用户名: 密码: 验证码:
大兴安岭中段三叠—侏罗纪构造演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭地区,作为东北亚地区的核心部位,经历和记录了不同时期、不同构造域的地质影响,是研究和解决东北亚乃至中亚造山带地质演化历史问题的关键部位。然而,近年来关于大兴安岭地区的研究多数集中在晚古生代和晚中生代时期,尤其是晚古生代古亚洲洋闭合和晚中生代岩浆岩活动的研究。而对于二者之间的三叠纪—侏罗纪却报道较少。尽管晚侏罗世火山岩被普遍关注,但近年来的同位素测试表明,大多数的火山岩活动集中在早白垩世。大兴安岭中段地区出露中生代地层较为齐全,尤其是三叠纪、侏罗纪均有相应的地层出露。因此大兴安岭中段是研究大兴安岭地区构造演化的最佳场所。
     本文依据作者近三年来在大兴安岭中段地区所取得一手野外资料,结合近年来公开发表的最新成果,概括地还原大兴安岭中段地区三叠纪—侏罗纪的构造演化历史,并取得如下认识:
     1、通过早三叠世哈达陶勒盖组埃达克岩的识别表明,研究区早三叠世由于古亚洲洋沿西拉木伦河—长春—延吉一线的闭合,碰撞使贺根山—黑河构造带活化,碰撞应力或碰撞蠕散应力推动研究区年轻地壳沿贺根山—嫩江—黑河一线由南向北俯冲,推动下地壳或地幔内残留板片向更深的地幔推进并使之熔融,形成哈达陶勒盖组埃达克岩,并在地表山间盆地沉积湖相碎屑堆积—老龙头组。由此认为,古亚洲洋的闭合是以西拉木伦河—长春—延吉一线为主体碰撞带,贺根山—嫩江—黑河一线为地块内部构造活化带的陆内俯冲,时间上前者早于后者,规模上前者大于后者。
     2、研究区广泛发育中晚三叠世后造山—后碰撞型花岗岩,部分地区为A2型花岗岩,均表明研究区中晚三叠世处于古亚洲洋闭合—造山结束的后造山—后碰撞构造环境下,地壳处于由挤压向伸展的转换,并通过古生物和同位素测年等方法厘定出标志造山结束的上三叠统柴河组磨拉石建造。因此认为,古亚洲洋构造域对研究区的影响至少延续到晚三叠世。
     3、研究区早侏罗世广泛沉积了含煤建造,主要为红旗组、万宝组,表明研究区该时期处于区域伸展至断陷稳定沉积的构造背景下。通过比较研究区、大兴安岭北段满洲里、根河地区的中侏罗世塔木兰沟组火山岩可知,大兴安岭地区中—晚侏罗世从北到南具有明显的俯冲极性特征,是蒙古—鄂霍茨克洋俯冲的地球动力学体现。
     4、识别出研究区大型逆冲推覆构造,研究了逆冲推覆构造的结构、应变和形成时期,结合邻区同时期逆冲推覆构造的分布等特点,提出其形成于晚侏罗世西伯利亚板块南侵和北美板块左旋的应力作用下,蒙古—鄂霍茨克洋最终于漠河一线闭合,碰撞所引发的大面积推覆波及大兴安岭北段漠河盆地、研究区、燕山地区等整个东北地区,并广泛发育粗碎屑同构造沉积。
Great Xing'an Range, the core portion of Northeast Asian region that witnessed the influence of the various periods and tectonic domains, is a key to study the orogenic evolution history in the Northeast Asian and the Central Asia. Most recent researches focus on Late Paleozoic and Late Mesozoic. However, little has been reported about Triassic and Jurassic, especially about the closure of the Paleo-Asian Ocean and the magmatite activity. Isotope tests indicate that most of the volcanic activities are despite generally concern on the late Jurassic volcanic rocks concentrated in the Early Cretaceous. The reason why the middle Great Xing'an Range has been chosen as the study region is that the outcrop area of Mesozoic Strata is quite complete in this area.
