用户名: 密码: 验证码:
芝麻香型白酒高温大曲细菌群落多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芝麻香型白酒作为我国传统白酒的创新酒种,以独特的浓、酱、清融合的生产工艺特点和优雅的芝麻香味而闻名。高温制曲为芝麻香型白酒酿造提供丰富的微生物种类、生物酶、各类香味物质及其前驱物质,其质量好坏直接关系到芝麻香型白酒的出酒率和酒质。由于受到传统发酵特点及其研究方法的限制,使得对高温制曲过程中微生物的群落结构研究和认识还很有限。本文以山东扳倒井芝麻香型白酒高温大曲为研究对象,首次将现代分子生物学和分子生态学技术应用于高温大曲细菌群落结构研究中,为探索芝麻香型白酒高温大曲功能性微生物的作用机制提供科学依据。
     本文利用非培养PCR-变性梯度凝胶电泳技术(PCR-DGGE)和16Sr DNAV5-V8区克隆文库构建技术,结合可培养细菌的分离筛选和多相鉴定技术,动态分析高温大曲曲房环境、母曲、大曲原料、大曲发酵前期、中期、中后期、后期和出房时的优势细菌群落结构,并对其中高温功能性细菌进行分离筛选和鉴定。研究结果发现高温大曲中细菌种类丰富,主要来源于曲房环境、母曲和大曲原料,随着发酵温度的升高形成以高温细菌为主的群落结构。曲房环境中第一优势细菌为芽孢杆菌属(Bacillus sp.),丰度为21.67%,在高温大曲发酵前期、中期和后期也被检测到,且其丰度分别为13.7%、12.32%和23.15%。高温大曲原料中的第一优势细菌为泛菌属(Pantoea sp),丰度为73.68%,仅在大曲发酵前期少量被检测出,第二优势细菌为魏斯氏菌属(Weissella sp.),丰度为16.99%,第三优势细菌乳杆菌属(Lactobacillus sp.),丰度为4.57%,在大曲发酵的前期、中期和后期被分别被检测到,其丰度分别为前期3.22%和11.29%、中期6.89%和25.11%、后期3.74%和7.47%。大曲发酵前期的第一优势细菌是高温放线菌属(Thermoactinomyces sp.),丰度为47.57%,发酵中期、后期和出房时也检测到该菌属,且丰度分别为4.93%,15.68%和4.35%。大曲发酵结束时的优势细菌是Rubellimicrobium sp.,丰度是31.52%。
     研究还从高温大曲中分离、筛选出85株高温细菌,并获得1株产中性蛋白酶菌株M5,中性蛋白酶活力96.06U/g,显著高于对照菌株,经16S rDNA序列分析和gryA基因序列分析鉴定为枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. Subtilis.);分离筛选出的优势细菌ZM60经多相鉴定为普通高温放线菌(Thermoactinomycesvulgaris),该菌株55℃生长良好,37℃不生长,具白色气生菌丝,产孢子,具有碱性磷酸盐酶、酯酶、类脂酯酶及萘酚-AS-BI-磷酸水解酶的活力。作为高温大曲的优势细菌,该菌株在芝麻香型白酒特殊性风味的形成过程中的作用尚未报道过。
     本研究除发现了过去曾研究报道过的高温大曲优势细菌芽孢杆菌属(Bacillussp.),魏斯氏菌属(Weissella sp.)和乳杆菌属(Lactobacillus sp.)外,还发现了尚未在高温大曲研究中报道过的细菌菌种,如泛菌属(Pantoea sp.),(?)嗜盐单胞菌属(Halomonas sp.),高温放线菌属(Thermoactinomyces sp.), Kroppenstedtia sp.,莱西氏菌属(Laceyella sp.),片球菌属(Pediococcus sp.)和志贺氏菌属(Shigellasp.)等,其中泛球菌属(Pantoea sp.)菌种来源于植物性原料中,高温放线菌属(Thermoactinomyces sp.)和莱西氏菌属(Laceyella sp.)为属于芽孢菌科的高温放线菌, Kroppenstedtia sp为近年来新发表菌属,志贺氏菌属(Shigella sp.)为常见致病菌,这些细菌在高温大曲制曲过程中发挥的功能性作用和带来的影响还有待下进一步深入研究。
The Sesame-flavor Liquor is one of innovative liquor types in China, which has been universally popular for its technology characteristics combined with multifold-flavor liquors and elegant sesame flavor. High temperature Daqu is a sacchariferous starter and it can provide large amounts of microorganisms, enzymes, flavor components and its precursors for brewing sesame-flavor liquor. So its quality is directly relevant to the output rate and quality of liquor. Due to the unique features of traditional fermentation technology and the limitation of research methods in this field, the knowledge of microbes community structure occurred in high temperature Daqu is still imperfect. Molecular biological and molecular ecological technologies were firstly used to reveal the bacterial community diversity from high temperature Daqu of Sesame-flavor liquor manufactured by Bandaojing Co. Ltd. Further, the results can also supply scientific data for study of the functional microbes'mechanism.
