucleic Acids Res. 2004, 32(3):e38
    184.朱燕. DNA的甲基化的分析与状态检测.现代预防医学. 2005, 32(9):1070~1073
    185. A. O. Nygren, N. Ameziane, H. M. Duarte, et al. Methylation-specific MLPA (MS-MLPA): Simultaneous Detection of Cpg Methylation and Copy Number Changes of up to 40 Sequences. Nucleic Acids Res. 2005, 33(14):e128
    186.陈丽. DNA甲基化及其芯片技术研究进展.国外医学卫生学分册. 2007, 34(6):368~372
    187. D. J. Smiraglia, M. C. Frühwald, J. F. Costello, et al. A New Tool for the Rapid Cloning of Amplified and Hypermethylated Human DNA Sequences from Restriction Landmark Genome Scanning Gels. Genomics. 1999, 58(3):254~262
    188. G. E. Reyna-Lopez, J. Simpson, J. Ruiz-Herrera, et al. Differences in DNA Methylation Patterns are Detectable during the Dimorphic Transition of Fungi by Amplification of Restriction Polymorphisms. Mol. Gen. Genet. 1997, 253(6):703~710
    189.南楠,曾凡锁,詹亚光.植物DNA甲基化及其研究策略.植物学通报. 2008, 25(1):102~111
    190. A. H. Sha, X. H. Lin, J. B. Huang, et al. Analysis of DNA Methylation Related to Rice Adult Plant Resistance to Bacterial Blight Based on Methylation-Sensitive AFLP (MSAP) Analysis. Mol. Genet. Genomics. 2005, 273(6):484~490
    191. C. F. Marfil, R. W. Masuelli, J. Davison, et al. Genomic Instability in Solanum Tuberosum X Solanum Kurtzianum Interspecific Hybrids. Genome. 2006,49(2):104~113
    192. Y. Lu, T. Rong, M. Cao, et al. Analysis of DNA Methylation in Different Maize Tissues. J. Genet. Genomics. 2008, 35(1):41~48
    193. C. G. Wang, Y. Gu, C. B. Chen, et al. Analysis of the Level and Pattern of Genomic DNA Methylation in Different Ploidy Watermelons by MSAP (Citrullus lanatus). J. Mol. Cell Biol. 2009, 42(2):118~126
    194. Y. Xu, L. Zhong, X. Wu, et al. Rapid Alterations of Gene Expression and Cytosine Methylation in Newly Synthesized Brassica Napus Allopolyploids. Planta. 2009, 229(3):471~483
    195. M. P. Tan. Analysis of DNA Methylation of Maize In Response to Osmotic and Salt Stress Based on Methylation-Sensitive Amplified Polymorphism. Plant Physiol. Biochem. 2009, Oct 30 [Epub ahead of print]
    196. Z. Q. Wei, Y. Y. Liu, G. L. Wang, et al. An Irradiation Equipment for Investigation on Biological Effects of Heavy Ions. Nucl. Technol. 1991, 14(6):341~346
    197. D. H. Chen, P. C. Ronald. A Rapid DNA Minipreparation Method Suitable for AFLP and other PCR Applications. Plant Mol. Biol. Rep. 1999, 17:53~57
    198. P. Vos, R. Hogers, M. Bleeker, et al. AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Res. 1995, 23(21):4407~4414
    199. B. A. Chalhoub, S. Thibault, V. Laucou, et al. Silver Staining and Recovery of AFLP Amplification Products on Large Denaturing Polyacrylamide Gels. Biotechniques. 1997, 22(2):216~220
    200.李拥军,敖红,孙桂金. mRNA差异显示技术中特异条带回收方法的比较.生物技术. 2005, 15(3):43~44
    201. B. Brugmans, R G. van der Hulst, R. G. Visser, et al. A New and Versatile Method for the Successful Conversion of AFLP Markers into Simple Single Locus Markers. Nucleic Acids Res. 2003, 31(10):e55
    202.王年久,马爱民.平菇差异显示PCR产物特异条带的回收方法及再扩增效果.食品科学. 2008, 29(3):307~309
    203. K. Akimoto, H. Katakami, H. J. Kim, et al. Epigenetic Inheritance in Rice Plants. Ann. Bot. 2007, 100(2):205~217
    204.林斌彬,张子平,王艺磊,等. AFLP技术发展及其在水产生物学研究中的应用.集美大学学报. 2008, 13(1):45~57
    205. O. V. Dyachenko, N. S. Zakharchenko, T. V. Shevchuk, et al. Effect ofHypermethylation of CCWGG Sequences in DNA of Mesembryanthemum Crystallinum Plants on Their Adaptation to Salt Stress. Biochemistry. 2006, 71(4):461~465