     Based on the combination of the field data and the latest results published in the study region that, this paper rebuild the original tectonic evolution of Triassic-Jurassic generally. And the following understanding is achieved.
     Hadataolegai Formation adakites in early Triassic are identified. Paleo-Asian Ocean closes along the line of Silumulon River-Changchun-Yanji which collision activated Hegenshan-Heihe structural belt. The stress push the young crust to underthrust from south to north along Hegenshan-Nenjiang-Heihe line. The lower crust or the plate remain are advanced to the deeper mantle melting and then the adakites are formed. What's more, lacustrine clastic sediments are deposited in the surface intermountain basin. Therefore, the closure of Paleo-Asian Ocean is a kind of continental subduction that the line along the of Silumulon River-Changchun-Yanji is the main collision belt while the line along Hegenshan-Nenjiang-Heihe is activated structural belt internal block. The former is earlier than the latter and larger than the latter in scale.
     2、Both post-orogeny post-collision granites of middle-late triassic widely developed and A2type granite in partial area indicates that the crust of transforms compression into extension under the tectonic setting. Meanwhile, Chaihe group molasse of Upper Triassic which marks the termination of orogeny is determined by paleontology and isotopic dating methods. Therefore, Ancient Asian Ocean tectonic domain affects the study area extended to the Late Triassic at least.
     3、The coal-bearing construction deposition early Jurassic in the study area of the main Red Flag Group and Manpower Group shows that this period in the study area is under the tectonic background of regional extension stable fault sedimentary. Comparing volcanic rocks of the middle Jurassic Tamulangou formation in the working area with the northern section of Great Xing'an Range and Root River region, conclusion can be drawn that the middle-late Jurassic in Great Xing'an Range has subduction polarity characteristics from north to south which is the reflection Mongolia-Okhotsk subduction geodynamic.
     4、Identify a large thrust nappe structure in the study area, its structure, deformation and formation period were studied. In summary, comparing thrust nappe structures in study area with peripheral areas, it was occurred by the Siberia plate moving to south and the North American plate sinistral promoting in Late Jurassic when Mongolia-Okhotsk Ocean eventually closed in Mohe line. A large nappe caused by the collision the entire Northeast region and the coarse clastic syntectonic sedimentation is widely developed.
引文
[1]. Alfredo Camacho, James K. W. Lee, Bastiaan J. Hensen et al. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids[J]. Nature,2005,435:1191-1196.
    [2]. Atherton M P, Petford. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Geology,1993,4:596—600.
    [3]. Badarch, G, Dickson, C.W. et al. A new terrane subdivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences,2002,21, 87-110.
    [4]. Batchelor R.A., Bowden,P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology,1985,48:43-55.
    [5]. Boynton WV. Geochemistry of the Rare Earth Elements:Meteorite Studies. In:Henderson P(ed)[C]. Rare Earth Element Geochemistry. Amesterdam:Elsevier,1984:63-114.
    [6]. Bryant J A. Geochemical constraints on the origin of volcanic rocks from the Andean Northern volcanic zone, Ecuador[J]. Journal of Petrology,2006,47(6):1147-1175.
    [7]. Chen, B., Jahn, B.M., Wilde, S., Xu, B.,2000. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications. Tectonophysics 328, 157-182.
    [8]. Collins W J, Beams S D, White A J R, et al. Nature and origin of a type granites with paticular reference to Southeastern Australia[J]. Contrib. Miner. Petro.,1982,80:189-200.
    [9]. Cox, K,J., Bell et al. The interpretation of igneous rocks[M]. Allen and Unwin, London,1979.
    [10].Defant M J, Drummond M S. Derivation of some mordern arc magmas by melting of young subduted lithosphere[J]. Nature,1990,347:662—665.