     Culture-independent analysis of PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and16S rDNA V5-V8region clone library construction combined with culture-dependent analysis of screening and identification technologies were applied to investigate dynamic bacterial community diversity of high temperature making processes, including environment of Daqu room, Muqu, raw material, prophase fermentation, middle fermentation, late fermentation and new Daqu. And the high temperature functional bacterial also were isolated and identified in this study. The results indicated that abundant bacterial community mainly originated from Daqu room envrionment, Muqu and raw material. The bacterial community structure based high temperature bacteria were formed with the increase of fermentation temperature. The first dominant bacteria (abundant%) Bacillus sp.(21.67%) was detected at the stage of prophase, middle and late fermentation, and the abundant were13.7%,12.32%and23.15%separately. The first dominant bacteria (abundant%) Pantoea sp.(73.68%) in raw material was only found a few amount at prophase fermentation, the second dominant bacteria (abundant%) Weissella sp.(16.99%) and the third dominant bacteria (abundant%) Lactobacillus sp.(4.57%) were detected separately3.22%and11.29%at the prophase fermentation,6.89%and25.11%at middle fermentation,3.74%and7.47%at late fermentation. The first dominant bacteria (abundant%) Thermoactinomyces sp.(47.57%) at prophase fermentation was also detected at the middle fermentation, late fermentation and new Daqu as abundant of4.93%,15.68%and4.35%. The predominant bacteria (abundant%) in new Daqu was Rubellimicrobium sp.(31.52%).
     85thennophilic bacteria anti-high-temperature strains were selected according to plate screening and conical flask screening, we obtained a strain of higher neutral protease producing capability, whose enzyme activity reached to96.06U/g. This strain was identified to be Bacillus subtilis subsp. subtilis by16S rDNA and gryA sequencing. ZM60, the dominant thennophilic bacteria, was identified as Thennoactinomyces vulgaris by polyphasic identification. It growth at55℃and not growth at37℃, with white aerial mycelium and spore-forming. Zm60had enzyme activity of Alkaline phosphatase, Esterase, Lipid esterase and Naphthol-AS-BI-phosphate hydrolase. As the dominant bacteria in process of high temperature Daqu, the role of Thermoactinomyces vulgaris during the formation of particularity flavor of sesame-flavor liquor has not been reported before.
     This study not only found the dominant bacteria as Bacillus sp., Weissella sp. and Lactobacillus sp. reported before, but also detected predominant bacteria as Pantoea sp., Halomonas sp., Thermoactinomyces sp., Kroppenstedtia sp., Laceyella sp., Pediococcus sp. and Shigella sp. havn't been reported before. Among these genera, Pantoea sp. was common endophytic bacteria, Thennoactinomyces sp. and Laceyella sp. were thennoactinomyces belong to family Bacillus, Kroppenstedtia sp. was new genus published in recent years and Shigella sp. was common pathogenic bacteria. The more research need to be applied in order to reveal the functional role of these dominant bacteria in the process of high temperature Daqu making.
引文
[1]白蓝,赵明文,贾军伟,16S rDNA克隆文库法探索转基因香石竹对土壤细菌群落的影响[J].微生物学通报,2012,39(4):435-447.
    [2]车玉伶,王慧,胡洪营,等.微生物群落结构和多样性解析技术研究进展[J].生态环境.2005,14(1):127-133.