    206. G. J. Kim, K. Chandrasekaran, W. F. Morgan. Mitochondrial Dysfunction, Persistently Elevated Levels of Reactive Oxygen Species and Radiation-Induced Genomic Instability: A Review. Mutagenesis 2006, 21(6):361~367
    207. L. Huang, P. M. Kim, J. A. Nickoloff, et al. Targeted and Nontargeted Effects of Low-Dose Ionizing Radiation on Delayed Genomic Instability in Human Cells. Cancer Res. 2007, 67(3):1099~1104
    208. L. Zeng, M. C. Shannon. Salinity Effects on Seedling Growth and Yield Components of Rice. Crop Sci. 2000, 40(4):996~1003
    209. H. Shimono, T. Hasegawa, K. Iwama, et al. Modeling the Effects of Water Temperature on Rice Growth and Yield under a Cool Climate: I. Model Development. Agron. J. 2007, 99(5):1327~1337
    210. N. Insalud, R. W. Bell, T. D. Colmer, et al. Morphological and Physiological Responses of Rice (Oryza sativa) to Limited Phosphorus Supply in Aerated and Stagnant Solution Culture. Ann. Bot. 2006, 98(5):995~1004
    211. L. Tang, W. Lin, X. Wu, et al. Effects of Enhanced Ultraviolet-B Radiation on Growth Development and Yield Formation in Rice (Oryza sativa L.). Ying Yong Sheng Tai Xue Bao. 2002, 13(10):1278~1282
    212. J. Hidema, W. Zhang, M. Yamamoto, et al. Changes in Grain Size and Grain Storage Protein of Rice (Oryza Sativa L.) In Response to Elevated UV-B Radiation under Outdoor Conditions. J. Radiat. Res. 2005, 46(2):143~149
    213. D. Zilberman, M. Gehring, R. K. Tran, et al. Genome-wide Analysis of Arabidopsis Thaliana DNA Methylation Uncovers an Interdependence between Methylation and Transcription. Nat. Genet. 2007, 39(1):61~69
    214. P. A. Jones, S. B. Baylin. The Fundamental Role of Epigenetic Events in Cancer. Nat. Rev. Genet. 2002, 3(6):415~428
    215. A. P. Feinberg, R. Ohlsson, S. Henikoff. The Epigenetic Progenitor Origin of Human Cancer. Nat. Rev. Genet. 2006, 7(1):21~33
    216. K. D. Robertson, P. A. Jones. DNA Methylation: Past, Present and Future Directions. Carcinogenesis. 2000, 21(3):461~467
    217. C. Coulondre, J. H. Miller, P. J. Farabaugh, et al. Molecular Basis of BaseSubstitution Hotspots in Escherichia coli, Nature. 1978, 274(5673):775~780
    218. E. Lutsenko, A. S. Bhagwat. Principal Causes of Hot Spots for Cytosine to Thymine Mutations at Sites of Cytosinemethylation in Growing Cells. Amodel, Its Experimental Support and Implications. Mutat. Res. 1999, 437(1):11~20
    219. S. Tornaletti, G. P. Pfeifer. Complete and Tissue-Independent Methylation of Cpg Sites in the P53 Gene: Implications for Mutations in Human Cancers. Oncogene. 1995, 10(8):1493~1499
    220. J. K. Cowell, T. Smith, B. Bia. Frequent Constitutional C to T Mutations in CGA-Arginine Codons in the RB1 Gene Produce Premature Stop Codons in Patients with Bilateral (Hereditary) Retinoblastoma. Eur. J. Hum. Genet. 1994, 2(4):281~290
    221. R. Z. Chen, U. Pettersson, C. Beard, et al. DNA Hypomethylation Leads to Elevated Mutation Rates. Nature. 1998, 395(6697):89~93
    222. K. M. Hassan, T. Norwood, G. Gimelli, et al. Satellite Methylation Patterns in Normal and ICF Syndrome Cells and Association of Hypomethylation with Advanced Replication. Hum. Genet. 2001, 109(4):452~462
    223. R. Tawa, Y. Kimura, J. Komura, et al. Effects of X-Ray Irradiation on Genomicdnamethylation Levels in Mouse Tissues. J. Radiat. Res. 1998, 39(4):271~278
    224. C. B. Seymour, C. Mothersill. Relative Contribution of Bystander and Targeted Cell Killing to the Low-Dose Region of the Radiation Dose-Response Curve. Radiat. Res. 2000, 153(5):508~511
    225. W. F. Morgan, J. P. Murnane. A Role for Genomic Instability in Cellular Radioresistance? Cancer Metastasis Rev. 1995, 14(1)49~58