    [11].Defant M J, Xu J F, Kepezhinskas P et al.2002. Adakites:Some variations on a theme. Acta Petrologica Sinica,18:129—142.
    [12].Dickinson W R.1979. Plate tectonic and sandstone composition. Am. Ass. Petrol. Geol. Bull., 63:2164—2182.
    [13].Donskaya, T.V., Sklyarov, E.V., Gladkochub, D.P.,2000. The Baikal collisional metamorphic belt. Doklady Earth Sciences 374,1075-1079.
    [14].D'Orazio M D, Innocenti F, Manetti P et al. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction:geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes(-45°S, Chile)[J]. Journal of South American Earth Sciences,2003,16:219-242.
    [15].ERIC A K M. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews.1994,37:215-224.
    [16].Friedrich Lucassen, Gerhard Franz, Rolf L Romer et al. Pre-Cenozoic intra-plate magmatism along the Central Andes(17-34°s):Composition of the mantle at an active margin[J]. Lithos, 2007,99:312-338.
    [17].Gill J B. Orogenic Andesite and Plate Tectonics[M]. Berlin:Springer,1981.
    [18].Gutierrez F, Gioncada A, Gonzalea Ferran O et al. The Hudson Volcano and surrounding monogenetic centres(Chilean Patagonia):An example of volcanism associated with ridge-trench collision environment[J]. Journal of Volcanology and Geothermal Research, 2005,145:207-233.
    [19].Han, G.Q., Liu, Y.J., Neubauer, F. et al. Origin of terranes in the eastern Central Asian Orogenic Belt, NE China:U-Pb ages of detrital zircons from Ordovician-Devonian sandstones, North Da Xing'an Mts. Tectonophysics,2011,511,109-124.
    [20]. Irvine TN, Baragar WRA. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Science,1971,8:523-548.
    [21]. Jahn, B.M.,2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In:Malpas, J., Fletcher, C.J.N., Ali, J.R., Aitchison, J.C. (eds.):Aspects of the Tectonic evolution of China. Journal of the Geological Society, London, Special Publications, 226,73-100.
    [22]. Jian, P., Liu, D., Kroner, A., Windley, B.F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Zhang, L., Tomurhuu, D.,2010, Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118,169-190.
    [23]. Jian, P., Liu, D.Y., Kroner, A., Windley, B.F., Shi, Y.R., Zhang, F.Q., Shi, G.H., Miao, L.C., Zhang, W., Zhang, Q., Zhang, L.Q., Ren, J.S.,2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos 101,233-259.
    [24].Le Maitre RW, Bakteman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford:Blackwell Scientific Publications,1989:1-193.
    [25].Levashova, N.M., Kalugin, V.M., Gibsher, A.S., Yff, J., Ryabinin, A.B., Meert, J.G., Malone, S.J.,2010. The origin of the Baydaric microcontinent, Mongolia:Constraints from paleomagnetism and geochronology. Tectonophysics 485,306-320. [26].Levashova, N.M., Meert, J.G., Gibsher, A.S., Grice, W.C., Bazhenov, M.L.,2011. The origin of microcontinents in the Central Asian Orogenic Belt:Constraints from paleomagnetism and geochronology. Precambrian Research 185,37-54.
    [27].Li, J. Y.,1987. Preliminary studies on the paleo-suture between Siberrian Plate and Sina-Korean Plate in the easternn Nei Mongol. Chinese Science Bulletin,32(23):1637-1641.
    [28]. Li, J.Y.,2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26,207-24.
    [29].Maniar PD and Piccoli PM.1989. Tectonic discrimination of granitoids. Bulletin of the Geological Society of America,101(5):635—643.
    [30].Miao, L.C., Fan, W.M., Liu, D.Y., Zhang, F.Q., Shi, Y.R., Guo, F.,2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences 32,348-370.
    [31].Miao, L.C., Liu, D.Y., Zhang, F.Q.,2007. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin 52,1112-1134.