    [3]大岛太郎.好热性细菌[M].北京:科学出版社,1983.
    [4]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].生态学报,2002,22(11):2015-2019.
    [5]高亦豹,王海燕,徐岩.利用PCR-DGGE未培养技术对中国白酒高温和中温大曲细菌群落结构的分析[J].微生物学通报,2010,37(7):999-1004.
    [6]高亦豹.聚合酶链式反应—变性梯度电泳技术(PCR-DGGE)研究中国白酒大曲中微生物群落结构[D].江南大学,2009.
    [7]葛媛媛,姚粟,刘洋,等.芝麻香型白酒高温大曲嗜热细菌群落研究[J].食品与发酵工业,2012,299(11):16-19.
    [8]葛媛媛,姚粟,刘洋等.芝麻香型白酒高温大曲微生物总DNA提取的改良方法[J].酿酒,2012.39(4):34-37.
    [9]郭坤亮.茅台酒酿造微生物的生物多样性成因及研究价值的探讨[J].酿酒.2002,29(2):36-38.
    [10]胡凤艳.国井复粮芝麻香典型风格及其成因研究[J].酿酒,2009,36(5):31-34.
    [11]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用[J].微生物学通报.2002,29(4):95-98.
    [12]胡佳,邓斌,等.浓香型自酒曲药中细菌组成及系统学分析[J].酿酒科技,2007,155(5):17-19.
    [13]胡佳.利用免培养法对浓香型白酒曲药细菌菌群的解析研究[D].四川大学,2007.
    [14]胡喜巧,李兰,蒋爱凤.米曲霉产中性蛋白酶提取与粗酶性质研究[J].河南科技学院学报,2011,39(2):43-48.
    [15]黄培堂等译.分子克隆试验指南(第三版)[M].北京:科学出版社,2002.
    [16]黄业立,吕兴臣,杨正录.趵突泉芝麻香白酒的风格特点及工艺技术要求[J].酿酒科技,2009,186(12):68-71.
    [17]黄业立,张彬,武金华.试论芝麻香型白酒[J].酿酒科技,2008(10):116-119.
    [18]黄祖新.宏基因组学及其在大曲酒微生物研究中的应用[J].酿酒科技.2009.184(10):17-21.
    [19]吉喆.白酒行业经济运行态势[J].财经界,2009,(6):72-75.
    [20]蒋若天.一株产耐高温a-淀粉酶的地衣芽孢杆菌的筛选与分离及产酶条件与酶学性质的研究[D].四川大学,2007.
    [21]金敏,李君文.基因芯片技术在环境微生物群落研究中的应用[J].微生物学通报. 2008,35(9):1466-1471.
    [22]来安贵,赵德义,曹建全.芝麻香型白酒的发展历史、现状及发展趋势[J].酿酒,2009,36(1):91-93.
    [23]雷振河.汾酒大曲发酵过程微生物变化的初步分析[J].酿酒科技,2011,204(6):65-68.
    [24]李大合.白酒香型融合的典型范例[J].酿酒,2008,35(3):3-6.
    [25]李大和.浓香型大曲酒生产技术(第2版)[M].北京:中国轻工业出版社,1997.
    [26]李浩,罗惠波,侯华.采用BIOLOG微平板技术研究浓香型大曲微生物多样性[J].酿酒,2009,36(1):54-56.
    [27]李维青.漫谈白酒的香型[J].中国酒,2007,7:84-86.
    [28]李文均,张忠泽,蒋成林.高温放线菌属分类研究进展[J].微生物学报,2002,42(6):759-763.
    [29]李贤柏.郎酒高温大曲产酱香细菌的研究[J].重庆师范学院学报,1997,4:20-23.
    [30]李祖明,荆梦,谷立坤,等.碱性果胶酶对油菜叶际微生物群落结构的影响[C].2009年中国微生物生态学年会论文及摘要集,2009:109-114.
    [31]连宾,王乃亮,等.高温制曲产香与嗜热细菌活动关系的初步研究[J].贵州科学,1990.
    [32]连宾,张永玲,等.茅台酒曲嗜热细菌的研究[J].贵州科学,1993.