    226. S. M. Clutton, K. M. Townsend, C. Walker, et al. Radiation-Induced Genomic Instability and Persisting Oxidative Stress in Primary Bone Marrow Cultures. Carcinogenesis. 1996, 17(8):1633~1639
    227. W. F. Morgan, Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: I. Radiation-Induced Genomic Instability and Bystander Effects in vitro. Radiat. Res. 2003, 159(5):567~580
    228. C. Barry, G. Faugeron, J. Rossignol, et al. Methylation Induced Premeiotically in Ascobolus: Coextension with DNA Repeat Lengths and Effect on Transcript Elongation. PNAS. 1993, 90(10):4557~4561
    229. T. Hohn, S. Corsten, S. Rieke, et al. Methylation of Coding Region AloneInhibits Gene Expression in Plant Protoplasts. PNAS. 1996, 93(16):8334~8339
    230. M. C. Lorincz, D. R. Dickerson, M. Schmitt, et al. Intragenic DNA Methylation Alters Chromatin Structure and Elongation Efficiency in Mammalian Cells. Nat. Struct. Mol. Biol. 2004, 11(11):1068~1075
    231. W. J. Soppe, S. E. Jacobsen, C. Alonso-Blanco, et al. The Late Flowering Phenotype of Fwa Mutants is caused by Gain-Of-Function Epigenetic Alleles of A Homeodomain Gene. Mol. Cell. 2000, 6(4):791~802
    232. M. M. Suzuki, A. Bird. DNA Methylation Landscapes: Provocative Insights from Epigenomics. Nat. Rev. Genet. 2008, 9(6):465~476
    233. T. Mohandas, R. S. Sparkes, L. J. Shapiro. Reactivation of an Inactive Human X-Chromosome: Evidence for X-Inactivation by DNA Methylation. Science. 1981, 211(4480):393~396
    234. M. Weber, J. J. Davies, D. Wittig, et al. Chromosome-Wide and Promoterspecific Analyses Identify Sites of Differential DNA Methylation in Normal and Transformed Human Cells. Nat. Genet. 2005, 37(8):853~862
    235. A. Hellman, A. Chess. Gene Body-Specific Methylation on the Active X Chromosome. Science. 2007, 315(5815):1141~1143
    236. Y. Qu, W. Li, L. Zhou, et al. Research and Application of Mutagenic Effects in Plants Irradiated by Heavy Ion Beams. Nuclear Physics Review. 2007, 24(4):294~298
    237. D. C. Lloyd, A. A. Edwards, A. Leonard, et al. Chromosomal Aberrations in Human Lymphocytes Induced in vitro by Very Low Doses of X-Rays. Int. J. Radiat. Biol. 1992, 61(3):335~343
    238. R. Zaka, C. Chenal, M. T. Misset, et al. Study of External Low Irradiation Dose Effects on Induction of Chromosome Aberrations in Pisum Sativum Root Tip Meristem. Mutat. Res. 2002, 517(1-2):87~99
    239. S. A. Geras'kin, A. A. Oudalova, J. K. Kim, et al. Cytogenetic Effect of Low Dose Gamma-Radiation in Hordeum Vulgare Seedlings: Non-Linear Dose-Effect Relationship. Radiat. Environ. Biophys. 2007, 46(1):31~41
    240. M. Toyoshima. Analysis of P53 Dependent Damage Response in Sperm-Irradiated Mouse Embryos. J. Radiat. Res. 2009, 50(1):11~17
    241. T. Furusawa, K. Fukamoto, T. Sakashita, et al. Targeted Heavy-Ion Microbeam Irradiation of the Embryo but Not Yolk in the Diapause-Terminated Egg of the Silkworm, Bombyx Mori, induces the Somatic Mutation. J. Radiat. Res. 2009,50(4):371~375
    242. D. Plehn-Dujowich, P. Bell, A. M. Ishov, et al. Non-Apoptotic Chromosome Condensation Induced by Stress: Delineation of Interchromosomal Spaces. Chromosoma. 2000, 109(4):266~279
    243. A. Fusconi, O. Repetto, E. Bona, et al. Effects of Cadmium on Meristem Activity and Nucleus Ploidy in Roots of Pisum Sativum L. cv. Frisson Seedlings. Environ. Exp. Bot. 2006, 58(1-3):253~260
    244. R. Deltour. Nuclear Activation during Early Germination of the Higher Plant Embryo. J. Cell Sci. 1985, 75(1):43~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700