    [32].Miyashiro, A., Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974,274:321-355.
    [33].Moyen and Stevens,2006.Experimental constraints on TTG petrogenesis:implications for Archean Geodynamics.K. Benn, J.-C. Mareschal, K.C. Condie (Eds.), Archean Geodynamics and Environments, American Geophysical Union, Geophysical Monograph,164 (2006), pp. 149-175.
    [34].Papp R P, Watson E B and Miller C F.1991. Partialmelting of amphibolite/eclogite and the origin of Archean trondhjem ites and tonalites Precambrian Res,51:1—25.
    [35].Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth Planet. Sci. Lett.,1994,121:227—244.
    [36].Pearce J A, Harris NBW and Tindle AG.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956—983.
    [37].Pearce J A. Sources and setting of granitic rocks. Episodes,1996,19:120—125.
    [38].Peccerillo A and Taylor S.1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63—81.
    [39].Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith[J]. Peru.J.Petrol.,1996,37:1491—1521.
    [40].Ramsay.现代构造地质学方法[M].北京:地质出版社,1991.
    [41].Rojas-Agramonte, Y, Kroner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D., Sun, M.,2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia:Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research 19,751-763.
    [42].Sengor, A.M.C., Natal'in, B.A.,1996. Paleotectonics of Asia:fragments of a synthesis. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp.486-641.
    [43].Sengor, A.M.C., Natal'in, B.A., Burtman et al. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature,1993,364,299-307.
    [44].Sheppard S, Griffin T J, Tyler, et al. High-and low-K granites and adakites at a Paleoproterozoic plate boundary in northwestern Australia[J]. J.Geol. Soc. London, 2001,158:547—560.
    [45]. Sun SS,McDonough WE Chemical and isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In:Saunders AD and Norry MJ(eds.). Magmatism in Ocean Basins[M]. Oxford:Geol. Soc. Publication,1989:313-345.
    [46].T.V. Donskaya, D.P. Gladkochub, A.M. Mazukabzov et al. The Late Triassic Kataev volcanoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean[J]. Russian Geology and Geophysics,2012,53(1):22—36.
    [47].Tomurtogoo, O., Windley, B. F., Kroner, A., Badarch, G, and Liu, D. Y,2005, Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen:Journal of the Geological Society, v.162, no.1, p.125-134.
    [48]. Van der Voo R, Spakman, W, Bijwaard, H.,1999. Mesozoic subducted slabs under Siberia. Nature (London),397(6716):246-249.
    [49].Vernikovsky, V.A., Vernikovskaya, A.E., Kotov, A.B., Sal'nikova, E.B., Kovach, V.P.,2003. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton:new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics 375,147-168.
    [50].Wang Q., Wyman D.A., Zhao Z.H., Xu J.F., Bai Z.H., Xiong X.L., Dai T.M., Li C.F., Chu Z.Y,2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):Implication for Phanerozoic crustal growth of Central Asia Orogenic Belt. Chemical Geology,236(1-2):42-64.
    [51].Whalen J B, Currie K L, Caocell B w. A-type granites:Geochemical characteristics, discrimination and petrogensis[J]. Contr Mineral Peteol,1987,95:407—419.
    [52].Wilde, S.A., Wu, F.-Y, Zhao, G,2010. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion:Geological Society, London, Special Publications 338,117-137.
    [53].Windley, B.F., Alexelev, D., Xiao, W.J., Kroner, A., Badarch, G,2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 31-47.
    [54]. Wood D A.1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth Planet. Sci. Lett.,50:11—30.
    [55].Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M.,2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41,1-30.
    [56]. Wu, F.Y, Zhao, G.C., Sun, D.Y. et al. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences,,2007,30, 542-556.
    [57].Xiao, W.J., Huang, B.C., Han, C.M., Sun, S., Li, J.L.,2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens. Gondwana Research 18,253-273.