    [33]刘晓光.产酱香枯草芽孢杆菌质粒对菌体生理特性影响及与酱香产生关系初探[D].贵州大学,2007.
    [34]刘洋,赵婷,姚粟,葛媛媛,信春晖,许玲,程池.一株芝麻香型白酒高温大曲嗜热放线菌的分离与鉴定[J].生物技术通报,2012,10:210-216
    [35]刘洋,左山,邹媛媛.杂交玉米农大108及其亲本种子内生细菌群落的多样性[J].中国农业科学,2011,44(23):4763-4771.
    [36]刘洋.对中高温大曲的认识[J].酿酒,2010,37(2):87-88.
    [37]陆艳,李云捷,黄静.白酒的分类、生产工艺及其营养价值[J].农业工程技术,2007,02:21-24.
    [38]罗惠波,黄治国,李浩,等.浓香型大曲真核微生物群落的PCR-SSCP解析[J]China Brewing.2009,209(8):42-45.
    [39]罗惠波,李浩,黄治国,等.BIOLOG微生物鉴定系统在大曲微生物多样性研究中的应用初探[J].China Brewing,2009,205(4):92-94.
    [40]罗惠波,李浩,黄治国,等.浓香型大曲微生物群落结构的PCR-SSCP分析条件优化[J].四川理工学院学报(自然科学版).2009,22(4):72-74.
    [41]彭萱.β葡聚糖酶高产菌Bacillus subtilis 9126-6的发酵性能研究[J].南京农业大学学报,1994,17(1):59-64.
    [42]萨姆布鲁克,J E F弗里奇,T曼尼阿蒂斯(美)(金冬雁、黎孟枫等译).分子克隆实验指南(第二版)[M].北京:科学出版杜,1992.
    [43]沈怡芳.中国白酒感官品质及品评技术历史与发展[J].酿酒,2006,33(4):3-4.
    [44]施安辉,关纪奎,张文璞等.徐坊大曲的微生物区系及其优势细菌的鉴定[J].酿酒科技,2001, 108(6):26-28.
    [45]施安辉,李丽莉,卞建平.徐坊芝麻香型酒专用大曲中主要微生物的分布、优势菌种的鉴定及代谢产物的初步分析[J].山东食品发酵,2010,156(1):9-10.
    [46]施安辉,路光东,肖海杰,刘淑君.水浒芝麻香型酒大曲和窖泥中微生物的分布与初步鉴定[J].酿酒,1997(3):19-21.
    [47]施安辉,路光东.芝麻香酒大曲和窖泥中微生物的生态分布[J].上海调味品.1994,1:8-11.
    [48]孙磊.非培养方法和培养方法对水稻内生细菌和根结合细菌的研究.首都师范大学博士论文.2006.
    [49]唐玉明,沈才洪,任道群,等.酒曲理化品质指标相关性探讨[J].酿酒科技,2006,7(145):37-41.
    [50]王凤丽,张锋国,邵先军.国井复粮芝麻香酒的探析[J].酿酒,2008,35(5):39-43.
    [51]王海燕,张晓君,徐岩.浓香型和芝麻香型白酒酒醅中微生物群落的研究[J].酿酒科技,2008.2(164):86-91.
    [52]王民俊.茅台酒大曲微生物的研究[J].微生物学通报,1981,30(1):261-264.
    [53]王世宽,侯华,袁城金等PCR-DGGE用于浓香型大曲微生物群落分析的条件优化[J].四川理工学院学报(自然科学版),2012,3:5-8.
    [54]王艳华,刘飞飞,程仕伟Bacillus subtilis CICC 20034产脂肪酶的培养条件研究[J].食品与药品.2012,14(2):84-87.
    [55]王忠彦,寇运同,门芸.高温大曲微生物区系的初步研究[J].酿酒科技,1995,69(3):66-67.
    [56]温建新,脂肪酶产生菌Bacillus subtilis FS321的分离鉴定及其产酶条件的初步优化[J].食品与发酵工业.2008,34(2):37-41.
    [57]温拥军,游玫娟,冯刚利,李拥军Bacillus subtilis UN13产α-淀粉酶酶学性质研究[J].中国调味品.2009,12:64-66.
    [58]吴鑫DGGE指纹图谱分析太湖富营养化水体中细菌群落结构的变化[D].上海交通大学,2007.
    [59]肖艳,肖红梅,彭菲.2种方法提取四倍体紫锥菊总DNA的比较研究[J].湖南中医药大学学报,2007,27:288-289.
    [60]信春晖.扳倒井复粮芝麻香型白酒生产工艺的特点[J].酿酒科技,2010,189(3):65-66.
    [61]熊子书.中国三大香型白酒的研究(二)酱香.茅台篇[J].酿酒科技,2005,(4):25-31.
    [62]徐洋江.芝麻香型白酒酿造微生物多样性分析[D].浙江理工大学,2012.
    [63]许伟,镇江.香醋醋酸发酵过程微生物群落和功能性分析[D].江南大学.2011.
    [64]宣灵,李明.宣酒芝麻香白酒生产中微生物分布与消长特点[J].酿酒科技,2012,212(422):43-46.
    [65]颜林春,张守财,马校卫等.福矛高温大曲中势孢杆菌16S rDNA-RFLP及系统发育分析[J].生物技术,2012,02:53-58.
    [66]杨代永,范光先,汪地强.高温大曲中的微生物研究[J].酿酒科技,2007,5:39-41.
    [67]杨冠东,杜少平,杨础华,黄琼.产碱性蛋白酶的嗜热菌株筛选及发酵条件研究[J].食品与发 酵工业.2008,34(10):70-73.
    [68]姚斌,范云六.来源于Bacillus subtilis的中性植酸酶基因的克隆及在大肠杆菌中的表达[J].生物工程学报.2001,17(1):11-15.
    [69]姚粟,葛媛媛,李辉等.利用非培养技术研究芝麻香型白酒高温大曲的细菌群落多样性[J].食品与发酵工业,2012,38(6):1-6.
    [70]叶姜瑜,罗固源.遗传指纹图谱技术对微生物群落结构的分析[J].重庆大学学报,2003,26(3):147-153.
    [71]曾纵野.我国白酒起源的探讨[J].酿酒,1978,02:.
    [72]张宝涛,王立群,伍宁丰PCR-DGGE技术及其在微生物生态学中的应用[J].生物信息学,2005,3:132-142.
    [73]张春辉,赵树欣,梁慧珍等.高温大曲中细菌总DNA提取方法比较[J].酿酒科技,2008,10:54-56.
    [74]张春辉.应用PCR-DGGE分析高温制曲中细菌群落变化的研究[D].天津科技大学.2008.
    [75]张锋国.提高扳倒井芝麻香型白酒风味的关键环节[J].酿酒,2007,34(4):47-48.
    [76]张明春,曹敬华,向苇.白云边酿酒大曲微生物分析研究[J].酿酒科技,2010,188(2):65-67.
    [77]张书田,杨军山.美拉德反应产物对白酒酿造的贡献[J].酿酒科技.2009(6):78-80.
    [78]张玉君.对大曲糖化力指标的分析与看法[J].酿酒,1997.5(15):16-18.
    [79]章克昌.酒精与蒸馏酒工艺学[M].北京:轻工出版社,1995.
    [80]赵建华,宋书玉.蒸馏酒的起源[J].酿酒科技,2007,11:72-74.
    [81]赵章报,曹广勇,赵雷光.试论芝麻香型白酒的发展趋势[J].酿酒,2010,37(2):27-29.
    [82]周思然,陈晨,向健军,等.2012-2016年中国白酒市场投资分析及前景预测报告[R].4QMCT4ZP1,2012
    [83]庄名扬,孙达孟,等.美拉德反应与酱香型白酒[J].酿酒科技,1997(1):79-84.
    [84]庄名扬,王仲文.酱香型高温大曲中功能菌B3-1菌株的分离、选育及其分类学鉴定[J].酿酒,2003,(5):26-28.
    [85]左山;刘洋;邹媛媛;刘琳;刘家熙.现代生物化学与分子生物学研究技术在植物微生物生态学中的应用[J].生物技术通报,2010,4:69-74.
    [86]DB37/T 1231-2009,大曲通用技术条件[S].
    [87]GB/T 20378-2006,原淀粉淀粉含量的测定旋光法[S].