    [58].Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G.,2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:termination of the Central Asian Orogenic Belt. Tectonics 22,1069-1089.
    [59].Xiao, W.J., Windley, B.F., Huang, B.C. et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences (Geologische Rundschau),2009,98,1189-1217.
    [60].Xu W L, Ji W Q, Pei F P, et al.Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tectonic implications [J]. Journal of Asian Earth Sciences,2009,34:392-402.
    [61]. Yang, T.N., Li, J.Y., Zhang, J., Hou, K.J.,2011. The Altai-Mongolia terrane in the Central Asian Orogenic Belt (CAOB):a peri-Gondwana one? Evidence from zircon U-Pb, Hf isotopes and REE abundance. Precambrian Research, in Press.
    [62].Yarmolyuk, V.V., Kovalenko, V.I., Kovach, V.P., Rytsk, E.Y., Kozakov, I.K., Kotov, A.B., Sal'nikova, E.B.,2006, Early stages of the Paleoasian Ocean formation:Results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt. Doklady Earth Sciences 411, 1184-1189.
    [63].Zhang JH, Ge WC, Wu FY et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos,2008,102:138—157.
    [64].Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., Zhang, X.H, 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478,230-246.
    [65].Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Wang, H., Zeng, W.S.,2010a. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma? Journal of Geodynamics 50,300-317.
    [66].Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Zheng, C.Q., Wang, H., Zeng, W.S.,2010b. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China:further evidence regarding their affinity. Geological Magazine 147,1-13.
    [67].蔡凯蒂.甘肃省的三叠系.甘肃地质学报,1993(Suppl):50—102
    [68].葛文春,吴福元,周长勇,A.A.Abdel Rahman.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报.2005,50(12):1239-1247.
    [69].和政军,牛宝贵,张新元.晚侏罗世承德盆地砾岩碎屑源区分析及构造意义[J].岩石学报,2007,23(3):655-666.
    [70].黑龙江地质区域地质测量第二队,华安公社幅1:200000万区域地质调查报告[R].北京:全国地质资料馆,1976:28—31.
    [71].黑龙江省地质局区测队,扎赉特幅1:200000万区域地质调查报告[R].北京:全国地质资料馆,1972:23-27.
    [72].侯伟,刘招君,何玉平,等.漠河盆地上侏罗统沉积特征与构造背景[J].吉林大学学报(地球科学版),2010,40(2):286-297.
    [73].蒋国源,权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质和科学院沈阳地质矿产研究所所刊,1988,17:23-100.
    [74].李春昱.亚洲大地构造图(1:800万)[M].北京:地图出版社,1982.
    [75].李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,2007,23(3):565-582.
    [76].李锦轶,和政军,莫申国,等.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造 意义[J].地质通报,2004,23(2):120-129.
    [77].李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版).2009,39(4):584-605.
    [78].李双林,欧阳自远,1998.兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质,18(3):45-54.
    [79].李晓敏.内蒙古宾扎拉格地区中侏罗统塔木兰沟组火山岩岩石地球化学特征[J].矿物学报,2011,S1:48-49.
    [80].罗志立,刘树根,雍自权,等.中国陆内俯冲(C—俯冲)观的形成和发展[J].新疆石油地质,2003,24(1):1-8.
    [81].米家榕,张川波,孙春林,宁岩,姚春青.北京西山杏石口组发育特征及其时代[J].地质学报.1984(04):273-284.
    [82].米家榕、孙春林.吉林双阳-磐石一带晚三叠世植物化石.长春地质学院报第三期.1994
    [83].米家榕、孙春林.吉林双阳—磐石一带晚三叠世植物化石.长春地质学院报第三期.1994.
    [84].米家榕.中国环太平洋带北段晚三叠世地层古生物及古地理[M].北京:科学出版社,1993.
    [85].内蒙古自治区地质矿产局,内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    [86].内蒙古自治区第二区域地质调查一分队.一二五公里幅、索伦军马场幅1:20万区域地质调查报告.1990.