    [88]GB/T 23527-2009,蛋白酶制剂[S].
    [89]GB/T 5009.3-2010,食品中水分的测定[S].
    [90]GB/T 5009.4-2010,食品中灰分的测定[S].
    [91]GB/T 5517-2010,粮油检验粮食及制品酸度测定[S].
    [92]QB/T 1803-1993,工业酶制剂通用试验方法[S].
    [93]Amann R,Ludwig W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology[J].FEMS Microbiology Reviews,2000,24(5):555-565
    [94]Amann RI,Ludwig W,Schleifer KH,et al.Phylogenetic identification and in situ detection of individual micobialcell without cultivation[J].Microbiol Rev,1995,59(1):143-169.
    [95]Ampe F,Ben Omar N,Moizan C,et al.Polyphasic study of the spatial distribution of microorganisms in Mexican pozol,a fermented maize dough,demonstrates the need for cultivation-independent methods to investigate traditional fermentations[J]. Applied and Environmental Microbiology,1999,65(12):5464-5473.
    [96]Arland JL,Mills AL,Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57:2351-2359.
    [97]Baker GC,Gaffar S,Cowan DA,et al.Bacterial community analysis of Indonesian hot springs[J].FEMS Microbiology Letters,2001,200(1):103-109.
    [98]Ben-David E A,Holden P J,Stone DJM,et al.The use of phospholipid fattyacid analysis to measure impact of acid rock drainage on microbial communities in sediments [J].Microbial Ecology,2004, 48:300-315.
    [99]Brambilla H,Hippe H,Hagelstein A,et al.16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell,McMurdo Dry Valleys., Antarctica[J].Extremophiles,2001,5(1):23-33.
    [100]Bruno GG,Sonia SR,Alejandra GG,et al.Molecular identification of Vibrio harveyi-related isolatesas sociated with diseased aquatic organisms[J].Microbiology,2004,150(6):1769-1777.
    [101]Casamayor EO, Achafer H, Baneras L, et al. Identification and spatiotemporal differences between microbial assemblages from two neighboring sulfurous lakes:comparison by microscopy and DGGE[J]. Applied and Environmental Microbiology,2000,66:499-508.
    [102]Chun J,Lee J H,Jung Y,et al.EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences[J].Int J Syst Evol Micr,2007,57:2259-2261.
    [103]Concetta Gugliandolo,Valeria Lcntini,Teresa L,Maugeri.Distribution and Diversity of Bacteria in a Saline Meromictic Lake as Determined by PCR-DGGE of 16S rRNA Gene Fragments[J]. Curr Microbiol,2011,62:159-166.
    [104]Cross T.,Davies F L.,Walker P D..Thermoactinomyces vulgaris I Fine structure of the developing endospors[M]. London:Academic Press,1971.
    [105]Dastager SG.Lee JC,Ju YJ,et al.Rubellimicrobiuin mesophilum sp. nov., a mesophilic, pigmented bacterium isolated from soil[J].International journal of systematic and evolutionary microbiology,2008,58(8):1797-1800.
    [106]DeLip thay JR.Enzinger C,Johnsen K, et al.Impact of DNA extractionmethod on bacterial community composition measured bydenaturing gradient gel electrophoresis[J].Soil Biology and Biochemistry,2004,36(10):1607-1614.
    [107]Dong J,Kldndukuru P,Huang A S,et a 1.PCR-DGGE analysis of bacterial community dynamics in kava beverages during refrigeration[J].Lett Applied Microbiology,2011,53(1):30-34.
    [108]Endo A,Okada S.Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-Denaturing Gradient Gel Electrophoresis[J]Journal of Bioscience and Bioengineering,2005,99(3):216-221.
    [109]Frostegard A,Tunlid A,Baath E.Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals [J]. Applied and Environmental Microbiology,1993,59:3605-3617.
    [110]Gardner N J,Savard T,Obermeier P,et al.selection and characterization of mixed starter cultures for lactic acid ferntation of carrot, cabbage, beet and onion vegetable mixtures [J].Food Microbiology,2001,(20):261-275.
    [111]Gavini F,et al.Transfer of Enterobacter agglomerans(Beijerinck 1888)Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb.nov.and description of Pantoea dispersa sp.nov.[J].Int.J.Syst.Bacteriol,1989,39:337-345.
    [112]Good IJ.The population frequencies of species and the estimation of population parameters[J].Biometrika,1953,40(3/4):237-264.
    [113]Graves A,Weaver RW,Entry J.Characterization of enterococci populations in livestock manure using BIOLOG[J]. Microbiol Res,2009,164 (3):260-266.
    [114]H.Y. Wang, Y.B. Gao,Q.W. Fan. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE[J]. Letters in Applied Microbiology.
    [115]Handelsman J,Rondon MR,Brady SF,et al.Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products [J].Chemistry Biology,1998,5(10):245-249.
    [116]Head IM,Saunders JR,Pickup RW.Microbial evolution, diversity,and ecology:a decade of ribosomal RNA analysis of uncultivated microorganisms[J]. Microbial Ecology,1998,35(1):1-21.
    [117]Holland PM,Abramson RD,Watson R.Detection of specific polymerase chain reaction product by utilizing the 5'-3'exonuclease activity of Thermus aquaticus DNA polymerase[J]. Proceedings of the National Academy of Sciences,1991,88:7276-7280.
    [118]Horikoshi K,Y Ohtaka. Ribosomes in dormant and germinating conidia of Aspergillus oryzae. Agr. Boil[J].Chem,1972,(36):285-290.
    [119]Jongsik Chun,Kyung Sook Bae.Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J].Antonie van Leeuwenhoek,2000,78(2):123-127.
    [120]Jung-Hoon Yoon,In-Gi Kim,Yong-Kook Shint et al.Proposal of the genus Thermoactinomyces sensu strict and three new genera, Laceyella,Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses[J].International Journal of Systematic and Evolutionary Microbiology,2005,55:395-400.
    [121]Kim D,Pruitt,Donna R,Maglott,et al.NCBI gene-centered resources[J]Nucleic Acids Research,2000,29(1):137-140.
    [122]Kirk J L,Bcaudette L A,Hart M,et al.Methods of studying soil microbial diversity[J].Journal of microbiological methods,2004,58(2):169-188.
    [123]Liu Xiu,Guo Kunliang,,Zhang Hongxun.Determination of microbial diversity in Daqu,a fermentation starter culture of Maotai liquor,using nested PCR-denaturing gradient gel electrophoresis[J].World J Microbiol Biotechnol,2012,28:2375-2381.
    [124]Lonvaud-Funel A.Lactic acid bacteria in the quality improvement and depreciation of wine[J].Antonie Van Leeuwenhoek,1999,76(4):317-319.
    [125]Marshall A,Hodgson J.DNA chips:an array of possibilities[J]. Nature Biotech,1998,16:27-31.
    [126]Md.Harun-ur-Rashid,Kaname Togo,Minoru Ueda,et a 1.Identification and characterization of dominant lactic acid bacteria isolated from traditional fermented milk Dahi in Bangladesh[J].World Journal of Microbiology Biotechnology,2007,23125-133.
    [127]Mullins TD,Britschgi TB,Krest R L,et al.Genetic comparisons reveal the same unknown bacterial lineages in atlantic and pacific bacterioplankton communities[J]. Limnol Oceanogr,1995,40(1):148-158.
    [128]Muyzer G,Smalla K.Application of denaturing gradient gel electrophoresis(DGGE)and temperature gradient gel electrophoresis(TGGE)in microbial ecology[J].Antonie Van Leeuwenhoek,1998,73:127-141.
    [129]MuyzerG.DGGE/TGGE:a method for identifying genes from natural ecosystems[J].CurrentOpinioninMicrobiology,1999,2:317-322.
    [130]Nassar A,Darrasse A,Lematlre M.Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes[J]. Applied and Environmental Microbiology,1996,62:2228-2235.
    [131]Olsen GJ,Lane DJ,Giovannoni SJ,et al.Microbial ecology and evolution:a ribosomal RNA approach[J]. Annual Review of Microbiology,1986,40(1):337-365.
    [132]P.D.Wallis,R.J.Haynes,C.H.Hunter, et al.Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE[J].Applied Soil Ecology 46(2010)147-150.