    [87].潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质.2009(01):1-28.
    [88].彭玉鲸,纪春华,辛玉莲,2002.中俄朝毗邻地区古吉黑造山带岩石及年代纪录.地质与资源,11(2):65-75.
    [89].渠洪杰,张英利.承德地区土城子组沉积特征及其构造意义[J].大地构造与成矿学,2005,29(4):465-474.
    [90].任纪舜,王作勋,陈炳蔚,等,1999.从全球看中国大地构造--中国及邻区大地构造图简要说明.北京:地质出版社.
    [91].任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,1999,6(3):85-93.
    [92].邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用[J].中国科学,1997.27(5):390-394.
    [93].斯行健.陕北延长层植物群的对比及其地质时代.古生物学报,1956,4(1):24—44.
    [94].孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据.吉林大学学报(地球科学版),2004,34(2):174-181.
    [95].孙革,赵衍华,李春田.吉林双阳大酱缸晚三叠世植物[J].古生物学报.1983,22(4):447462.
    [96].孙革.中国吉林天桥岭晚三迭世植物群.长春:吉林科技出版社,1993
    [97].孙革.中国吉林天桥岭晚三迭世植物群.长春:吉林科技出版社,1993.
    [98].王成文,金巍,张兴洲,等,2008.东北及邻区晚古生代大地构造属性新认识.地层学杂志,32(2):119-136.
    [99].王德滋,周全城.岩浆作用与地球动力学刍议—以中国东南沿海为例[J].岩石矿物学杂志,1991,10(3):205-210.
    [100].王玉净,樊志勇,1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报,36(1):58-69.
    [101].肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008(01):4-8.
    [102].谢鸣谦,2000.拼贴板块构造及其驱动机理--中国东北及邻区的大地构造演化.北京:科学出版社.
    [103].余和中,李玉文,韩守华,等,2001.松辽盆地古生代构造演化.大地构造与成矿学,25(4):389-396.
    [104].张梅生,彭向东,孙晓猛,1998.中国东北区古生代构造古地理格局.辽宁地质,(2):91-96.
    [105].张旗,王焰,熊小林.2008.埃达克岩和花岗岩:挑战与机遇.北京:中国大地出版社:1—344.
    [106].张旗.埃达克岩研究的回顾和前瞻[J].中国地质.2008(01):32-37.
    [107].张顺,林春明,吴朝东.黑龙江漠河盆地构造特征与成盆演化[J].高校地质学报,2003,9(3):411-419.
    [108].张武,李楠,杨小菊.内蒙古早三叠世的Scalaroxylon及其演化意义[J].古生物学报,2006,45(3):332-344.
    [109].张武,郑少林.辽西金岭寺-羊山盆地上三叠统老虎沟组植物化石新材料[J].古生物学报.1984,23(3):382-396.
    [110].张武、董国义.东北地区的三叠系.中国地质科学院沈阳地质矿产研究所所刊,1983
    [111].张兴洲,张元厚.蓝片岩与绿片岩共存:龙江岩系构造演化的新证据[J].长春地质学院学报.1991(03):277—348.
    [112].张贻侠,孙运生,张兴洲,等,1998.中国满洲里-绥芬河地学断面1:100 000 0说明书.北京:地质出版社.1998:1-53.
    [113].张允平.东北亚地区晚侏罗—白垩纪构造格架主体特点[J].吉林大学学报(地球科学版),2011,41(5):1267-1284.
    [114].赵越,杨振宇,马醒华,1994.东亚大地构造发展的重要转折.地质科学,29(2):105-119.
    [115].赵忠华,孙德有,苟军,等.满洲里南部塔木兰沟组火山岩年代学与地球化学[J].吉林大学学报(地球科学版),2011,41(6):1865-1880.
    [116].周统顺.中国三叠纪植物群、植物地理分区及古气候.地层古生物论文集,1999 No.27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700