    [133]Pilar Calo-Mata,Samuel Arlindo,Karola Boehme,et al.CurrenApplications and Future Trends of Lactic Acid Bacteria and theirBacteriocins for the Biopreservation ofAquafic Food Product[J].Food Bioprocess Technology,2008,(1):43-63.
    [134]R. Malhotra,M. N oorwez,T Satyanarayana.Production and partial characterization of thermo stable and calcium independent amylase of an extreme thennopile Bacillus thennodynamic NP54[J]. Letters in Applied Microbiology,2000.31(5):378-383.
    [135)Rusznyak A,Vladar P,Molnar P,et al.Cultivable bacterial composition and BIOLOG catabolic diversity of biofilm communities developed on Phragmites australis[J].Aquat Bot,2008,88(3):211-218.
    [136]S.Sadet,C.Martin,B.Meunier,et al.PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal[J].2007(1):939-944.
    [137]Sabine P.Stefanie K,Frank S.Succession of microbial communities during hot composting as detected by PCR single strand conformation polymorphism based genetic profiles of small-subunit rRNA genes[J].Applied and Environmental Microbiology,2000,66:930-936.
    [138]Smit E,Leelang P,Wennars K.Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J]. FEMS Microbial Ecology,1997,23:249-261.
    [139]Stackebrand E,Woese C R.Towards a phylogeny of the actinomycetes and related organisms[J]. Curr Microbiol,1981,5:197-202.
    [140]Sun L,Qiu F,Zhang X,et al.Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis[J].Microb Ecol,2008,55(3):415-424.
    [141]Tingtao Chen,Shuyang Jiang,Shunqiang Xiong.Application of denaturing gradient gel electrophoresis to microbial diversity analysis in Chinese Douchi[J].Sci Food Agric 2012,92: 2171-2176.
    [142]von Jan M,Riegger N,Potter G, et al.Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al.2006 emend. Yassin et al.2009 [J].Int J Syst EvolMicrobiol,2011,61(9):2304-2310.
    [143]WANG Changlu,SHI Dongjian,GONG Guoli.Microorganisms in Daqu:a starter culture of Chinese Maotai-flavor liquor[J].World J Microbiol Biotechnol,2008,24:2183-2190.
    [144]Wen-xue Zhang,Zong-wei Qiao,Toru Shigematsu.Analysis of the Bacterial Community in Zaopei During Production of Chinese Luzhou-flavor Liquor[J] Journal of the Institute of Brewing,2005, 111(2):215-222.
    [145]F.L. Davies, S.T. Williams. Studies on the ecology of actinomycetes in soil:I. The occurrence and distribution of actinomycetes in a pine forest soil Original Research Article[J]. Soil Biology and Biochemistry,1970,2(4):227-238.
    [146]Xiao Ran Li,En Bo Ma,Liang Zhen Yan.Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J].International Journal of Food Microbiology,2011,146:31-37.
    [147]Xiao-Wei Zhang,Minoo Rezaei Tabrizi,M.J.Robert Nout et al.Daqu-A Traditional Chinese Liquor Fermentation Starter[J].Journal of the Institute of Brewing.2011.1(117):82-90.
    [148]Xiuli Dong,Gudigopuram B,Reddy.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010, (101):1175-1182.
    [149]Yan-Ru Cao,Yi Jiang,Qian Wang, et al.Rubellimicrobium roseum sp. nov., a Gram-negative bacterium isolated from the forest soil sample.[J].Antion Leeuw Int J G.2010 (98):389-394.
    [150]Ying Kuanga, Kaori Tani, Aidan J,et al.Characterization of bacterial population of raw milk from bovine mastifs by culture-independent PCR-DGGE method[J].Biochemical Engineering Journal,2009 45:76-81.
    [151]Yoon J H. Park Y H. Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences [J].Int J Syst Evol Microbiol,2000,50(3):1081-1086.
    [152]Zheng XW, Tabrizi MR, Robert Nout MJ, Han BZ. Daqu-A Traditional Chinese Liquor Fermentation Starter. [J]. Journal of the institute of brewing,2011,117(71):82-90
    [153]Zhou JZ, Bruns MA,Tiedje JM.DNA Recovery from soils ofdiverse composition[J].Appl Environ Microbiol,1996,62:316-322..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700